| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <gtest/gtest.h> |
| |
| #include <errno.h> |
| #include <sched.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| |
| #include "utils.h" |
| |
| static int child_fn(void* i_ptr) { |
| *reinterpret_cast<int*>(i_ptr) = 42; |
| return 123; |
| } |
| |
| #if defined(__BIONIC__) |
| TEST(sched, clone) { |
| void* child_stack[1024]; |
| |
| int i = 0; |
| pid_t tid = clone(child_fn, &child_stack[1024], CLONE_VM, &i); |
| |
| int status; |
| ASSERT_EQ(tid, TEMP_FAILURE_RETRY(waitpid(tid, &status, __WCLONE))); |
| |
| ASSERT_EQ(42, i); |
| |
| ASSERT_TRUE(WIFEXITED(status)); |
| ASSERT_EQ(123, WEXITSTATUS(status)); |
| } |
| #else |
| // For glibc, any call to clone with CLONE_VM set will cause later pthread |
| // calls in the same process to misbehave. |
| // See https://sourceware.org/bugzilla/show_bug.cgi?id=10311 for more details. |
| TEST(sched, clone) { |
| // In order to enumerate all possible tests for CTS, create an empty test. |
| GTEST_SKIP() << "glibc is broken"; |
| } |
| #endif |
| |
| TEST(sched, clone_errno) { |
| // Check that our hand-written clone assembler sets errno correctly on failure. |
| uintptr_t fake_child_stack[16]; |
| errno = 0; |
| // If CLONE_THREAD is set, CLONE_SIGHAND must be set too. |
| ASSERT_EQ(-1, clone(child_fn, &fake_child_stack[16], CLONE_THREAD, nullptr)); |
| ASSERT_ERRNO(EINVAL); |
| } |
| |
| TEST(sched, clone_null_child_stack) { |
| int i = 0; |
| errno = 0; |
| ASSERT_EQ(-1, clone(child_fn, nullptr, CLONE_VM, &i)); |
| ASSERT_ERRNO(EINVAL); |
| } |
| |
| TEST(sched, cpu_set) { |
| cpu_set_t set; |
| |
| CPU_ZERO(&set); |
| CPU_SET(0, &set); |
| CPU_SET(17, &set); |
| for (int i = 0; i < CPU_SETSIZE; i++) { |
| ASSERT_EQ(i == 0 || i == 17, CPU_ISSET(i, &set)); |
| } |
| |
| // We should fail silently if we try to set/test outside the range. |
| CPU_SET(CPU_SETSIZE, &set); |
| ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set)); |
| } |
| |
| TEST(sched, cpu_count) { |
| cpu_set_t set; |
| |
| CPU_ZERO(&set); |
| ASSERT_EQ(0, CPU_COUNT(&set)); |
| CPU_SET(2, &set); |
| CPU_SET(10, &set); |
| ASSERT_EQ(2, CPU_COUNT(&set)); |
| CPU_CLR(10, &set); |
| ASSERT_EQ(1, CPU_COUNT(&set)); |
| } |
| |
| TEST(sched, cpu_zero) { |
| cpu_set_t set; |
| |
| CPU_ZERO(&set); |
| ASSERT_EQ(0, CPU_COUNT(&set)); |
| for (int i = 0; i < CPU_SETSIZE; i++) { |
| ASSERT_FALSE(CPU_ISSET(i, &set)); |
| } |
| } |
| |
| TEST(sched, cpu_clr) { |
| cpu_set_t set; |
| |
| CPU_ZERO(&set); |
| CPU_SET(0, &set); |
| CPU_SET(1, &set); |
| for (int i = 0; i < CPU_SETSIZE; i++) { |
| ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set)); |
| } |
| CPU_CLR(1, &set); |
| for (int i = 0; i < CPU_SETSIZE; i++) { |
| ASSERT_EQ(i == 0, CPU_ISSET(i, &set)); |
| } |
| |
| // We should fail silently if we try to clear/test outside the range. |
| CPU_CLR(CPU_SETSIZE, &set); |
| ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set)); |
| } |
| |
| TEST(sched, cpu_equal) { |
| cpu_set_t set1; |
| cpu_set_t set2; |
| |
| CPU_ZERO(&set1); |
| CPU_ZERO(&set2); |
| CPU_SET(1, &set1); |
| ASSERT_FALSE(CPU_EQUAL(&set1, &set2)); |
| CPU_SET(1, &set2); |
| ASSERT_TRUE(CPU_EQUAL(&set1, &set2)); |
| } |
| |
| TEST(sched, cpu_op) { |
| cpu_set_t set1; |
| cpu_set_t set2; |
| cpu_set_t set3; |
| |
| CPU_ZERO(&set1); |
| CPU_ZERO(&set2); |
| CPU_ZERO(&set3); |
| CPU_SET(0, &set1); |
| CPU_SET(0, &set2); |
| CPU_SET(1, &set2); |
| |
| CPU_AND(&set3, &set1, &set2); |
| for (int i = 0; i < CPU_SETSIZE; i++) { |
| ASSERT_EQ(i == 0, CPU_ISSET(i, &set3)); |
| } |
| |
| CPU_XOR(&set3, &set1, &set2); |
| for (int i = 0; i < CPU_SETSIZE; i++) { |
| ASSERT_EQ(i == 1, CPU_ISSET(i, &set3)); |
| } |
| |
| CPU_OR(&set3, &set1, &set2); |
| for (int i = 0; i < CPU_SETSIZE; i++) { |
| ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set3)); |
| } |
| } |
| |
| |
| TEST(sched, cpu_alloc_small) { |
| cpu_set_t* set = CPU_ALLOC(17); |
| size_t size = CPU_ALLOC_SIZE(17); |
| |
| CPU_ZERO_S(size, set); |
| ASSERT_EQ(0, CPU_COUNT_S(size, set)); |
| CPU_SET_S(16, size, set); |
| ASSERT_TRUE(CPU_ISSET_S(16, size, set)); |
| |
| CPU_FREE(set); |
| } |
| |
| TEST(sched, cpu_alloc_big) { |
| cpu_set_t* set = CPU_ALLOC(10 * CPU_SETSIZE); |
| size_t size = CPU_ALLOC_SIZE(10 * CPU_SETSIZE); |
| |
| CPU_ZERO_S(size, set); |
| ASSERT_EQ(0, CPU_COUNT_S(size, set)); |
| CPU_SET_S(CPU_SETSIZE, size, set); |
| ASSERT_TRUE(CPU_ISSET_S(CPU_SETSIZE, size, set)); |
| |
| CPU_FREE(set); |
| } |
| |
| TEST(sched, cpu_s_macros) { |
| int set_size = 64; |
| size_t size = CPU_ALLOC_SIZE(set_size); |
| cpu_set_t* set = CPU_ALLOC(set_size); |
| |
| CPU_ZERO_S(size, set); |
| for (int i = 0; i < set_size; i++) { |
| ASSERT_FALSE(CPU_ISSET_S(i, size, set)); |
| CPU_SET_S(i, size, set); |
| ASSERT_TRUE(CPU_ISSET_S(i, size, set)); |
| ASSERT_EQ(i + 1, CPU_COUNT_S(size, set)); |
| } |
| |
| for (int i = 0; i < set_size; i++) { |
| CPU_CLR_S(i, size, set); |
| ASSERT_FALSE(CPU_ISSET_S(i, size, set)); |
| ASSERT_EQ(set_size - i - 1, CPU_COUNT_S(size, set)); |
| } |
| |
| CPU_FREE(set); |
| } |
| |
| TEST(sched, cpu_op_s_macros) { |
| int set_size1 = 64; |
| int set_size2 = set_size1 * 2; |
| int set_size3 = set_size1 * 3; |
| size_t size1 = CPU_ALLOC_SIZE(set_size1); |
| size_t size2 = CPU_ALLOC_SIZE(set_size2); |
| size_t size3 = CPU_ALLOC_SIZE(set_size3); |
| |
| cpu_set_t* set1 = CPU_ALLOC(set_size1); |
| cpu_set_t* set2 = CPU_ALLOC(set_size2); |
| cpu_set_t* set3 = CPU_ALLOC(set_size3); |
| CPU_ZERO_S(size1, set1); |
| CPU_ZERO_S(size2, set2); |
| CPU_ZERO_S(size3, set3); |
| |
| CPU_SET_S(0, size1, set1); |
| CPU_SET_S(0, size2, set2); |
| CPU_SET_S(1, size3, set2); |
| |
| CPU_AND_S(size1, set3, set1, set2); |
| for (int i = 0; i < set_size3; i++) { |
| ASSERT_EQ(i == 0, CPU_ISSET_S(i, size3, set3)); |
| } |
| |
| CPU_OR_S(size1, set3, set1, set2); |
| for (int i = 0; i < set_size3; i++) { |
| ASSERT_EQ(i == 0 || i == 1, CPU_ISSET_S(i, size3, set3)); |
| } |
| |
| CPU_XOR_S(size1, set3, set1, set2); |
| for (int i = 0; i < set_size3; i++) { |
| ASSERT_EQ(i == 1, CPU_ISSET_S(i, size3, set3)); |
| } |
| |
| CPU_FREE(set1); |
| CPU_FREE(set2); |
| CPU_FREE(set3); |
| } |
| |
| TEST(sched, cpu_equal_s) { |
| int set_size1 = 64; |
| int set_size2 = set_size1 * 2; |
| size_t size1 = CPU_ALLOC_SIZE(set_size1); |
| size_t size2 = CPU_ALLOC_SIZE(set_size2); |
| |
| cpu_set_t* set1 = CPU_ALLOC(set_size1); |
| cpu_set_t* set2 = CPU_ALLOC(set_size2); |
| |
| CPU_ZERO_S(size1, set1); |
| CPU_ZERO_S(size2, set2); |
| |
| CPU_SET_S(0, size1, set1); |
| ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set1)); |
| ASSERT_FALSE(CPU_EQUAL_S(size1, set1, set2)); |
| CPU_SET_S(0, size2, set2); |
| ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set2)); |
| |
| CPU_FREE(set1); |
| CPU_FREE(set2); |
| } |
| |
| TEST(sched, sched_get_priority_min_sched_get_priority_max) { |
| EXPECT_LE(sched_get_priority_min(SCHED_BATCH), sched_get_priority_max(SCHED_BATCH)); |
| EXPECT_LE(sched_get_priority_min(SCHED_FIFO), sched_get_priority_max(SCHED_FIFO)); |
| EXPECT_LE(sched_get_priority_min(SCHED_IDLE), sched_get_priority_max(SCHED_IDLE)); |
| EXPECT_LE(sched_get_priority_min(SCHED_OTHER), sched_get_priority_max(SCHED_OTHER)); |
| EXPECT_LE(sched_get_priority_min(SCHED_RR), sched_get_priority_max(SCHED_RR)); |
| } |
| |
| TEST(sched, sched_getscheduler_sched_setscheduler) { |
| // POSIX: "If pid is zero, the scheduling policy shall be returned for the |
| // calling process". |
| ASSERT_EQ(sched_getscheduler(getpid()), sched_getscheduler(0)); |
| |
| const int original_policy = sched_getscheduler(getpid()); |
| sched_param p = {}; |
| p.sched_priority = sched_get_priority_min(original_policy); |
| errno = 0; |
| ASSERT_EQ(-1, sched_setscheduler(getpid(), INT_MAX, &p)); |
| ASSERT_ERRNO(EINVAL); |
| |
| ASSERT_EQ(0, sched_getparam(getpid(), &p)); |
| ASSERT_EQ(original_policy, sched_setscheduler(getpid(), SCHED_BATCH, &p)); |
| // POSIX says this should return the previous policy (here SCHED_BATCH), |
| // but the Linux system call doesn't, and the glibc wrapper doesn't correct |
| // this (the "returns 0" behavior is even documented on the man page in |
| // the BUGS section). This was our historical behavior too, so in the |
| // absence of reasons to break compatibility with ourselves and glibc, we |
| // don't behave as POSIX specifies. http://b/26203902. |
| ASSERT_EQ(0, sched_setscheduler(getpid(), original_policy, &p)); |
| } |
| |
| TEST(sched, sched_getaffinity_failure) { |
| // Trivial test of the errno-preserving/returning behavior. |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wnonnull" |
| ASSERT_EQ(-1, sched_getaffinity(getpid(), 0, nullptr)); |
| ASSERT_ERRNO(EINVAL); |
| #pragma clang diagnostic pop |
| } |
| |
| TEST(pthread, sched_getaffinity) { |
| cpu_set_t set; |
| CPU_ZERO(&set); |
| ASSERT_EQ(0, sched_getaffinity(getpid(), sizeof(set), &set)); |
| ASSERT_GT(CPU_COUNT(&set), 0); |
| } |
| |
| TEST(sched, sched_setaffinity_failure) { |
| // Trivial test of the errno-preserving/returning behavior. |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wnonnull" |
| ASSERT_EQ(-1, sched_setaffinity(getpid(), 0, nullptr)); |
| ASSERT_ERRNO(EINVAL); |
| #pragma clang diagnostic pop |
| } |
| |
| TEST(pthread, sched_setaffinity) { |
| cpu_set_t set; |
| CPU_ZERO(&set); |
| ASSERT_EQ(0, sched_getaffinity(getpid(), sizeof(set), &set)); |
| // It's hard to make any more general claim than this, |
| // but it ought to be safe to ask for the same affinity you already have. |
| ASSERT_EQ(0, sched_setaffinity(getpid(), sizeof(set), &set)); |
| } |