|  |  | 
|  | /* @(#)e_exp.c 1.6 04/04/22 */ | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | #ifndef lint | 
|  | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_exp.c,v 1.10 2005/02/04 18:26:05 das Exp $"; | 
|  | #endif | 
|  |  | 
|  | /* __ieee754_exp(x) | 
|  | * Returns the exponential of x. | 
|  | * | 
|  | * Method | 
|  | *   1. Argument reduction: | 
|  | *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. | 
|  | *	Given x, find r and integer k such that | 
|  | * | 
|  | *               x = k*ln2 + r,  |r| <= 0.5*ln2. | 
|  | * | 
|  | *      Here r will be represented as r = hi-lo for better | 
|  | *	accuracy. | 
|  | * | 
|  | *   2. Approximation of exp(r) by a special rational function on | 
|  | *	the interval [0,0.34658]: | 
|  | *	Write | 
|  | *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... | 
|  | *      We use a special Remes algorithm on [0,0.34658] to generate | 
|  | * 	a polynomial of degree 5 to approximate R. The maximum error | 
|  | *	of this polynomial approximation is bounded by 2**-59. In | 
|  | *	other words, | 
|  | *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 | 
|  | *  	(where z=r*r, and the values of P1 to P5 are listed below) | 
|  | *	and | 
|  | *	    |                  5          |     -59 | 
|  | *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2 | 
|  | *	    |                             | | 
|  | *	The computation of exp(r) thus becomes | 
|  | *                             2*r | 
|  | *		exp(r) = 1 + ------- | 
|  | *		              R - r | 
|  | *                                 r*R1(r) | 
|  | *		       = 1 + r + ----------- (for better accuracy) | 
|  | *		                  2 - R1(r) | 
|  | *	where | 
|  | *			         2       4             10 | 
|  | *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ). | 
|  | * | 
|  | *   3. Scale back to obtain exp(x): | 
|  | *	From step 1, we have | 
|  | *	   exp(x) = 2^k * exp(r) | 
|  | * | 
|  | * Special cases: | 
|  | *	exp(INF) is INF, exp(NaN) is NaN; | 
|  | *	exp(-INF) is 0, and | 
|  | *	for finite argument, only exp(0)=1 is exact. | 
|  | * | 
|  | * Accuracy: | 
|  | *	according to an error analysis, the error is always less than | 
|  | *	1 ulp (unit in the last place). | 
|  | * | 
|  | * Misc. info. | 
|  | *	For IEEE double | 
|  | *	    if x >  7.09782712893383973096e+02 then exp(x) overflow | 
|  | *	    if x < -7.45133219101941108420e+02 then exp(x) underflow | 
|  | * | 
|  | * Constants: | 
|  | * The hexadecimal values are the intended ones for the following | 
|  | * constants. The decimal values may be used, provided that the | 
|  | * compiler will convert from decimal to binary accurately enough | 
|  | * to produce the hexadecimal values shown. | 
|  | */ | 
|  |  | 
|  | #include "math.h" | 
|  | #include "math_private.h" | 
|  |  | 
|  | static const double | 
|  | one	= 1.0, | 
|  | halF[2]	= {0.5,-0.5,}, | 
|  | huge	= 1.0e+300, | 
|  | twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/ | 
|  | o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */ | 
|  | u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */ | 
|  | ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */ | 
|  | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ | 
|  | ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */ | 
|  | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ | 
|  | invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ | 
|  | P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | 
|  | P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | 
|  | P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | 
|  | P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | 
|  | P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ | 
|  |  | 
|  |  | 
|  | double | 
|  | __ieee754_exp(double x)	/* default IEEE double exp */ | 
|  | { | 
|  | double y,hi=0.0,lo=0.0,c,t; | 
|  | int32_t k=0,xsb; | 
|  | u_int32_t hx; | 
|  |  | 
|  | GET_HIGH_WORD(hx,x); | 
|  | xsb = (hx>>31)&1;		/* sign bit of x */ | 
|  | hx &= 0x7fffffff;		/* high word of |x| */ | 
|  |  | 
|  | /* filter out non-finite argument */ | 
|  | if(hx >= 0x40862E42) {			/* if |x|>=709.78... */ | 
|  | if(hx>=0x7ff00000) { | 
|  | u_int32_t lx; | 
|  | GET_LOW_WORD(lx,x); | 
|  | if(((hx&0xfffff)|lx)!=0) | 
|  | return x+x; 		/* NaN */ | 
|  | else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */ | 
|  | } | 
|  | if(x > o_threshold) return huge*huge; /* overflow */ | 
|  | if(x < u_threshold) return twom1000*twom1000; /* underflow */ | 
|  | } | 
|  |  | 
|  | /* argument reduction */ | 
|  | if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ | 
|  | if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */ | 
|  | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; | 
|  | } else { | 
|  | k  = (int)(invln2*x+halF[xsb]); | 
|  | t  = k; | 
|  | hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */ | 
|  | lo = t*ln2LO[0]; | 
|  | } | 
|  | x  = hi - lo; | 
|  | } | 
|  | else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */ | 
|  | if(huge+x>one) return one+x;/* trigger inexact */ | 
|  | } | 
|  | else k = 0; | 
|  |  | 
|  | /* x is now in primary range */ | 
|  | t  = x*x; | 
|  | c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | 
|  | if(k==0) 	return one-((x*c)/(c-2.0)-x); | 
|  | else 		y = one-((lo-(x*c)/(2.0-c))-hi); | 
|  | if(k >= -1021) { | 
|  | u_int32_t hy; | 
|  | GET_HIGH_WORD(hy,y); | 
|  | SET_HIGH_WORD(y,hy+(k<<20));	/* add k to y's exponent */ | 
|  | return y; | 
|  | } else { | 
|  | u_int32_t hy; | 
|  | GET_HIGH_WORD(hy,y); | 
|  | SET_HIGH_WORD(y,hy+((k+1000)<<20));	/* add k to y's exponent */ | 
|  | return y*twom1000; | 
|  | } | 
|  | } |