| /* | 
 |  * Copyright (C) 2020 The Android Open Source Project | 
 |  * All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  *  * Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  *  * Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
 |  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
 |  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
 |  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
 |  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
 |  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
 |  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
 |  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
 |  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  */ | 
 |  | 
 | #include "atexit.h" | 
 |  | 
 | #include <errno.h> | 
 | #include <pthread.h> | 
 | #include <stdint.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <sys/mman.h> | 
 | #include <sys/param.h> | 
 | #include <sys/prctl.h> | 
 |  | 
 | #include <async_safe/CHECK.h> | 
 | #include <async_safe/log.h> | 
 |  | 
 | #include "platform/bionic/page.h" | 
 |  | 
 | extern "C" void __libc_stdio_cleanup(); | 
 | extern "C" void __unregister_atfork(void* dso); | 
 |  | 
 | namespace { | 
 |  | 
 | struct AtexitEntry { | 
 |   void (*fn)(void*);  // the __cxa_atexit callback | 
 |   void* arg;          // argument for `fn` callback | 
 |   void* dso;          // shared module handle | 
 | }; | 
 |  | 
 | class AtexitArray { | 
 |  public: | 
 |   size_t size() const { return size_; } | 
 |   uint64_t total_appends() const { return total_appends_; } | 
 |   const AtexitEntry& operator[](size_t idx) const { return array_[idx]; } | 
 |  | 
 |   bool append_entry(const AtexitEntry& entry); | 
 |   AtexitEntry extract_entry(size_t idx); | 
 |   void recompact(); | 
 |  | 
 |  private: | 
 |   AtexitEntry* array_; | 
 |   size_t size_; | 
 |   size_t extracted_count_; | 
 |   size_t capacity_; | 
 |  | 
 |   // An entry can be appended by a __cxa_finalize callback. Track the number of appends so we | 
 |   // restart concurrent __cxa_finalize passes. | 
 |   uint64_t total_appends_; | 
 |  | 
 |   static size_t page_start_of_index(size_t idx) { return page_start(idx * sizeof(AtexitEntry)); } | 
 |   static size_t page_end_of_index(size_t idx) { return page_end(idx * sizeof(AtexitEntry)); } | 
 |  | 
 |   // Recompact the array if it will save at least one page of memory at the end. | 
 |   bool needs_recompaction() const { | 
 |     return page_end_of_index(size_ - extracted_count_) < page_end_of_index(size_); | 
 |   } | 
 |  | 
 |   void set_writable(bool writable, size_t start_idx, size_t num_entries); | 
 |   static bool next_capacity(size_t capacity, size_t* result); | 
 |   bool expand_capacity(); | 
 | }; | 
 |  | 
 | }  // anonymous namespace | 
 |  | 
 | bool AtexitArray::append_entry(const AtexitEntry& entry) { | 
 |   if (size_ >= capacity_ && !expand_capacity()) return false; | 
 |  | 
 |   size_t idx = size_++; | 
 |  | 
 |   set_writable(true, idx, 1); | 
 |   array_[idx] = entry; | 
 |   ++total_appends_; | 
 |   set_writable(false, idx, 1); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Extract an entry and return it. | 
 | AtexitEntry AtexitArray::extract_entry(size_t idx) { | 
 |   AtexitEntry result = array_[idx]; | 
 |  | 
 |   set_writable(true, idx, 1); | 
 |   array_[idx] = {}; | 
 |   ++extracted_count_; | 
 |   set_writable(false, idx, 1); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | void AtexitArray::recompact() { | 
 |   if (!needs_recompaction()) return; | 
 |  | 
 |   set_writable(true, 0, size_); | 
 |  | 
 |   // Optimization: quickly skip over the initial non-null entries. | 
 |   size_t src = 0, dst = 0; | 
 |   while (src < size_ && array_[src].fn != nullptr) { | 
 |     ++src; | 
 |     ++dst; | 
 |   } | 
 |  | 
 |   // Shift the non-null entries forward, and zero out the removed entries at the end of the array. | 
 |   for (; src < size_; ++src) { | 
 |     const AtexitEntry entry = array_[src]; | 
 |     array_[src] = {}; | 
 |     if (entry.fn != nullptr) { | 
 |       array_[dst++] = entry; | 
 |     } | 
 |   } | 
 |  | 
 |   // If the table uses fewer pages, clean the pages at the end. | 
 |   size_t old_bytes = page_end_of_index(size_); | 
 |   size_t new_bytes = page_end_of_index(dst); | 
 |   if (new_bytes < old_bytes) { | 
 |     madvise(reinterpret_cast<char*>(array_) + new_bytes, old_bytes - new_bytes, MADV_DONTNEED); | 
 |   } | 
 |  | 
 |   set_writable(false, 0, size_); | 
 |  | 
 |   size_ = dst; | 
 |   extracted_count_ = 0; | 
 | } | 
 |  | 
 | // Use mprotect to make the array writable or read-only. Returns true on success. Making the array | 
 | // read-only could protect against either unintentional or malicious corruption of the array. | 
 | void AtexitArray::set_writable(bool writable, size_t start_idx, size_t num_entries) { | 
 |   if (array_ == nullptr) return; | 
 |  | 
 |   const size_t start_byte = page_start_of_index(start_idx); | 
 |   const size_t stop_byte = page_end_of_index(start_idx + num_entries); | 
 |   const size_t byte_len = stop_byte - start_byte; | 
 |  | 
 |   const int prot = PROT_READ | (writable ? PROT_WRITE : 0); | 
 |   if (mprotect(reinterpret_cast<char*>(array_) + start_byte, byte_len, prot) != 0) { | 
 |     async_safe_fatal("mprotect failed on atexit array: %m"); | 
 |   } | 
 | } | 
 |  | 
 | // Approximately double the capacity. Returns true if successful (no overflow). AtexitEntry is | 
 | // smaller than a page, but this function should still be correct even if AtexitEntry were larger | 
 | // than one. | 
 | bool AtexitArray::next_capacity(size_t capacity, size_t* result) { | 
 |   if (capacity == 0) { | 
 |     *result = page_end(sizeof(AtexitEntry)) / sizeof(AtexitEntry); | 
 |     return true; | 
 |   } | 
 |   size_t num_bytes; | 
 |   if (__builtin_mul_overflow(page_end_of_index(capacity), 2, &num_bytes)) { | 
 |     async_safe_format_log(ANDROID_LOG_WARN, "libc", "__cxa_atexit: capacity calculation overflow"); | 
 |     return false; | 
 |   } | 
 |   *result = num_bytes / sizeof(AtexitEntry); | 
 |   return true; | 
 | } | 
 |  | 
 | bool AtexitArray::expand_capacity() { | 
 |   size_t new_capacity; | 
 |   if (!next_capacity(capacity_, &new_capacity)) return false; | 
 |   const size_t new_capacity_bytes = page_end_of_index(new_capacity); | 
 |  | 
 |   set_writable(true, 0, capacity_); | 
 |  | 
 |   bool result = false; | 
 |   void* new_pages; | 
 |   if (array_ == nullptr) { | 
 |     new_pages = mmap(nullptr, new_capacity_bytes, PROT_READ | PROT_WRITE, | 
 |                      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | 
 |   } else { | 
 |     // mremap fails if the source buffer crosses a boundary between two VMAs. When a single array | 
 |     // element is modified, the kernel should split then rejoin the buffer's VMA. | 
 |     new_pages = mremap(array_, page_end_of_index(capacity_), new_capacity_bytes, MREMAP_MAYMOVE); | 
 |   } | 
 |   if (new_pages == MAP_FAILED) { | 
 |     async_safe_format_log(ANDROID_LOG_WARN, "libc", | 
 |                           "__cxa_atexit: mmap/mremap failed to allocate %zu bytes: %m", | 
 |                           new_capacity_bytes); | 
 |   } else { | 
 |     result = true; | 
 |     prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, new_pages, new_capacity_bytes, "atexit handlers"); | 
 |     array_ = static_cast<AtexitEntry*>(new_pages); | 
 |     capacity_ = new_capacity; | 
 |   } | 
 |   set_writable(false, 0, capacity_); | 
 |   return result; | 
 | } | 
 |  | 
 | static AtexitArray g_array; | 
 | static pthread_mutex_t g_atexit_lock = PTHREAD_MUTEX_INITIALIZER; | 
 |  | 
 | static inline void atexit_lock() { | 
 |   pthread_mutex_lock(&g_atexit_lock); | 
 | } | 
 |  | 
 | static inline void atexit_unlock() { | 
 |   pthread_mutex_unlock(&g_atexit_lock); | 
 | } | 
 |  | 
 | // Register a function to be called either when a library is unloaded (dso != nullptr), or when the | 
 | // program exits (dso == nullptr). The `dso` argument is typically the address of a hidden | 
 | // __dso_handle variable. This function is also used as the backend for the atexit function. | 
 | // | 
 | // See https://itanium-cxx-abi.github.io/cxx-abi/abi.html#dso-dtor. | 
 | // | 
 | int __cxa_atexit(void (*func)(void*), void* arg, void* dso) { | 
 |   int result = -1; | 
 |  | 
 |   if (func != nullptr) { | 
 |     atexit_lock(); | 
 |     if (g_array.append_entry({.fn = func, .arg = arg, .dso = dso})) { | 
 |       result = 0; | 
 |     } | 
 |     atexit_unlock(); | 
 |   } | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | void __cxa_finalize(void* dso) { | 
 |   atexit_lock(); | 
 |  | 
 |   static uint32_t call_depth = 0; | 
 |   ++call_depth; | 
 |  | 
 | restart: | 
 |   const uint64_t total_appends = g_array.total_appends(); | 
 |  | 
 |   for (ssize_t i = g_array.size() - 1; i >= 0; --i) { | 
 |     if (g_array[i].fn == nullptr || (dso != nullptr && g_array[i].dso != dso)) continue; | 
 |  | 
 |     // Clear the entry in the array because its DSO handle will become invalid, and to avoid calling | 
 |     // an entry again if __cxa_finalize is called recursively. | 
 |     const AtexitEntry entry = g_array.extract_entry(i); | 
 |  | 
 |     atexit_unlock(); | 
 |     entry.fn(entry.arg); | 
 |     atexit_lock(); | 
 |  | 
 |     if (g_array.total_appends() != total_appends) goto restart; | 
 |   } | 
 |  | 
 |   // Avoid recompaction on recursive calls because it's unnecessary and would require earlier, | 
 |   // concurrent __cxa_finalize calls to restart. Skip recompaction on program exit too | 
 |   // (dso == nullptr), because the memory will be reclaimed soon anyway. | 
 |   --call_depth; | 
 |   if (call_depth == 0 && dso != nullptr) { | 
 |     g_array.recompact(); | 
 |   } | 
 |  | 
 |   atexit_unlock(); | 
 |  | 
 |   if (dso != nullptr) { | 
 |     __unregister_atfork(dso); | 
 |   } else { | 
 |     // If called via exit(), flush output of all open files. | 
 |     __libc_stdio_cleanup(); | 
 |   } | 
 | } |