| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <libgen.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <pthread.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <sys/cdefs.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <unistd.h> |
| |
| #include <limits> |
| #include <string> |
| #include <thread> |
| |
| #include <android-base/file.h> |
| #include <android-base/macros.h> |
| #include <android-base/silent_death_test.h> |
| #include <android-base/test_utils.h> |
| #include <gtest/gtest.h> |
| |
| #include "math_data_test.h" |
| #include "utils.h" |
| |
| using namespace std::string_literals; |
| |
| template <typename T = int (*)(char*)> |
| class GenericTemporaryFile { |
| public: |
| explicit GenericTemporaryFile(T mk_fn = mkstemp) : mk_fn_(mk_fn) { |
| // Since we might be running on the host or the target, and if we're |
| // running on the host we might be running under bionic or glibc, |
| // let's just try both possible temporary directories and take the |
| // first one that works. |
| init("/data/local/tmp"); |
| if (fd == -1) { |
| init("/tmp"); |
| } |
| } |
| |
| ~GenericTemporaryFile() { |
| close(fd); |
| unlink(path); |
| } |
| |
| int fd; |
| char path[1024]; |
| |
| private: |
| T mk_fn_; |
| |
| void init(const char* tmp_dir) { |
| snprintf(path, sizeof(path), "%s/TemporaryFile-XXXXXX", tmp_dir); |
| fd = mk_fn_(path); |
| } |
| |
| DISALLOW_COPY_AND_ASSIGN(GenericTemporaryFile); |
| }; |
| |
| typedef GenericTemporaryFile<> MyTemporaryFile; |
| |
| // The random number generator tests all set the seed, get four values, reset the seed and check |
| // that they get the first two values repeated, and then reset the seed and check two more values |
| // to rule out the possibility that we're just going round a cycle of four values. |
| // TODO: factor this out. |
| |
| TEST(stdlib, drand48) { |
| srand48(0x01020304); |
| EXPECT_DOUBLE_EQ(0.65619299195623526, drand48()); |
| EXPECT_DOUBLE_EQ(0.18522597229772941, drand48()); |
| EXPECT_DOUBLE_EQ(0.42015087072844537, drand48()); |
| EXPECT_DOUBLE_EQ(0.061637783047395089, drand48()); |
| srand48(0x01020304); |
| EXPECT_DOUBLE_EQ(0.65619299195623526, drand48()); |
| EXPECT_DOUBLE_EQ(0.18522597229772941, drand48()); |
| srand48(0x01020304); |
| EXPECT_DOUBLE_EQ(0.65619299195623526, drand48()); |
| EXPECT_DOUBLE_EQ(0.18522597229772941, drand48()); |
| } |
| |
| TEST(stdlib, erand48) { |
| const unsigned short seed[3] = { 0x330e, 0xabcd, 0x1234 }; |
| unsigned short xsubi[3]; |
| memcpy(xsubi, seed, sizeof(seed)); |
| EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi)); |
| EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi)); |
| EXPECT_DOUBLE_EQ(0.35333609724524351, erand48(xsubi)); |
| EXPECT_DOUBLE_EQ(0.44658343479654405, erand48(xsubi)); |
| memcpy(xsubi, seed, sizeof(seed)); |
| EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi)); |
| EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi)); |
| memcpy(xsubi, seed, sizeof(seed)); |
| EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi)); |
| EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi)); |
| } |
| |
| TEST(stdlib, lcong48) { |
| unsigned short p[7] = { 0x0102, 0x0304, 0x0506, 0x0708, 0x090a, 0x0b0c, 0x0d0e }; |
| lcong48(p); |
| EXPECT_EQ(1531389981, lrand48()); |
| EXPECT_EQ(1598801533, lrand48()); |
| EXPECT_EQ(2080534853, lrand48()); |
| EXPECT_EQ(1102488897, lrand48()); |
| lcong48(p); |
| EXPECT_EQ(1531389981, lrand48()); |
| EXPECT_EQ(1598801533, lrand48()); |
| lcong48(p); |
| EXPECT_EQ(1531389981, lrand48()); |
| EXPECT_EQ(1598801533, lrand48()); |
| } |
| |
| TEST(stdlib, lrand48) { |
| srand48(0x01020304); |
| EXPECT_EQ(1409163720, lrand48()); |
| EXPECT_EQ(397769746, lrand48()); |
| EXPECT_EQ(902267124, lrand48()); |
| EXPECT_EQ(132366131, lrand48()); |
| srand48(0x01020304); |
| EXPECT_EQ(1409163720, lrand48()); |
| EXPECT_EQ(397769746, lrand48()); |
| srand48(0x01020304); |
| EXPECT_EQ(1409163720, lrand48()); |
| EXPECT_EQ(397769746, lrand48()); |
| } |
| |
| TEST(stdlib, random) { |
| srandom(0x01020304); |
| EXPECT_EQ(55436735, random()); |
| EXPECT_EQ(1399865117, random()); |
| EXPECT_EQ(2032643283, random()); |
| EXPECT_EQ(571329216, random()); |
| srandom(0x01020304); |
| EXPECT_EQ(55436735, random()); |
| EXPECT_EQ(1399865117, random()); |
| srandom(0x01020304); |
| EXPECT_EQ(55436735, random()); |
| EXPECT_EQ(1399865117, random()); |
| } |
| |
| TEST(stdlib, rand) { |
| srand(0x01020304); |
| EXPECT_EQ(55436735, rand()); |
| EXPECT_EQ(1399865117, rand()); |
| EXPECT_EQ(2032643283, rand()); |
| EXPECT_EQ(571329216, rand()); |
| srand(0x01020304); |
| EXPECT_EQ(55436735, rand()); |
| EXPECT_EQ(1399865117, rand()); |
| srand(0x01020304); |
| EXPECT_EQ(55436735, rand()); |
| EXPECT_EQ(1399865117, rand()); |
| } |
| |
| TEST(stdlib, mrand48) { |
| srand48(0x01020304); |
| EXPECT_EQ(-1476639856, mrand48()); |
| EXPECT_EQ(795539493, mrand48()); |
| EXPECT_EQ(1804534249, mrand48()); |
| EXPECT_EQ(264732262, mrand48()); |
| srand48(0x01020304); |
| EXPECT_EQ(-1476639856, mrand48()); |
| EXPECT_EQ(795539493, mrand48()); |
| srand48(0x01020304); |
| EXPECT_EQ(-1476639856, mrand48()); |
| EXPECT_EQ(795539493, mrand48()); |
| } |
| |
| TEST(stdlib, jrand48_distribution) { |
| const int iterations = 4096; |
| const int pivot_low = 1536; |
| const int pivot_high = 2560; |
| |
| unsigned short xsubi[3]; |
| int bits[32] = {}; |
| |
| for (int iter = 0; iter < iterations; ++iter) { |
| long rand_val = jrand48(xsubi); |
| for (int bit = 0; bit < 32; ++bit) { |
| bits[bit] += (static_cast<unsigned long>(rand_val) >> bit) & 0x01; |
| } |
| } |
| |
| // Check that bit probability is uniform |
| for (int bit = 0; bit < 32; ++bit) { |
| EXPECT_TRUE((pivot_low <= bits[bit]) && (bits[bit] <= pivot_high)); |
| } |
| } |
| |
| TEST(stdlib, mrand48_distribution) { |
| const int iterations = 4096; |
| const int pivot_low = 1536; |
| const int pivot_high = 2560; |
| |
| int bits[32] = {}; |
| |
| for (int iter = 0; iter < iterations; ++iter) { |
| long rand_val = mrand48(); |
| for (int bit = 0; bit < 32; ++bit) { |
| bits[bit] += (static_cast<unsigned long>(rand_val) >> bit) & 0x01; |
| } |
| } |
| |
| // Check that bit probability is uniform |
| for (int bit = 0; bit < 32; ++bit) { |
| EXPECT_TRUE((pivot_low <= bits[bit]) && (bits[bit] <= pivot_high)); |
| } |
| } |
| |
| TEST(stdlib, posix_memalign_sweep) { |
| SKIP_WITH_HWASAN; |
| void* ptr; |
| |
| // These should all fail. |
| for (size_t align = 0; align < sizeof(long); align++) { |
| ASSERT_EQ(EINVAL, posix_memalign(&ptr, align, 256)) |
| << "Unexpected value at align " << align; |
| } |
| |
| // Verify powers of 2 up to 2048 allocate, and verify that all other |
| // alignment values between the powers of 2 fail. |
| size_t last_align = sizeof(long); |
| for (size_t align = sizeof(long); align <= 2048; align <<= 1) { |
| // Try all of the non power of 2 values from the last until this value. |
| for (size_t fail_align = last_align + 1; fail_align < align; fail_align++) { |
| ASSERT_EQ(EINVAL, posix_memalign(&ptr, fail_align, 256)) |
| << "Unexpected success at align " << fail_align; |
| } |
| ASSERT_EQ(0, posix_memalign(&ptr, align, 256)) |
| << "Unexpected failure at align " << align; |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) & (align - 1)) |
| << "Did not return a valid aligned ptr " << ptr << " expected alignment " << align; |
| free(ptr); |
| last_align = align; |
| } |
| } |
| |
| TEST(stdlib, posix_memalign_various_sizes) { |
| std::vector<size_t> sizes{1, 4, 8, 256, 1024, 65000, 128000, 256000, 1000000}; |
| for (auto size : sizes) { |
| void* ptr; |
| ASSERT_EQ(0, posix_memalign(&ptr, 16, 1)) |
| << "posix_memalign failed at size " << size; |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) & 0xf) |
| << "Pointer not aligned at size " << size << " ptr " << ptr; |
| free(ptr); |
| } |
| } |
| |
| TEST(stdlib, posix_memalign_overflow) { |
| SKIP_WITH_HWASAN; |
| void* ptr; |
| ASSERT_NE(0, posix_memalign(&ptr, 16, SIZE_MAX)); |
| } |
| |
| TEST(stdlib, aligned_alloc_sweep) { |
| SKIP_WITH_HWASAN; |
| // Verify powers of 2 up to 2048 allocate, and verify that all other |
| // alignment values between the powers of 2 fail. |
| size_t last_align = 1; |
| for (size_t align = 1; align <= 2048; align <<= 1) { |
| // Try all of the non power of 2 values from the last until this value. |
| for (size_t fail_align = last_align + 1; fail_align < align; fail_align++) { |
| ASSERT_TRUE(aligned_alloc(fail_align, fail_align) == nullptr) |
| << "Unexpected success at align " << fail_align; |
| ASSERT_ERRNO(EINVAL) << "Unexpected errno at align " << fail_align; |
| } |
| void* ptr = aligned_alloc(align, 2 * align); |
| ASSERT_TRUE(ptr != nullptr) << "Unexpected failure at align " << align; |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) & (align - 1)) |
| << "Did not return a valid aligned ptr " << ptr << " expected alignment " << align; |
| free(ptr); |
| last_align = align; |
| } |
| } |
| |
| TEST(stdlib, aligned_alloc_overflow) { |
| SKIP_WITH_HWASAN; |
| ASSERT_TRUE(aligned_alloc(16, SIZE_MAX) == nullptr); |
| } |
| |
| TEST(stdlib, aligned_alloc_size_not_multiple_of_alignment) { |
| SKIP_WITH_HWASAN; |
| |
| ASSERT_TRUE(aligned_alloc(2048, 1) == nullptr); |
| ASSERT_TRUE(aligned_alloc(4, 3) == nullptr); |
| ASSERT_TRUE(aligned_alloc(4, 7) == nullptr); |
| ASSERT_TRUE(aligned_alloc(16, 8) == nullptr); |
| } |
| |
| TEST(stdlib, realpath__NULL_filename) { |
| errno = 0; |
| // Work around the compile-time error generated by FORTIFY here. |
| const char* path = nullptr; |
| char* p = realpath(path, nullptr); |
| ASSERT_TRUE(p == nullptr); |
| ASSERT_ERRNO(EINVAL); |
| } |
| |
| TEST(stdlib, realpath__empty_filename) { |
| errno = 0; |
| char* p = realpath("", nullptr); |
| ASSERT_TRUE(p == nullptr); |
| ASSERT_ERRNO(ENOENT); |
| } |
| |
| TEST(stdlib, realpath__ENOENT) { |
| errno = 0; |
| char* p = realpath("/this/directory/path/almost/certainly/does/not/exist", nullptr); |
| ASSERT_TRUE(p == nullptr); |
| ASSERT_ERRNO(ENOENT); |
| } |
| |
| TEST(stdlib, realpath__ELOOP) { |
| TemporaryDir td; |
| std::string link = std::string(td.path) + "/loop"; |
| ASSERT_EQ(0, symlink(link.c_str(), link.c_str())); |
| |
| errno = 0; |
| char* p = realpath(link.c_str(), nullptr); |
| ASSERT_TRUE(p == nullptr); |
| ASSERT_ERRNO(ELOOP); |
| } |
| |
| TEST(stdlib, realpath__component_after_non_directory) { |
| errno = 0; |
| char* p = realpath("/dev/null/.", nullptr); |
| ASSERT_TRUE(p == nullptr); |
| ASSERT_ERRNO(ENOTDIR); |
| |
| errno = 0; |
| p = realpath("/dev/null/..", nullptr); |
| ASSERT_TRUE(p == nullptr); |
| ASSERT_ERRNO(ENOTDIR); |
| } |
| |
| TEST(stdlib, realpath) { |
| // Get the name of this executable. |
| char executable_path[PATH_MAX]; |
| int rc = readlink("/proc/self/exe", executable_path, sizeof(executable_path)); |
| ASSERT_NE(rc, -1); |
| executable_path[rc] = '\0'; |
| |
| char buf[PATH_MAX + 1]; |
| char* p = realpath("/proc/self/exe", buf); |
| ASSERT_STREQ(executable_path, p); |
| |
| p = realpath("/proc/self/exe", nullptr); |
| ASSERT_STREQ(executable_path, p); |
| free(p); |
| } |
| |
| TEST(stdlib, realpath__dot) { |
| char* p = realpath("/proc/./version", nullptr); |
| ASSERT_STREQ("/proc/version", p); |
| free(p); |
| } |
| |
| TEST(stdlib, realpath__dot_dot) { |
| char* p = realpath("/dev/../proc/version", nullptr); |
| ASSERT_STREQ("/proc/version", p); |
| free(p); |
| } |
| |
| TEST(stdlib, realpath__deleted) { |
| TemporaryDir td; |
| |
| // Create a file "A". |
| std::string A_path = td.path + "/A"s; |
| ASSERT_TRUE(android::base::WriteStringToFile("test\n", A_path)); |
| |
| // Get an O_PATH fd for it. |
| android::base::unique_fd fd(open(A_path.c_str(), O_PATH)); |
| ASSERT_NE(fd, -1); |
| |
| // Create a file "A (deleted)". |
| android::base::unique_fd fd2(open((td.path + "/A (deleted)"s).c_str(), |
| O_CREAT | O_TRUNC | O_WRONLY, 0644)); |
| ASSERT_NE(fd2, -1); |
| |
| // Delete "A". |
| ASSERT_EQ(0, unlink(A_path.c_str())); |
| |
| // Now realpath() on the O_PATH fd, and check we *don't* get "A (deleted)". |
| std::string path = android::base::StringPrintf("/proc/%d/fd/%d", static_cast<int>(getpid()), |
| fd.get()); |
| errno = 0; |
| char* result = realpath(path.c_str(), nullptr); |
| ASSERT_EQ(nullptr, result) << result; |
| ASSERT_ERRNO(ENOENT); |
| free(result); |
| } |
| |
| TEST(stdlib, qsort) { |
| struct s { |
| char name[16]; |
| static int comparator(const void* lhs, const void* rhs) { |
| return strcmp(reinterpret_cast<const s*>(lhs)->name, reinterpret_cast<const s*>(rhs)->name); |
| } |
| }; |
| s entries[3]; |
| strcpy(entries[0].name, "charlie"); |
| strcpy(entries[1].name, "bravo"); |
| strcpy(entries[2].name, "alpha"); |
| |
| qsort(entries, 3, sizeof(s), s::comparator); |
| ASSERT_STREQ("alpha", entries[0].name); |
| ASSERT_STREQ("bravo", entries[1].name); |
| ASSERT_STREQ("charlie", entries[2].name); |
| |
| qsort(entries, 3, sizeof(s), s::comparator); |
| ASSERT_STREQ("alpha", entries[0].name); |
| ASSERT_STREQ("bravo", entries[1].name); |
| ASSERT_STREQ("charlie", entries[2].name); |
| } |
| |
| TEST(stdlib, qsort_r) { |
| struct s { |
| char name[16]; |
| static int comparator(const void* lhs, const void* rhs, void* context) { |
| int* count_p = reinterpret_cast<int*>(context); |
| *count_p += 1; |
| return strcmp(reinterpret_cast<const s*>(lhs)->name, reinterpret_cast<const s*>(rhs)->name); |
| } |
| }; |
| s entries[3]; |
| strcpy(entries[0].name, "charlie"); |
| strcpy(entries[1].name, "bravo"); |
| strcpy(entries[2].name, "alpha"); |
| |
| int count; |
| void* context = &count; |
| |
| count = 0; |
| qsort_r(entries, 3, sizeof(s), s::comparator, context); |
| ASSERT_STREQ("alpha", entries[0].name); |
| ASSERT_STREQ("bravo", entries[1].name); |
| ASSERT_STREQ("charlie", entries[2].name); |
| ASSERT_EQ(count, 3); |
| } |
| |
| static void* TestBug57421_child(void* arg) { |
| pthread_t main_thread = reinterpret_cast<pthread_t>(arg); |
| pthread_join(main_thread, nullptr); |
| char* value = getenv("ENVIRONMENT_VARIABLE"); |
| if (value == nullptr) { |
| setenv("ENVIRONMENT_VARIABLE", "value", 1); |
| } |
| return nullptr; |
| } |
| |
| static void TestBug57421_main() { |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug57421_child, reinterpret_cast<void*>(pthread_self()))); |
| pthread_exit(nullptr); |
| } |
| |
| // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to |
| // run this test (which exits normally) in its own process. |
| |
| using stdlib_DeathTest = SilentDeathTest; |
| |
| TEST_F(stdlib_DeathTest, getenv_after_main_thread_exits) { |
| // https://code.google.com/p/android/issues/detail?id=57421 |
| ASSERT_EXIT(TestBug57421_main(), ::testing::ExitedWithCode(0), ""); |
| } |
| |
| TEST(stdlib, mkostemp64_smoke) { |
| MyTemporaryFile tf([](char* path) { return mkostemp64(path, O_CLOEXEC); }); |
| ASSERT_TRUE(CloseOnExec(tf.fd)); |
| } |
| |
| TEST(stdlib, mkostemp) { |
| MyTemporaryFile tf([](char* path) { return mkostemp(path, O_CLOEXEC); }); |
| ASSERT_TRUE(CloseOnExec(tf.fd)); |
| } |
| |
| TEST(stdlib, mkstemp64_smoke) { |
| MyTemporaryFile tf(mkstemp64); |
| struct stat64 sb; |
| ASSERT_EQ(0, fstat64(tf.fd, &sb)); |
| ASSERT_EQ(O_LARGEFILE, fcntl(tf.fd, F_GETFL) & O_LARGEFILE); |
| } |
| |
| TEST(stdlib, mkstemp) { |
| MyTemporaryFile tf(mkstemp); |
| struct stat sb; |
| ASSERT_EQ(0, fstat(tf.fd, &sb)); |
| } |
| |
| TEST(stdlib, system) { |
| int status; |
| |
| status = system("exit 0"); |
| ASSERT_TRUE(WIFEXITED(status)); |
| ASSERT_EQ(0, WEXITSTATUS(status)); |
| |
| status = system("exit 1"); |
| ASSERT_TRUE(WIFEXITED(status)); |
| ASSERT_EQ(1, WEXITSTATUS(status)); |
| } |
| |
| TEST(stdlib, system_NULL) { |
| // "The system() function shall always return non-zero when command is NULL." |
| // https://pubs.opengroup.org/onlinepubs/9799919799.2024edition/functions/system.html |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wnonnull" |
| ASSERT_NE(0, system(nullptr)); |
| #pragma clang diagnostic pop |
| } |
| |
| // https://austingroupbugs.net/view.php?id=1440 |
| TEST(stdlib, system_minus) { |
| // Create a script with a name that starts with a '-'. |
| TemporaryDir td; |
| std::string script = std::string(td.path) + "/-minus"; |
| ASSERT_TRUE(android::base::WriteStringToFile("#!" BIN_DIR "sh\nexit 66\n", script)); |
| |
| // Set $PATH so we can find it. |
| setenv("PATH", td.path, 1); |
| // Make it executable so we can run it. |
| ASSERT_EQ(0, chmod(script.c_str(), 0555)); |
| |
| int status = system("-minus"); |
| EXPECT_TRUE(WIFEXITED(status)); |
| EXPECT_EQ(66, WEXITSTATUS(status)); |
| |
| // While we're here and have all the setup, let's test popen(3) too... |
| FILE* fp = popen("-minus", "r"); |
| ASSERT_TRUE(fp != nullptr); |
| status = pclose(fp); |
| EXPECT_TRUE(WIFEXITED(status)); |
| EXPECT_EQ(66, WEXITSTATUS(status)); |
| } |
| |
| TEST(stdlib, atof) { |
| ASSERT_DOUBLE_EQ(1.23, atof("1.23")); |
| } |
| |
| template <typename T> |
| static void CheckStrToFloat(T fn(const char* s, char** end)) { |
| FpUlpEq<0, T> pred; |
| |
| EXPECT_PRED_FORMAT2(pred, 9.0, fn("9.0", nullptr)); |
| EXPECT_PRED_FORMAT2(pred, 9.0, fn("0.9e1", nullptr)); |
| EXPECT_PRED_FORMAT2(pred, 9.0, fn("0x1.2p3", nullptr)); |
| |
| const char* s = " \t\v\f\r\n9.0"; |
| char* p; |
| EXPECT_PRED_FORMAT2(pred, 9.0, fn(s, &p)); |
| EXPECT_EQ(s + strlen(s), p); |
| |
| EXPECT_TRUE(isnan(fn("+nan", nullptr))); |
| EXPECT_TRUE(isnan(fn("nan", nullptr))); |
| EXPECT_TRUE(isnan(fn("-nan", nullptr))); |
| |
| EXPECT_TRUE(isnan(fn("+nan(0xff)", nullptr))); |
| EXPECT_TRUE(isnan(fn("nan(0xff)", nullptr))); |
| EXPECT_TRUE(isnan(fn("-nan(0xff)", nullptr))); |
| |
| EXPECT_TRUE(isnan(fn("+nanny", &p))); |
| EXPECT_STREQ("ny", p); |
| EXPECT_TRUE(isnan(fn("nanny", &p))); |
| EXPECT_STREQ("ny", p); |
| EXPECT_TRUE(isnan(fn("-nanny", &p))); |
| EXPECT_STREQ("ny", p); |
| |
| EXPECT_EQ(0, fn("muppet", &p)); |
| EXPECT_STREQ("muppet", p); |
| EXPECT_EQ(0, fn(" muppet", &p)); |
| EXPECT_STREQ(" muppet", p); |
| |
| EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("+inf", nullptr)); |
| EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("inf", nullptr)); |
| EXPECT_EQ(-std::numeric_limits<T>::infinity(), fn("-inf", nullptr)); |
| |
| EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("+infinity", nullptr)); |
| EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("infinity", nullptr)); |
| EXPECT_EQ(-std::numeric_limits<T>::infinity(), fn("-infinity", nullptr)); |
| |
| EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("+infinitude", &p)); |
| EXPECT_STREQ("initude", p); |
| EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("infinitude", &p)); |
| EXPECT_STREQ("initude", p); |
| EXPECT_EQ(-std::numeric_limits<T>::infinity(), fn("-infinitude", &p)); |
| EXPECT_STREQ("initude", p); |
| |
| // Check case-insensitivity. |
| EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("InFiNiTy", nullptr)); |
| EXPECT_TRUE(isnan(fn("NaN", nullptr))); |
| } |
| |
| TEST(stdlib, strtod) { |
| CheckStrToFloat(strtod); |
| } |
| |
| TEST(stdlib, strtof) { |
| CheckStrToFloat(strtof); |
| } |
| |
| TEST(stdlib, strtold) { |
| CheckStrToFloat(strtold); |
| } |
| |
| TEST(stdlib, strtof_2206701) { |
| ASSERT_EQ(0.0f, strtof("7.0064923216240853546186479164495e-46", nullptr)); |
| ASSERT_EQ(1.4e-45f, strtof("7.0064923216240853546186479164496e-46", nullptr)); |
| } |
| |
| TEST(stdlib, strtod_largest_subnormal) { |
| // This value has been known to cause javac and java to infinite loop. |
| // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/ |
| ASSERT_EQ(2.2250738585072014e-308, strtod("2.2250738585072012e-308", nullptr)); |
| ASSERT_EQ(2.2250738585072014e-308, strtod("0.00022250738585072012e-304", nullptr)); |
| ASSERT_EQ(2.2250738585072014e-308, strtod("00000002.2250738585072012e-308", nullptr)); |
| ASSERT_EQ(2.2250738585072014e-308, strtod("2.225073858507201200000e-308", nullptr)); |
| ASSERT_EQ(2.2250738585072014e-308, strtod("2.2250738585072012e-00308", nullptr)); |
| ASSERT_EQ(2.2250738585072014e-308, strtod("2.22507385850720129978001e-308", nullptr)); |
| ASSERT_EQ(-2.2250738585072014e-308, strtod("-2.2250738585072012e-308", nullptr)); |
| } |
| |
| TEST(stdlib, quick_exit) { |
| pid_t pid = fork(); |
| ASSERT_NE(-1, pid) << strerror(errno); |
| |
| if (pid == 0) { |
| quick_exit(99); |
| } |
| |
| AssertChildExited(pid, 99); |
| } |
| |
| static int quick_exit_status = 0; |
| |
| static void quick_exit_1(void) { |
| ASSERT_EQ(quick_exit_status, 0); |
| quick_exit_status = 1; |
| } |
| |
| static void quick_exit_2(void) { |
| ASSERT_EQ(quick_exit_status, 1); |
| } |
| |
| static void not_run(void) { |
| FAIL(); |
| } |
| |
| TEST(stdlib, at_quick_exit) { |
| pid_t pid = fork(); |
| ASSERT_NE(-1, pid) << strerror(errno); |
| |
| if (pid == 0) { |
| ASSERT_EQ(at_quick_exit(quick_exit_2), 0); |
| ASSERT_EQ(at_quick_exit(quick_exit_1), 0); |
| atexit(not_run); |
| quick_exit(99); |
| } |
| |
| AssertChildExited(pid, 99); |
| } |
| |
| static void exit_from_atexit_func4() { |
| std::thread([] { exit(4); }).detach(); |
| usleep(1000); |
| fprintf(stderr, "4"); |
| } |
| |
| static void exit_from_atexit_func3() { |
| std::thread([] { exit(3); }).detach(); |
| fprintf(stderr, "3"); |
| usleep(1000); |
| // This should cause us to exit with status 99, |
| // but not before printing "4", |
| // and without re-running the previous atexit handlers. |
| exit(99); |
| } |
| |
| static void exit_from_atexit_func2() { |
| std::thread([] { exit(2); }).detach(); |
| fprintf(stderr, "2"); |
| usleep(1000); |
| // Register another atexit handler from within an atexit handler. |
| atexit(exit_from_atexit_func3); |
| } |
| |
| static void exit_from_atexit_func1() { |
| // These atexit handlers all spawn another thread that tries to exit, |
| // and sleep to try to lose the race. |
| // The lock in exit() should ensure that only the first thread to call |
| // exit() can ever win (but see exit_from_atexit_func3() for a subtelty). |
| std::thread([] { exit(1); }).detach(); |
| usleep(1000); |
| fprintf(stderr, "1"); |
| } |
| |
| static void exit_torturer() { |
| atexit(exit_from_atexit_func4); |
| // We deliberately don't register exit_from_atexit_func3() here; |
| // see exit_from_atexit_func2(). |
| atexit(exit_from_atexit_func2); |
| atexit(exit_from_atexit_func1); |
| exit(0); |
| } |
| |
| TEST(stdlib, exit_torture) { |
| // Test that the atexit() handlers are run in the defined order (reverse |
| // order of registration), even though one of them is registered by another |
| // when it runs, and that we get the exit code from the last call to exit() |
| // on the first thread to call exit() (rather than one of the other threads |
| // or a deadlock from the second call on the same thread). |
| ASSERT_EXIT(exit_torturer(), testing::ExitedWithCode(99), "1234"); |
| } |
| |
| TEST(unistd, _Exit) { |
| pid_t pid = fork(); |
| ASSERT_NE(-1, pid) << strerror(errno); |
| |
| if (pid == 0) { |
| _Exit(99); |
| } |
| |
| AssertChildExited(pid, 99); |
| } |
| |
| #if defined(ANDROID_HOST_MUSL) |
| // musl doesn't have getpt |
| int getpt() { |
| return posix_openpt(O_RDWR|O_NOCTTY); |
| } |
| #endif |
| |
| TEST(stdlib, pty_smoke) { |
| // getpt returns a pty with O_RDWR|O_NOCTTY. |
| int fd = getpt(); |
| ASSERT_NE(-1, fd); |
| |
| // grantpt is a no-op. |
| ASSERT_EQ(0, grantpt(fd)); |
| |
| // ptsname_r should start "/dev/pts/". |
| char name_r[128]; |
| ASSERT_EQ(0, ptsname_r(fd, name_r, sizeof(name_r))); |
| name_r[9] = 0; |
| ASSERT_STREQ("/dev/pts/", name_r); |
| |
| close(fd); |
| } |
| |
| TEST(stdlib, posix_openpt) { |
| int fd = posix_openpt(O_RDWR|O_NOCTTY|O_CLOEXEC); |
| ASSERT_NE(-1, fd); |
| close(fd); |
| } |
| |
| TEST(stdlib, ptsname_r_ENOTTY) { |
| errno = 0; |
| char buf[128]; |
| ASSERT_EQ(ENOTTY, ptsname_r(STDOUT_FILENO, buf, sizeof(buf))); |
| ASSERT_ERRNO(ENOTTY); |
| } |
| |
| TEST(stdlib, ptsname_r_EINVAL) { |
| int fd = getpt(); |
| ASSERT_NE(-1, fd); |
| errno = 0; |
| char* buf = nullptr; |
| ASSERT_EQ(EINVAL, ptsname_r(fd, buf, 128)); |
| ASSERT_ERRNO(EINVAL); |
| close(fd); |
| } |
| |
| TEST(stdlib, ptsname_r_ERANGE) { |
| int fd = getpt(); |
| ASSERT_NE(-1, fd); |
| errno = 0; |
| char buf[1]; |
| ASSERT_EQ(ERANGE, ptsname_r(fd, buf, sizeof(buf))); |
| ASSERT_ERRNO(ERANGE); |
| close(fd); |
| } |
| |
| TEST(stdlib, ttyname) { |
| int fd = getpt(); |
| ASSERT_NE(-1, fd); |
| |
| // ttyname returns "/dev/ptmx" for a pty. |
| ASSERT_STREQ("/dev/ptmx", ttyname(fd)); |
| |
| close(fd); |
| } |
| |
| TEST(stdlib, ttyname_r) { |
| int fd = getpt(); |
| ASSERT_NE(-1, fd); |
| |
| // ttyname_r returns "/dev/ptmx" for a pty. |
| char name_r[128]; |
| ASSERT_EQ(0, ttyname_r(fd, name_r, sizeof(name_r))); |
| ASSERT_STREQ("/dev/ptmx", name_r); |
| |
| close(fd); |
| } |
| |
| TEST(stdlib, ttyname_r_ENOTTY) { |
| int fd = open("/dev/null", O_WRONLY); |
| errno = 0; |
| char buf[128]; |
| ASSERT_EQ(ENOTTY, ttyname_r(fd, buf, sizeof(buf))); |
| ASSERT_ERRNO(ENOTTY); |
| close(fd); |
| } |
| |
| TEST(stdlib, ttyname_r_EINVAL) { |
| int fd = getpt(); |
| ASSERT_NE(-1, fd); |
| errno = 0; |
| char* buf = nullptr; |
| ASSERT_EQ(EINVAL, ttyname_r(fd, buf, 128)); |
| ASSERT_ERRNO(EINVAL); |
| close(fd); |
| } |
| |
| TEST(stdlib, ttyname_r_ERANGE) { |
| int fd = getpt(); |
| ASSERT_NE(-1, fd); |
| errno = 0; |
| char buf[1]; |
| ASSERT_EQ(ERANGE, ttyname_r(fd, buf, sizeof(buf))); |
| ASSERT_ERRNO(ERANGE); |
| close(fd); |
| } |
| |
| TEST(stdlib, unlockpt_ENOTTY) { |
| int fd = open("/dev/null", O_WRONLY); |
| errno = 0; |
| ASSERT_EQ(-1, unlockpt(fd)); |
| ASSERT_ERRNO(ENOTTY); |
| close(fd); |
| } |
| |
| TEST(stdlib, getsubopt) { |
| char* const tokens[] = { |
| const_cast<char*>("a"), |
| const_cast<char*>("b"), |
| const_cast<char*>("foo"), |
| nullptr |
| }; |
| std::string input = "a,b,foo=bar,a,unknown"; |
| char* subopts = &input[0]; |
| char* value = nullptr; |
| |
| ASSERT_EQ(0, getsubopt(&subopts, tokens, &value)); |
| ASSERT_EQ(nullptr, value); |
| ASSERT_EQ(1, getsubopt(&subopts, tokens, &value)); |
| ASSERT_EQ(nullptr, value); |
| ASSERT_EQ(2, getsubopt(&subopts, tokens, &value)); |
| ASSERT_STREQ("bar", value); |
| ASSERT_EQ(0, getsubopt(&subopts, tokens, &value)); |
| ASSERT_EQ(nullptr, value); |
| |
| ASSERT_EQ(-1, getsubopt(&subopts, tokens, &value)); |
| } |
| |
| TEST(stdlib, mblen) { |
| // "If s is a null pointer, mblen() shall return a non-zero or 0 value, if character encodings, |
| // respectively, do or do not have state-dependent encodings." We're always UTF-8. |
| EXPECT_EQ(0, mblen(nullptr, 1)); |
| |
| ASSERT_STREQ("C.UTF-8", setlocale(LC_ALL, "C.UTF-8")); |
| |
| // 1-byte UTF-8. |
| EXPECT_EQ(1, mblen("abcdef", 6)); |
| // 2-byte UTF-8. |
| EXPECT_EQ(2, mblen("\xc2\xa2" "cdef", 6)); |
| // 3-byte UTF-8. |
| EXPECT_EQ(3, mblen("\xe2\x82\xac" "def", 6)); |
| // 4-byte UTF-8. |
| EXPECT_EQ(4, mblen("\xf0\xa4\xad\xa2" "ef", 6)); |
| |
| // Illegal over-long sequence. |
| ASSERT_EQ(-1, mblen("\xf0\x82\x82\xac" "ef", 6)); |
| |
| // "mblen() shall ... return 0 (if s points to the null byte)". |
| EXPECT_EQ(0, mblen("", 1)); |
| } |
| |
| template <typename T> |
| static void CheckStrToInt(T fn(const char* s, char** end, int base)) { |
| char* end_p; |
| |
| // Negative base => invalid. |
| errno = 0; |
| ASSERT_EQ(T(0), fn("123", &end_p, -1)); |
| ASSERT_ERRNO(EINVAL); |
| |
| // Base 1 => invalid (base 0 means "please guess"). |
| errno = 0; |
| ASSERT_EQ(T(0), fn("123", &end_p, 1)); |
| ASSERT_ERRNO(EINVAL); |
| |
| // Base > 36 => invalid. |
| errno = 0; |
| ASSERT_EQ(T(0), fn("123", &end_p, 37)); |
| ASSERT_ERRNO(EINVAL); |
| |
| // Both leading + or - are always allowed (even for the strtou* family). |
| ASSERT_EQ(T(-123), fn("-123", &end_p, 10)); |
| ASSERT_EQ(T(123), fn("+123", &end_p, 10)); |
| |
| // If we see "0b" *not* followed by a binary digit, we shouldn't swallow the 'b'. |
| ASSERT_EQ(T(0), fn("0b", &end_p, 2)); |
| ASSERT_EQ('b', *end_p); |
| |
| // Binary (the "0b" prefix) is case-insensitive. |
| ASSERT_EQ(T(0b101), fn("0b101", &end_p, 0)); |
| ASSERT_EQ(T(0b101), fn("0B101", &end_p, 0)); |
| |
| // If we see "0x" *not* followed by a hex digit, we shouldn't swallow the 'x'. |
| ASSERT_EQ(T(0), fn("0xy", &end_p, 16)); |
| ASSERT_EQ('x', *end_p); |
| |
| // Hexadecimal (both the "0x" prefix and the digits) is case-insensitive. |
| ASSERT_EQ(T(0xab), fn("0xab", &end_p, 0)); |
| ASSERT_EQ(T(0xab), fn("0Xab", &end_p, 0)); |
| ASSERT_EQ(T(0xab), fn("0xAB", &end_p, 0)); |
| ASSERT_EQ(T(0xab), fn("0XAB", &end_p, 0)); |
| ASSERT_EQ(T(0xab), fn("0xAb", &end_p, 0)); |
| ASSERT_EQ(T(0xab), fn("0XAb", &end_p, 0)); |
| |
| // Octal lives! (Sadly.) |
| ASSERT_EQ(T(0666), fn("0666", &end_p, 0)); |
| |
| if (std::numeric_limits<T>::is_signed) { |
| // Minimum (such as -128). |
| std::string min{std::to_string(std::numeric_limits<T>::min())}; |
| end_p = nullptr; |
| errno = 0; |
| ASSERT_EQ(std::numeric_limits<T>::min(), fn(min.c_str(), &end_p, 0)); |
| ASSERT_ERRNO(0); |
| ASSERT_EQ('\0', *end_p); |
| // Too negative (such as -129). |
| min.back() = (min.back() + 1); |
| end_p = nullptr; |
| errno = 0; |
| ASSERT_EQ(std::numeric_limits<T>::min(), fn(min.c_str(), &end_p, 0)); |
| ASSERT_ERRNO(ERANGE); |
| ASSERT_EQ('\0', *end_p); |
| } |
| |
| // Maximum (such as 127). |
| std::string max{std::to_string(std::numeric_limits<T>::max())}; |
| end_p = nullptr; |
| errno = 0; |
| ASSERT_EQ(std::numeric_limits<T>::max(), fn(max.c_str(), &end_p, 0)); |
| ASSERT_ERRNO(0); |
| ASSERT_EQ('\0', *end_p); |
| // Too positive (such as 128). |
| max.back() = (max.back() + 1); |
| end_p = nullptr; |
| errno = 0; |
| ASSERT_EQ(std::numeric_limits<T>::max(), fn(max.c_str(), &end_p, 0)); |
| ASSERT_ERRNO(ERANGE); |
| ASSERT_EQ('\0', *end_p); |
| |
| // Junk at the end of a valid conversion. |
| errno = 0; |
| ASSERT_EQ(static_cast<T>(123), fn("123abc", &end_p, 0)); |
| ASSERT_ERRNO(0); |
| ASSERT_STREQ("abc", end_p); |
| |
| // In case of overflow, strto* leaves us pointing past the end of the number, |
| // not at the digit that overflowed. |
| end_p = nullptr; |
| errno = 0; |
| ASSERT_EQ(std::numeric_limits<T>::max(), |
| fn("99999999999999999999999999999999999999999999999999999abc", &end_p, 0)); |
| ASSERT_ERRNO(ERANGE); |
| ASSERT_STREQ("abc", end_p); |
| if (std::numeric_limits<T>::is_signed) { |
| end_p = nullptr; |
| errno = 0; |
| ASSERT_EQ(std::numeric_limits<T>::min(), |
| fn("-99999999999999999999999999999999999999999999999999999abc", &end_p, 0)); |
| ASSERT_ERRNO(ERANGE); |
| ASSERT_STREQ("abc", end_p); |
| } |
| } |
| |
| TEST(stdlib, strtol_smoke) { |
| CheckStrToInt(strtol); |
| } |
| |
| TEST(stdlib, strtoll_smoke) { |
| CheckStrToInt(strtoll); |
| } |
| |
| TEST(stdlib, strtoul_smoke) { |
| CheckStrToInt(strtoul); |
| } |
| |
| TEST(stdlib, strtoull_smoke) { |
| CheckStrToInt(strtoull); |
| } |
| |
| TEST(stdlib, strtoimax_smoke) { |
| CheckStrToInt(strtoimax); |
| } |
| |
| TEST(stdlib, strtoumax_smoke) { |
| CheckStrToInt(strtoumax); |
| } |
| |
| TEST(stdlib, atoi) { |
| // Implemented using strtol in bionic, so extensive testing unnecessary. |
| ASSERT_EQ(123, atoi("123four")); |
| ASSERT_EQ(0, atoi("hello")); |
| } |
| |
| TEST(stdlib, atol) { |
| // Implemented using strtol in bionic, so extensive testing unnecessary. |
| ASSERT_EQ(123L, atol("123four")); |
| ASSERT_EQ(0L, atol("hello")); |
| } |
| |
| TEST(stdlib, abs) { |
| ASSERT_EQ(INT_MAX, abs(-INT_MAX)); |
| ASSERT_EQ(INT_MAX, abs(INT_MAX)); |
| } |
| |
| TEST(stdlib, labs) { |
| ASSERT_EQ(LONG_MAX, labs(-LONG_MAX)); |
| ASSERT_EQ(LONG_MAX, labs(LONG_MAX)); |
| } |
| |
| TEST(stdlib, llabs) { |
| ASSERT_EQ(LLONG_MAX, llabs(-LLONG_MAX)); |
| ASSERT_EQ(LLONG_MAX, llabs(LLONG_MAX)); |
| } |
| |
| TEST(stdlib, getloadavg) { |
| double load[3]; |
| |
| // The second argument should have been size_t. |
| ASSERT_EQ(-1, getloadavg(load, -1)); |
| ASSERT_EQ(-1, getloadavg(load, INT_MIN)); |
| |
| // Zero is a no-op. |
| ASSERT_EQ(0, getloadavg(load, 0)); |
| |
| // The Linux kernel doesn't support more than 3 (but you can ask for fewer). |
| ASSERT_EQ(1, getloadavg(load, 1)); |
| ASSERT_EQ(2, getloadavg(load, 2)); |
| ASSERT_EQ(3, getloadavg(load, 3)); |
| ASSERT_EQ(3, getloadavg(load, 4)); |
| ASSERT_EQ(3, getloadavg(load, INT_MAX)); |
| |
| // Read /proc/loadavg and check that it's "close enough". |
| double expected[3]; |
| std::unique_ptr<FILE, decltype(&fclose)> fp{fopen("/proc/loadavg", "re"), fclose}; |
| ASSERT_EQ(3, fscanf(fp.get(), "%lf %lf %lf", &expected[0], &expected[1], &expected[2])); |
| load[0] = load[1] = load[2] = nan(""); |
| ASSERT_EQ(3, getloadavg(load, 3)); |
| |
| // Check that getloadavg(3) at least overwrote the NaNs. |
| ASSERT_FALSE(isnan(load[0])); |
| ASSERT_FALSE(isnan(load[1])); |
| ASSERT_FALSE(isnan(load[2])); |
| // And that the difference between /proc/loadavg and getloadavg(3) is "small". |
| ASSERT_TRUE(fabs(expected[0] - load[0]) < 0.5) << expected[0] << ' ' << load[0]; |
| ASSERT_TRUE(fabs(expected[1] - load[1]) < 0.5) << expected[1] << ' ' << load[1]; |
| ASSERT_TRUE(fabs(expected[2] - load[2]) < 0.5) << expected[2] << ' ' << load[2]; |
| } |
| |
| TEST(stdlib, getprogname) { |
| #if defined(__GLIBC__) || defined(ANDROID_HOST_MUSL) |
| GTEST_SKIP() << "glibc and musl don't have getprogname()"; |
| #else |
| // You should always have a name. |
| ASSERT_TRUE(getprogname() != nullptr); |
| // The name should never have a slash in it. |
| ASSERT_TRUE(strchr(getprogname(), '/') == nullptr); |
| #endif |
| } |
| |
| TEST(stdlib, setprogname) { |
| #if defined(__GLIBC__) || defined(ANDROID_HOST_MUSL) |
| GTEST_SKIP() << "glibc and musl don't have setprogname()"; |
| #else |
| // setprogname() only takes the basename of what you give it. |
| setprogname("/usr/bin/muppet"); |
| ASSERT_STREQ("muppet", getprogname()); |
| #endif |
| } |