|  | /* | 
|  | * Copyright (C) 2008 The Android Open Source Project | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | *  * Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | *  * Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
|  | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
|  | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
|  | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
|  | * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
|  | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
|  | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
|  | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include <pthread.h> | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <limits.h> | 
|  | #include <stdatomic.h> | 
|  | #include <string.h> | 
|  | #include <sys/cdefs.h> | 
|  | #include <sys/mman.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include "pthread_internal.h" | 
|  |  | 
|  | #include "private/bionic_constants.h" | 
|  | #include "private/bionic_futex.h" | 
|  | #include "private/bionic_systrace.h" | 
|  | #include "private/bionic_time_conversions.h" | 
|  | #include "private/bionic_tls.h" | 
|  |  | 
|  | /* a mutex attribute holds the following fields | 
|  | * | 
|  | * bits:     name       description | 
|  | * 0-3       type       type of mutex | 
|  | * 4         shared     process-shared flag | 
|  | */ | 
|  | #define  MUTEXATTR_TYPE_MASK   0x000f | 
|  | #define  MUTEXATTR_SHARED_MASK 0x0010 | 
|  |  | 
|  | int pthread_mutexattr_init(pthread_mutexattr_t *attr) | 
|  | { | 
|  | *attr = PTHREAD_MUTEX_DEFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) | 
|  | { | 
|  | *attr = -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p) | 
|  | { | 
|  | int type = (*attr & MUTEXATTR_TYPE_MASK); | 
|  |  | 
|  | if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) { | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | *type_p = type; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) | 
|  | { | 
|  | if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) { | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* process-shared mutexes are not supported at the moment */ | 
|  |  | 
|  | int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared) | 
|  | { | 
|  | switch (pshared) { | 
|  | case PTHREAD_PROCESS_PRIVATE: | 
|  | *attr &= ~MUTEXATTR_SHARED_MASK; | 
|  | return 0; | 
|  |  | 
|  | case PTHREAD_PROCESS_SHARED: | 
|  | /* our current implementation of pthread actually supports shared | 
|  | * mutexes but won't cleanup if a process dies with the mutex held. | 
|  | * Nevertheless, it's better than nothing. Shared mutexes are used | 
|  | * by surfaceflinger and audioflinger. | 
|  | */ | 
|  | *attr |= MUTEXATTR_SHARED_MASK; | 
|  | return 0; | 
|  | } | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) { | 
|  | *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* a mutex contains a state value and a owner_tid. | 
|  | * The value is implemented as a 16-bit integer holding the following fields: | 
|  | * | 
|  | * bits:     name     description | 
|  | * 15-14     type     mutex type | 
|  | * 13        shared   process-shared flag | 
|  | * 12-2      counter  counter of recursive mutexes | 
|  | * 1-0       state    lock state (0, 1 or 2) | 
|  | * | 
|  | * The owner_tid is used only in recursive and errorcheck mutex to hold the mutex owner thread tid. | 
|  | */ | 
|  |  | 
|  | /* Convenience macro, creates a mask of 'bits' bits that starts from | 
|  | * the 'shift'-th least significant bit in a 32-bit word. | 
|  | * | 
|  | * Examples: FIELD_MASK(0,4)  -> 0xf | 
|  | *           FIELD_MASK(16,9) -> 0x1ff0000 | 
|  | */ | 
|  | #define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift)) | 
|  |  | 
|  | /* This one is used to create a bit pattern from a given field value */ | 
|  | #define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift)) | 
|  |  | 
|  | /* And this one does the opposite, i.e. extract a field's value from a bit pattern */ | 
|  | #define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1)) | 
|  |  | 
|  |  | 
|  | /* Convenience macros. | 
|  | * | 
|  | * These are used to form or modify the bit pattern of a given mutex value | 
|  | */ | 
|  |  | 
|  | /* Mutex state: | 
|  | * | 
|  | * 0 for unlocked | 
|  | * 1 for locked, no waiters | 
|  | * 2 for locked, maybe waiters | 
|  | */ | 
|  | #define  MUTEX_STATE_SHIFT      0 | 
|  | #define  MUTEX_STATE_LEN        2 | 
|  |  | 
|  | #define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
|  | #define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
|  | #define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
|  |  | 
|  | #define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match PTHREAD_MUTEX_INITIALIZER */ | 
|  | #define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */ | 
|  | #define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */ | 
|  |  | 
|  | #define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED) | 
|  | #define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED) | 
|  | #define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED) | 
|  |  | 
|  | /* return true iff the mutex if locked with no waiters */ | 
|  | #define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED) | 
|  |  | 
|  | /* return true iff the mutex if locked with maybe waiters */ | 
|  | #define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED) | 
|  |  | 
|  | /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */ | 
|  | #define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) | 
|  |  | 
|  | /* Mutex counter: | 
|  | * | 
|  | * We need to check for overflow before incrementing, and we also need to | 
|  | * detect when the counter is 0 | 
|  | */ | 
|  | #define  MUTEX_COUNTER_SHIFT         2 | 
|  | #define  MUTEX_COUNTER_LEN           11 | 
|  | #define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN) | 
|  |  | 
|  | #define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK) | 
|  | #define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0) | 
|  |  | 
|  | /* Used to increment the counter directly after overflow has been checked */ | 
|  | #define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN) | 
|  |  | 
|  | /* Mutex shared bit flag | 
|  | * | 
|  | * This flag is set to indicate that the mutex is shared among processes. | 
|  | * This changes the futex opcode we use for futex wait/wake operations | 
|  | * (non-shared operations are much faster). | 
|  | */ | 
|  | #define  MUTEX_SHARED_SHIFT    13 | 
|  | #define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1) | 
|  |  | 
|  | /* Mutex type: | 
|  | * We support normal, recursive and errorcheck mutexes. | 
|  | */ | 
|  | #define  MUTEX_TYPE_SHIFT      14 | 
|  | #define  MUTEX_TYPE_LEN        2 | 
|  | #define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN) | 
|  |  | 
|  | #define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN) | 
|  |  | 
|  | #define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_NORMAL) | 
|  | #define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_RECURSIVE) | 
|  | #define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_ERRORCHECK) | 
|  |  | 
|  | struct pthread_mutex_internal_t { | 
|  | _Atomic(uint16_t) state; | 
|  | #if defined(__LP64__) | 
|  | uint16_t __pad; | 
|  | atomic_int owner_tid; | 
|  | char __reserved[32]; | 
|  | #else | 
|  | _Atomic(uint16_t) owner_tid; | 
|  | #endif | 
|  | } __attribute__((aligned(4))); | 
|  |  | 
|  | static_assert(sizeof(pthread_mutex_t) == sizeof(pthread_mutex_internal_t), | 
|  | "pthread_mutex_t should actually be pthread_mutex_internal_t in implementation."); | 
|  |  | 
|  | // For binary compatibility with old version of pthread_mutex_t, we can't use more strict alignment | 
|  | // than 4-byte alignment. | 
|  | static_assert(alignof(pthread_mutex_t) == 4, | 
|  | "pthread_mutex_t should fulfill the alignment of pthread_mutex_internal_t."); | 
|  |  | 
|  | static inline pthread_mutex_internal_t* __get_internal_mutex(pthread_mutex_t* mutex_interface) { | 
|  | return reinterpret_cast<pthread_mutex_internal_t*>(mutex_interface); | 
|  | } | 
|  |  | 
|  | int pthread_mutex_init(pthread_mutex_t* mutex_interface, const pthread_mutexattr_t* attr) { | 
|  | pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); | 
|  |  | 
|  | memset(mutex, 0, sizeof(pthread_mutex_internal_t)); | 
|  |  | 
|  | if (__predict_true(attr == NULL)) { | 
|  | atomic_init(&mutex->state, MUTEX_TYPE_BITS_NORMAL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint16_t state = 0; | 
|  | if ((*attr & MUTEXATTR_SHARED_MASK) != 0) { | 
|  | state |= MUTEX_SHARED_MASK; | 
|  | } | 
|  |  | 
|  | switch (*attr & MUTEXATTR_TYPE_MASK) { | 
|  | case PTHREAD_MUTEX_NORMAL: | 
|  | state |= MUTEX_TYPE_BITS_NORMAL; | 
|  | break; | 
|  | case PTHREAD_MUTEX_RECURSIVE: | 
|  | state |= MUTEX_TYPE_BITS_RECURSIVE; | 
|  | break; | 
|  | case PTHREAD_MUTEX_ERRORCHECK: | 
|  | state |= MUTEX_TYPE_BITS_ERRORCHECK; | 
|  | break; | 
|  | default: | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | atomic_init(&mutex->state, state); | 
|  | atomic_init(&mutex->owner_tid, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline __always_inline int __pthread_normal_mutex_trylock(pthread_mutex_internal_t* mutex, | 
|  | uint16_t shared) { | 
|  | const uint16_t unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED; | 
|  | const uint16_t locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
|  |  | 
|  | uint16_t old_state = unlocked; | 
|  | if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, | 
|  | locked_uncontended, memory_order_acquire, memory_order_relaxed))) { | 
|  | return 0; | 
|  | } | 
|  | return EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock a mutex of type NORMAL. | 
|  | * | 
|  | * As noted above, there are three states: | 
|  | *   0 (unlocked, no contention) | 
|  | *   1 (locked, no contention) | 
|  | *   2 (locked, contention) | 
|  | * | 
|  | * Non-recursive mutexes don't use the thread-id or counter fields, and the | 
|  | * "type" value is zero, so the only bits that will be set are the ones in | 
|  | * the lock state field. | 
|  | */ | 
|  | static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_internal_t* mutex, | 
|  | uint16_t shared, | 
|  | const timespec* abs_timeout_or_null, | 
|  | clockid_t clock) { | 
|  | if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ScopedTrace trace("Contending for pthread mutex"); | 
|  |  | 
|  | const uint16_t unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED; | 
|  | const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
|  |  | 
|  | // We want to go to sleep until the mutex is available, which requires | 
|  | // promoting it to locked_contended. We need to swap in the new state | 
|  | // and then wait until somebody wakes us up. | 
|  | // An atomic_exchange is used to compete with other threads for the lock. | 
|  | // If it returns unlocked, we have acquired the lock, otherwise another | 
|  | // thread still holds the lock and we should wait again. | 
|  | // If lock is acquired, an acquire fence is needed to make all memory accesses | 
|  | // made by other threads visible to the current CPU. | 
|  | while (atomic_exchange_explicit(&mutex->state, locked_contended, | 
|  | memory_order_acquire) != unlocked) { | 
|  | timespec ts; | 
|  | timespec* rel_timeout = NULL; | 
|  | if (abs_timeout_or_null != NULL) { | 
|  | rel_timeout = &ts; | 
|  | if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) { | 
|  | return ETIMEDOUT; | 
|  | } | 
|  | } | 
|  | if (__futex_wait_ex(&mutex->state, shared, locked_contended, rel_timeout) == -ETIMEDOUT) { | 
|  | return ETIMEDOUT; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a normal mutex.  The caller is responsible for determining | 
|  | * that we are in fact the owner of this lock. | 
|  | */ | 
|  | static inline __always_inline void __pthread_normal_mutex_unlock(pthread_mutex_internal_t* mutex, | 
|  | uint16_t shared) { | 
|  | const uint16_t unlocked         = shared | MUTEX_STATE_BITS_UNLOCKED; | 
|  | const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
|  |  | 
|  | // We use an atomic_exchange to release the lock. If locked_contended state | 
|  | // is returned, some threads is waiting for the lock and we need to wake up | 
|  | // one of them. | 
|  | // A release fence is required to make previous stores visible to next | 
|  | // lock owner threads. | 
|  | if (atomic_exchange_explicit(&mutex->state, unlocked, | 
|  | memory_order_release) == locked_contended) { | 
|  | // Wake up one waiting thread. We don't know which thread will be | 
|  | // woken or when it'll start executing -- futexes make no guarantees | 
|  | // here. There may not even be a thread waiting. | 
|  | // | 
|  | // The newly-woken thread will replace the unlocked state we just set above | 
|  | // with locked_contended state, which means that when it eventually releases | 
|  | // the mutex it will also call FUTEX_WAKE. This results in one extra wake | 
|  | // call whenever a lock is contended, but let us avoid forgetting anyone | 
|  | // without requiring us to track the number of sleepers. | 
|  | // | 
|  | // It's possible for another thread to sneak in and grab the lock between | 
|  | // the exchange above and the wake call below. If the new thread is "slow" | 
|  | // and holds the lock for a while, we'll wake up a sleeper, which will swap | 
|  | // in locked_uncontended state and then go back to sleep since the lock is | 
|  | // still held. If the new thread is "fast", running to completion before | 
|  | // we call wake, the thread we eventually wake will find an unlocked mutex | 
|  | // and will execute. Either way we have correct behavior and nobody is | 
|  | // orphaned on the wait queue. | 
|  | __futex_wake_ex(&mutex->state, shared, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This common inlined function is used to increment the counter of a recursive mutex. | 
|  | * | 
|  | * If the counter overflows, it will return EAGAIN. | 
|  | * Otherwise, it atomically increments the counter and returns 0. | 
|  | * | 
|  | */ | 
|  | static inline __always_inline int __recursive_increment(pthread_mutex_internal_t* mutex, | 
|  | uint16_t old_state) { | 
|  | // Detect recursive lock overflow and return EAGAIN. | 
|  | // This is safe because only the owner thread can modify the | 
|  | // counter bits in the mutex value. | 
|  | if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(old_state)) { | 
|  | return EAGAIN; | 
|  | } | 
|  |  | 
|  | // Other threads are able to change the lower bits (e.g. promoting it to "contended"), | 
|  | // but the mutex counter will not overflow. So we use atomic_fetch_add operation here. | 
|  | // The mutex is still locked by current thread, so we don't need a release fence. | 
|  | atomic_fetch_add_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline __always_inline int __recursive_or_errorcheck_mutex_wait( | 
|  | pthread_mutex_internal_t* mutex, | 
|  | uint16_t shared, | 
|  | uint16_t old_state, | 
|  | const timespec* rel_timeout) { | 
|  | // __futex_wait always waits on a 32-bit value. But state is 16-bit. For a normal mutex, the owner_tid | 
|  | // field in mutex is not used. On 64-bit devices, the __pad field in mutex is not used. | 
|  | // But when a recursive or errorcheck mutex is used on 32-bit devices, we need to add the | 
|  | // owner_tid value in the value argument for __futex_wait, otherwise we may always get EAGAIN error. | 
|  |  | 
|  | #if defined(__LP64__) | 
|  | return __futex_wait_ex(&mutex->state, shared, old_state, rel_timeout); | 
|  |  | 
|  | #else | 
|  | // This implementation works only when the layout of pthread_mutex_internal_t matches below expectation. | 
|  | // And it is based on the assumption that Android is always in little-endian devices. | 
|  | static_assert(offsetof(pthread_mutex_internal_t, state) == 0, ""); | 
|  | static_assert(offsetof(pthread_mutex_internal_t, owner_tid) == 2, ""); | 
|  |  | 
|  | uint32_t owner_tid = atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed); | 
|  | return __futex_wait_ex(&mutex->state, shared, (owner_tid << 16) | old_state, rel_timeout); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex, | 
|  | const timespec* abs_timeout_or_null, clockid_t clock) { | 
|  | uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
|  | uint16_t mtype = (old_state & MUTEX_TYPE_MASK); | 
|  | uint16_t shared = (old_state & MUTEX_SHARED_MASK); | 
|  |  | 
|  | // Handle common case first. | 
|  | if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) { | 
|  | return __pthread_normal_mutex_lock(mutex, shared, abs_timeout_or_null, clock); | 
|  | } | 
|  |  | 
|  | // Do we already own this recursive or error-check mutex? | 
|  | pid_t tid = __get_thread()->tid; | 
|  | if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) { | 
|  | if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { | 
|  | return EDEADLK; | 
|  | } | 
|  | return __recursive_increment(mutex, old_state); | 
|  | } | 
|  |  | 
|  | const uint16_t unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; | 
|  | const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
|  | const uint16_t locked_contended   = mtype | shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
|  |  | 
|  | // First, if the mutex is unlocked, try to quickly acquire it. | 
|  | // In the optimistic case where this works, set the state to locked_uncontended. | 
|  | if (old_state == unlocked) { | 
|  | // If exchanged successfully, an acquire fence is required to make | 
|  | // all memory accesses made by other threads visible to the current CPU. | 
|  | if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, | 
|  | locked_uncontended, memory_order_acquire, memory_order_relaxed))) { | 
|  | atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | ScopedTrace trace("Contending for pthread mutex"); | 
|  |  | 
|  | while (true) { | 
|  | if (old_state == unlocked) { | 
|  | // NOTE: We put the state to locked_contended since we _know_ there | 
|  | // is contention when we are in this loop. This ensures all waiters | 
|  | // will be unlocked. | 
|  |  | 
|  | // If exchanged successfully, an acquire fence is required to make | 
|  | // all memory accesses made by other threads visible to the current CPU. | 
|  | if (__predict_true(atomic_compare_exchange_weak_explicit(&mutex->state, | 
|  | &old_state, locked_contended, | 
|  | memory_order_acquire, | 
|  | memory_order_relaxed))) { | 
|  | atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed); | 
|  | return 0; | 
|  | } | 
|  | continue; | 
|  | } else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(old_state)) { | 
|  | // We should set it to locked_contended beforing going to sleep. This can make | 
|  | // sure waiters will be woken up eventually. | 
|  |  | 
|  | int new_state = MUTEX_STATE_BITS_FLIP_CONTENTION(old_state); | 
|  | if (__predict_false(!atomic_compare_exchange_weak_explicit(&mutex->state, | 
|  | &old_state, new_state, | 
|  | memory_order_relaxed, | 
|  | memory_order_relaxed))) { | 
|  | continue; | 
|  | } | 
|  | old_state = new_state; | 
|  | } | 
|  |  | 
|  | // We are in locked_contended state, sleep until someone wakes us up. | 
|  | timespec ts; | 
|  | timespec* rel_timeout = NULL; | 
|  | if (abs_timeout_or_null != NULL) { | 
|  | rel_timeout = &ts; | 
|  | if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) { | 
|  | return ETIMEDOUT; | 
|  | } | 
|  | } | 
|  | if (__recursive_or_errorcheck_mutex_wait(mutex, shared, old_state, rel_timeout) == -ETIMEDOUT) { | 
|  | return ETIMEDOUT; | 
|  | } | 
|  | old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
|  | } | 
|  | } | 
|  |  | 
|  | int pthread_mutex_lock(pthread_mutex_t* mutex_interface) { | 
|  | pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); | 
|  |  | 
|  | uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
|  | uint16_t mtype = (old_state & MUTEX_TYPE_MASK); | 
|  | uint16_t shared = (old_state & MUTEX_SHARED_MASK); | 
|  | // Avoid slowing down fast path of normal mutex lock operation. | 
|  | if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { | 
|  | if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return __pthread_mutex_lock_with_timeout(mutex, NULL, 0); | 
|  | } | 
|  |  | 
|  | int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) { | 
|  | pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); | 
|  |  | 
|  | uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
|  | uint16_t mtype  = (old_state & MUTEX_TYPE_MASK); | 
|  | uint16_t shared = (old_state & MUTEX_SHARED_MASK); | 
|  |  | 
|  | // Handle common case first. | 
|  | if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { | 
|  | __pthread_normal_mutex_unlock(mutex, shared); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Do we already own this recursive or error-check mutex? | 
|  | pid_t tid = __get_thread()->tid; | 
|  | if ( tid != atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed) ) { | 
|  | return EPERM; | 
|  | } | 
|  |  | 
|  | // If the counter is > 0, we can simply decrement it atomically. | 
|  | // Since other threads can mutate the lower state bits (and only the | 
|  | // lower state bits), use a compare_exchange loop to do it. | 
|  | if (!MUTEX_COUNTER_BITS_IS_ZERO(old_state)) { | 
|  | // We still own the mutex, so a release fence is not needed. | 
|  | atomic_fetch_sub_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The counter is 0, so we'are going to unlock the mutex by resetting its | 
|  | // state to unlocked, we need to perform a atomic_exchange inorder to read | 
|  | // the current state, which will be locked_contended if there may have waiters | 
|  | // to awake. | 
|  | // A release fence is required to make previous stores visible to next | 
|  | // lock owner threads. | 
|  | atomic_store_explicit(&mutex->owner_tid, 0, memory_order_relaxed); | 
|  | const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; | 
|  | old_state = atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release); | 
|  | if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)) { | 
|  | __futex_wake_ex(&mutex->state, shared, 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) { | 
|  | pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); | 
|  |  | 
|  | uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
|  | uint16_t mtype  = (old_state & MUTEX_TYPE_MASK); | 
|  | uint16_t shared = (old_state & MUTEX_SHARED_MASK); | 
|  |  | 
|  | const uint16_t unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; | 
|  | const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
|  |  | 
|  | // Handle common case first. | 
|  | if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { | 
|  | return __pthread_normal_mutex_trylock(mutex, shared); | 
|  | } | 
|  |  | 
|  | // Do we already own this recursive or error-check mutex? | 
|  | pid_t tid = __get_thread()->tid; | 
|  | if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) { | 
|  | if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { | 
|  | return EBUSY; | 
|  | } | 
|  | return __recursive_increment(mutex, old_state); | 
|  | } | 
|  |  | 
|  | // Same as pthread_mutex_lock, except that we don't want to wait, and | 
|  | // the only operation that can succeed is a single compare_exchange to acquire the | 
|  | // lock if it is released / not owned by anyone. No need for a complex loop. | 
|  | // If exchanged successfully, an acquire fence is required to make | 
|  | // all memory accesses made by other threads visible to the current CPU. | 
|  | old_state = unlocked; | 
|  | if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, | 
|  | locked_uncontended, | 
|  | memory_order_acquire, | 
|  | memory_order_relaxed))) { | 
|  | atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed); | 
|  | return 0; | 
|  | } | 
|  | return EBUSY; | 
|  | } | 
|  |  | 
|  | #if !defined(__LP64__) | 
|  | extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) { | 
|  | timespec abs_timeout; | 
|  | clock_gettime(CLOCK_MONOTONIC, &abs_timeout); | 
|  | abs_timeout.tv_sec  += ms / 1000; | 
|  | abs_timeout.tv_nsec += (ms % 1000) * 1000000; | 
|  | if (abs_timeout.tv_nsec >= NS_PER_S) { | 
|  | abs_timeout.tv_sec++; | 
|  | abs_timeout.tv_nsec -= NS_PER_S; | 
|  | } | 
|  |  | 
|  | int error = __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), | 
|  | &abs_timeout, CLOCK_MONOTONIC); | 
|  | if (error == ETIMEDOUT) { | 
|  | error = EBUSY; | 
|  | } | 
|  | return error; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const timespec* abs_timeout) { | 
|  | return __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), | 
|  | abs_timeout, CLOCK_REALTIME); | 
|  | } | 
|  |  | 
|  | int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) { | 
|  | // Use trylock to ensure that the mutex is valid and not already locked. | 
|  | int error = pthread_mutex_trylock(mutex_interface); | 
|  | if (error != 0) { | 
|  | return error; | 
|  | } | 
|  | return 0; | 
|  | } |