| /* | 
 |  * Copyright (C) 2019 The Android Open Source Project | 
 |  * All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  *  * Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  *  * Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
 |  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
 |  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
 |  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
 |  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
 |  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
 |  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
 |  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
 |  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  */ | 
 |  | 
 | #include <inttypes.h> | 
 | #include <pthread.h> | 
 | #include <stdatomic.h> | 
 | #include <stdint.h> | 
 | #include <stdio.h> | 
 | #include <unistd.h> | 
 |  | 
 | #include <private/bionic_malloc_dispatch.h> | 
 |  | 
 | #if __has_feature(hwaddress_sanitizer) | 
 | #include <sanitizer/allocator_interface.h> | 
 | #endif | 
 |  | 
 | #include "malloc_common.h" | 
 | #include "malloc_common_dynamic.h" | 
 | #include "malloc_heapprofd.h" | 
 | #include "malloc_limit.h" | 
 |  | 
 | __BEGIN_DECLS | 
 | static void* LimitCalloc(size_t n_elements, size_t elem_size); | 
 | static void LimitFree(void* mem); | 
 | static void* LimitMalloc(size_t bytes); | 
 | static void* LimitMemalign(size_t alignment, size_t bytes); | 
 | static int LimitPosixMemalign(void** memptr, size_t alignment, size_t size); | 
 | static void* LimitRealloc(void* old_mem, size_t bytes); | 
 | static void* LimitAlignedAlloc(size_t alignment, size_t size); | 
 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
 | static void* LimitPvalloc(size_t bytes); | 
 | static void* LimitValloc(size_t bytes); | 
 | #endif | 
 |  | 
 | // Pass through functions. | 
 | static size_t LimitUsableSize(const void* mem); | 
 | static struct mallinfo LimitMallinfo(); | 
 | static int LimitIterate(uintptr_t base, size_t size, void (*callback)(uintptr_t, size_t, void*), void* arg); | 
 | static void LimitMallocDisable(); | 
 | static void LimitMallocEnable(); | 
 | static int LimitMallocInfo(int options, FILE* fp); | 
 | static int LimitMallopt(int param, int value); | 
 | __END_DECLS | 
 |  | 
 | static constexpr MallocDispatch __limit_dispatch | 
 |   __attribute__((unused)) = { | 
 |     LimitCalloc, | 
 |     LimitFree, | 
 |     LimitMallinfo, | 
 |     LimitMalloc, | 
 |     LimitUsableSize, | 
 |     LimitMemalign, | 
 |     LimitPosixMemalign, | 
 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
 |     LimitPvalloc, | 
 | #endif | 
 |     LimitRealloc, | 
 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
 |     LimitValloc, | 
 | #endif | 
 |     LimitIterate, | 
 |     LimitMallocDisable, | 
 |     LimitMallocEnable, | 
 |     LimitMallopt, | 
 |     LimitAlignedAlloc, | 
 |     LimitMallocInfo, | 
 |   }; | 
 |  | 
 | static _Atomic uint64_t gAllocated; | 
 | static uint64_t gAllocLimit; | 
 |  | 
 | static inline bool CheckLimit(size_t bytes) { | 
 |   uint64_t total; | 
 |   if (__predict_false(__builtin_add_overflow( | 
 |                           atomic_load_explicit(&gAllocated, memory_order_relaxed), bytes, &total) || | 
 |                       total > gAllocLimit)) { | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static inline void* IncrementLimit(void* mem) { | 
 |   if (__predict_false(mem == nullptr)) { | 
 |     return nullptr; | 
 |   } | 
 |   atomic_fetch_add(&gAllocated, LimitUsableSize(mem)); | 
 |   return mem; | 
 | } | 
 |  | 
 | void* LimitCalloc(size_t n_elements, size_t elem_size) { | 
 |   size_t total; | 
 |   if (__builtin_mul_overflow(n_elements, elem_size, &total) || !CheckLimit(total)) { | 
 |     warning_log("malloc_limit: calloc(%zu, %zu) exceeds limit %" PRId64, n_elements, elem_size, | 
 |                 gAllocLimit); | 
 |     return nullptr; | 
 |   } | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return IncrementLimit(dispatch_table->calloc(n_elements, elem_size)); | 
 |   } | 
 |   return IncrementLimit(Malloc(calloc)(n_elements, elem_size)); | 
 | } | 
 |  | 
 | void LimitFree(void* mem) { | 
 |   atomic_fetch_sub(&gAllocated, LimitUsableSize(mem)); | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return dispatch_table->free(mem); | 
 |   } | 
 |   return Malloc(free)(mem); | 
 | } | 
 |  | 
 | void* LimitMalloc(size_t bytes) { | 
 |   if (!CheckLimit(bytes)) { | 
 |     warning_log("malloc_limit: malloc(%zu) exceeds limit %" PRId64, bytes, gAllocLimit); | 
 |     return nullptr; | 
 |   } | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return IncrementLimit(dispatch_table->malloc(bytes)); | 
 |   } | 
 |   return IncrementLimit(Malloc(malloc)(bytes)); | 
 | } | 
 |  | 
 | static void* LimitMemalign(size_t alignment, size_t bytes) { | 
 |   if (!CheckLimit(bytes)) { | 
 |     warning_log("malloc_limit: memalign(%zu, %zu) exceeds limit %" PRId64, alignment, bytes, | 
 |                 gAllocLimit); | 
 |     return nullptr; | 
 |   } | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return IncrementLimit(dispatch_table->memalign(alignment, bytes)); | 
 |   } | 
 |   return IncrementLimit(Malloc(memalign)(alignment, bytes)); | 
 | } | 
 |  | 
 | static int LimitPosixMemalign(void** memptr, size_t alignment, size_t size) { | 
 |   if (!CheckLimit(size)) { | 
 |     warning_log("malloc_limit: posix_memalign(%zu, %zu) exceeds limit %" PRId64, alignment, size, | 
 |                 gAllocLimit); | 
 |     return ENOMEM; | 
 |   } | 
 |   int retval; | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     retval = dispatch_table->posix_memalign(memptr, alignment, size); | 
 |   } else { | 
 |     retval = Malloc(posix_memalign)(memptr, alignment, size); | 
 |   } | 
 |   if (__predict_false(retval != 0)) { | 
 |     return retval; | 
 |   } | 
 |   IncrementLimit(*memptr); | 
 |   return 0; | 
 | } | 
 |  | 
 | static void* LimitAlignedAlloc(size_t alignment, size_t size) { | 
 |   if (!CheckLimit(size)) { | 
 |     warning_log("malloc_limit: aligned_alloc(%zu, %zu) exceeds limit %" PRId64, alignment, size, | 
 |                 gAllocLimit); | 
 |     return nullptr; | 
 |   } | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return IncrementLimit(dispatch_table->aligned_alloc(alignment, size)); | 
 |   } | 
 |   return IncrementLimit(Malloc(aligned_alloc)(alignment, size)); | 
 | } | 
 |  | 
 | static void* LimitRealloc(void* old_mem, size_t bytes) { | 
 |   size_t old_usable_size = LimitUsableSize(old_mem); | 
 |   void* new_ptr; | 
 |   // Need to check the size only if the allocation will increase in size. | 
 |   if (bytes > old_usable_size && !CheckLimit(bytes - old_usable_size)) { | 
 |     warning_log("malloc_limit: realloc(%p, %zu) exceeds limit %" PRId64, old_mem, bytes, | 
 |                 gAllocLimit); | 
 |     // Free the old pointer. | 
 |     LimitFree(old_mem); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     new_ptr = dispatch_table->realloc(old_mem, bytes); | 
 |   } else { | 
 |     new_ptr = Malloc(realloc)(old_mem, bytes); | 
 |   } | 
 |  | 
 |   if (__predict_false(new_ptr == nullptr)) { | 
 |     // This acts as if the pointer was freed. | 
 |     atomic_fetch_sub(&gAllocated, old_usable_size); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   size_t new_usable_size = LimitUsableSize(new_ptr); | 
 |   // Assumes that most allocations increase in size, rather than shrink. | 
 |   if (__predict_false(old_usable_size > new_usable_size)) { | 
 |     atomic_fetch_sub(&gAllocated, old_usable_size - new_usable_size); | 
 |   } else { | 
 |     atomic_fetch_add(&gAllocated, new_usable_size - old_usable_size); | 
 |   } | 
 |   return new_ptr; | 
 | } | 
 |  | 
 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
 | static void* LimitPvalloc(size_t bytes) { | 
 |   if (!CheckLimit(bytes)) { | 
 |     warning_log("malloc_limit: pvalloc(%zu) exceeds limit %" PRId64, bytes, gAllocLimit); | 
 |     return nullptr; | 
 |   } | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return IncrementLimit(dispatch_table->pvalloc(bytes)); | 
 |   } | 
 |   return IncrementLimit(Malloc(pvalloc)(bytes)); | 
 | } | 
 |  | 
 | static void* LimitValloc(size_t bytes) { | 
 |   if (!CheckLimit(bytes)) { | 
 |     warning_log("malloc_limit: valloc(%zu) exceeds limit %" PRId64, bytes, gAllocLimit); | 
 |     return nullptr; | 
 |   } | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return IncrementLimit(dispatch_table->valloc(bytes)); | 
 |   } | 
 |   return IncrementLimit(Malloc(valloc)(bytes)); | 
 | } | 
 | #endif | 
 |  | 
 | bool MallocLimitInstalled() { | 
 |   return GetDispatchTable() == &__limit_dispatch; | 
 | } | 
 |  | 
 | #if defined(LIBC_STATIC) | 
 | static bool EnableLimitDispatchTable() { | 
 |   // This is the only valid way to modify the dispatch tables for a | 
 |   // static executable so no locks are necessary. | 
 |   __libc_globals.mutate([](libc_globals* globals) { | 
 |     atomic_store(&globals->current_dispatch_table, &__limit_dispatch); | 
 |   }); | 
 |   return true; | 
 | } | 
 | #else | 
 | static bool EnableLimitDispatchTable() { | 
 |   pthread_mutex_lock(&gGlobalsMutateLock); | 
 |   // All other code that calls mutate will grab the gGlobalsMutateLock. | 
 |   // However, there is one case where the lock cannot be acquired, in the | 
 |   // signal handler that enables heapprofd. In order to avoid having two | 
 |   // threads calling mutate at the same time, use an atomic variable to | 
 |   // verify that only this function or the signal handler are calling mutate. | 
 |   // If this function is called at the same time as the signal handler is | 
 |   // being called, allow a short period for the signal handler to complete | 
 |   // before failing. | 
 |   bool enabled = false; | 
 |   size_t num_tries = 200; | 
 |   while (true) { | 
 |     if (!atomic_exchange(&gGlobalsMutating, true)) { | 
 |       __libc_globals.mutate([](libc_globals* globals) { | 
 |         atomic_store(&globals->current_dispatch_table, &__limit_dispatch); | 
 |       }); | 
 |       atomic_store(&gGlobalsMutating, false); | 
 |       enabled = true; | 
 |       break; | 
 |     } | 
 |     if (--num_tries == 0) { | 
 |       break; | 
 |     } | 
 |     usleep(1000); | 
 |   } | 
 |   pthread_mutex_unlock(&gGlobalsMutateLock); | 
 |   if (enabled) { | 
 |     info_log("malloc_limit: Allocation limit enabled, max size %" PRId64 " bytes\n", gAllocLimit); | 
 |   } else { | 
 |     error_log("malloc_limit: Failed to enable allocation limit."); | 
 |   } | 
 |   return enabled; | 
 | } | 
 | #endif | 
 |  | 
 | bool LimitEnable(void* arg, size_t arg_size) { | 
 |   if (arg == nullptr || arg_size != sizeof(size_t)) { | 
 |     errno = EINVAL; | 
 |     return false; | 
 |   } | 
 |  | 
 |   static _Atomic bool limit_enabled; | 
 |   if (atomic_exchange(&limit_enabled, true)) { | 
 |     // The limit can only be enabled once. | 
 |     error_log("malloc_limit: The allocation limit has already been set, it can only be set once."); | 
 |     return false; | 
 |   } | 
 |  | 
 |   gAllocLimit = *reinterpret_cast<size_t*>(arg); | 
 | #if __has_feature(hwaddress_sanitizer) | 
 |   size_t current_allocated = __sanitizer_get_current_allocated_bytes(); | 
 | #else | 
 |   size_t current_allocated; | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     current_allocated = dispatch_table->mallinfo().uordblks; | 
 |   } else { | 
 |     current_allocated = Malloc(mallinfo)().uordblks; | 
 |   } | 
 | #endif | 
 |   // This has to be set before the enable occurs since "gAllocated" is used | 
 |   // to compute the limit. If the enable fails, "gAllocated" is never used. | 
 |   atomic_store(&gAllocated, current_allocated); | 
 |  | 
 |   if (!EnableLimitDispatchTable()) { | 
 |     // Failed to enable, reset so a future enable will pass. | 
 |     atomic_store(&limit_enabled, false); | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static size_t LimitUsableSize(const void* mem) { | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return dispatch_table->malloc_usable_size(mem); | 
 |   } | 
 |   return Malloc(malloc_usable_size)(mem); | 
 | } | 
 |  | 
 | static struct mallinfo LimitMallinfo() { | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return dispatch_table->mallinfo(); | 
 |   } | 
 |   return Malloc(mallinfo)(); | 
 | } | 
 |  | 
 | static int LimitIterate(uintptr_t base, size_t size, void (*callback)(uintptr_t, size_t, void*), void* arg) { | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return dispatch_table->malloc_iterate(base, size, callback, arg); | 
 |   } | 
 |   return Malloc(malloc_iterate)(base, size, callback, arg); | 
 | } | 
 |  | 
 | static void LimitMallocDisable() { | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     dispatch_table->malloc_disable(); | 
 |   } else { | 
 |     Malloc(malloc_disable)(); | 
 |   } | 
 | } | 
 |  | 
 | static void LimitMallocEnable() { | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     dispatch_table->malloc_enable(); | 
 |   } else { | 
 |     Malloc(malloc_enable)(); | 
 |   } | 
 | } | 
 |  | 
 | static int LimitMallocInfo(int options, FILE* fp) { | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return dispatch_table->malloc_info(options, fp); | 
 |   } | 
 |   return Malloc(malloc_info)(options, fp); | 
 | } | 
 |  | 
 | static int LimitMallopt(int param, int value) { | 
 |   auto dispatch_table = GetDefaultDispatchTable(); | 
 |   if (__predict_false(dispatch_table != nullptr)) { | 
 |     return dispatch_table->mallopt(param, value); | 
 |   } | 
 |   return Malloc(mallopt)(param, value); | 
 | } |