blob: 374bef30d9a718fa016ccb620bf2362a76e7559d [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "linker_allocator.h"
#include "linker_debug.h"
#include "linker.h"
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <unistd.h>
#include <async_safe/log.h>
//
// LinkerMemeoryAllocator is general purpose allocator
// designed to provide the same functionality as the malloc/free/realloc
// libc functions.
//
// On alloc:
// If size is >= 1k allocator proxies malloc call directly to mmap
// If size < 1k allocator uses SmallObjectAllocator for the size
// rounded up to the nearest power of two.
//
// On free:
//
// For a pointer allocated using proxy-to-mmap allocator unmaps
// the memory.
//
// For a pointer allocated using SmallObjectAllocator it adds
// the block to free_blocks_list in the corresponding page. If the number of
// free pages reaches 2, SmallObjectAllocator munmaps one of the pages keeping
// the other one in reserve.
// Memory management for large objects is fairly straightforward, but for small
// objects it is more complicated. If you are changing this code, one simple
// way to evaluate the memory usage change is by running 'dd' and examine the
// memory usage by 'showmap $(pidof dd)'. 'dd' is nice in that:
// 1. It links in quite a few libraries, so you get some linker memory use.
// 2. When run with no arguments, it sits waiting for input, so it is easy to
// examine its memory usage with showmap.
// 3. Since it does nothing while waiting for input, the memory usage is
// determinisitic.
static const char kSignature[4] = {'L', 'M', 'A', 1};
static const size_t kSmallObjectMaxSize = 1 << kSmallObjectMaxSizeLog2;
// This type is used for large allocations (with size >1k)
static const uint32_t kLargeObject = 111;
static inline uint16_t log2(size_t number) {
uint16_t result = 0;
number--;
while (number != 0) {
result++;
number >>= 1;
}
return result;
}
LinkerSmallObjectAllocator::LinkerSmallObjectAllocator(uint32_t type,
size_t block_size)
: type_(type),
block_size_(block_size),
free_pages_cnt_(0),
page_list_(nullptr) {}
void* LinkerSmallObjectAllocator::alloc() {
CHECK(block_size_ != 0);
if (page_list_ == nullptr) {
alloc_page();
}
// Fully allocated pages are de-managed and removed from the page list, so
// every page from the page list must be useable. Let's just take the first
// one.
small_object_page_info* page = page_list_;
CHECK(page->free_block_list != nullptr);
small_object_block_record* const block_record = page->free_block_list;
if (block_record->free_blocks_cnt > 1) {
small_object_block_record* next_free =
reinterpret_cast<small_object_block_record*>(
reinterpret_cast<uint8_t*>(block_record) + block_size_);
next_free->next = block_record->next;
next_free->free_blocks_cnt = block_record->free_blocks_cnt - 1;
page->free_block_list = next_free;
} else {
page->free_block_list = block_record->next;
}
if (page->allocated_blocks_cnt == 0) {
free_pages_cnt_--;
}
page->free_blocks_cnt--;
page->allocated_blocks_cnt++;
memset(block_record, 0, block_size_);
if (page->free_blocks_cnt == 0) {
// De-manage fully allocated pages. These pages will be managed again if
// a block is freed.
remove_from_page_list(page);
}
return block_record;
}
void LinkerSmallObjectAllocator::free_page(small_object_page_info* page) {
CHECK(page->allocated_blocks_cnt == 0);
if (page->prev_page) {
page->prev_page->next_page = page->next_page;
}
if (page->next_page) {
page->next_page->prev_page = page->prev_page;
}
if (page_list_ == page) {
page_list_ = page->next_page;
}
munmap(page, PAGE_SIZE);
free_pages_cnt_--;
}
void LinkerSmallObjectAllocator::free(void* ptr) {
small_object_page_info* const page =
reinterpret_cast<small_object_page_info*>(
PAGE_START(reinterpret_cast<uintptr_t>(ptr)));
const ssize_t offset =
reinterpret_cast<uintptr_t>(ptr) - sizeof(small_object_page_info);
if (offset % block_size_ != 0) {
async_safe_fatal("invalid pointer: %p (block_size=%zd)", ptr, block_size_);
}
memset(ptr, 0, block_size_);
small_object_block_record* const block_record =
reinterpret_cast<small_object_block_record*>(ptr);
block_record->next = page->free_block_list;
block_record->free_blocks_cnt = 1;
page->free_block_list = block_record;
page->free_blocks_cnt++;
page->allocated_blocks_cnt--;
if (page->allocated_blocks_cnt == 0) {
if (++free_pages_cnt_ > 1) {
// if we already have a free page - unmap this one.
free_page(page);
}
} else if (page->free_blocks_cnt == 1) {
// We just freed from a full page. Add this page back to the list.
add_to_page_list(page);
}
}
void LinkerSmallObjectAllocator::alloc_page() {
static_assert(sizeof(small_object_page_info) % 16 == 0,
"sizeof(small_object_page_info) is not multiple of 16");
void* const map_ptr = mmap(nullptr, PAGE_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (map_ptr == MAP_FAILED) {
async_safe_fatal("mmap failed: %s", strerror(errno));
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, PAGE_SIZE,
"linker_alloc_small_objects");
small_object_page_info* const page =
reinterpret_cast<small_object_page_info*>(map_ptr);
memcpy(page->info.signature, kSignature, sizeof(kSignature));
page->info.type = type_;
page->info.allocator_addr = this;
const size_t free_blocks_cnt =
(PAGE_SIZE - sizeof(small_object_page_info)) / block_size_;
page->free_blocks_cnt = free_blocks_cnt;
page->allocated_blocks_cnt = 0;
small_object_block_record* const first_block =
reinterpret_cast<small_object_block_record*>(page + 1);
first_block->next = nullptr;
first_block->free_blocks_cnt = free_blocks_cnt;
page->free_block_list = first_block;
add_to_page_list(page);
free_pages_cnt_++;
}
void LinkerSmallObjectAllocator::add_to_page_list(small_object_page_info* page) {
page->next_page = page_list_;
page->prev_page = nullptr;
if (page_list_) {
page_list_->prev_page = page;
}
page_list_ = page;
}
void LinkerSmallObjectAllocator::remove_from_page_list(
small_object_page_info* page) {
if (page->prev_page) {
page->prev_page->next_page = page->next_page;
}
if (page->next_page) {
page->next_page->prev_page = page->prev_page;
}
if (page_list_ == page) {
page_list_ = page->next_page;
}
page->prev_page = nullptr;
page->next_page = nullptr;
}
void LinkerMemoryAllocator::initialize_allocators() {
if (allocators_ != nullptr) {
return;
}
LinkerSmallObjectAllocator* allocators =
reinterpret_cast<LinkerSmallObjectAllocator*>(allocators_buf_);
for (size_t i = 0; i < kSmallObjectAllocatorsCount; ++i) {
uint32_t type = i + kSmallObjectMinSizeLog2;
new (allocators + i) LinkerSmallObjectAllocator(type, 1 << type);
}
allocators_ = allocators;
}
void* LinkerMemoryAllocator::alloc_mmap(size_t size) {
size_t allocated_size = PAGE_END(size + sizeof(page_info));
void* map_ptr = mmap(nullptr, allocated_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
-1, 0);
if (map_ptr == MAP_FAILED) {
async_safe_fatal("mmap failed: %s", strerror(errno));
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, allocated_size, "linker_alloc_lob");
page_info* info = reinterpret_cast<page_info*>(map_ptr);
memcpy(info->signature, kSignature, sizeof(kSignature));
info->type = kLargeObject;
info->allocated_size = allocated_size;
return info + 1;
}
void* LinkerMemoryAllocator::alloc(size_t size) {
// treat alloc(0) as alloc(1)
if (size == 0) {
size = 1;
}
if (size > kSmallObjectMaxSize) {
return alloc_mmap(size);
}
uint16_t log2_size = log2(size);
if (log2_size < kSmallObjectMinSizeLog2) {
log2_size = kSmallObjectMinSizeLog2;
}
return get_small_object_allocator(log2_size)->alloc();
}
page_info* LinkerMemoryAllocator::get_page_info(void* ptr) {
page_info* info = reinterpret_cast<page_info*>(PAGE_START(reinterpret_cast<size_t>(ptr)));
if (memcmp(info->signature, kSignature, sizeof(kSignature)) != 0) {
async_safe_fatal("invalid pointer %p (page signature mismatch)", ptr);
}
return info;
}
void* LinkerMemoryAllocator::realloc(void* ptr, size_t size) {
if (ptr == nullptr) {
return alloc(size);
}
if (size == 0) {
free(ptr);
return nullptr;
}
page_info* info = get_page_info(ptr);
size_t old_size = 0;
if (info->type == kLargeObject) {
old_size = info->allocated_size - sizeof(page_info);
} else {
LinkerSmallObjectAllocator* allocator = get_small_object_allocator(info->type);
if (allocator != info->allocator_addr) {
async_safe_fatal("invalid pointer %p (page signature mismatch)", ptr);
}
old_size = allocator->get_block_size();
}
if (old_size < size) {
void *result = alloc(size);
memcpy(result, ptr, old_size);
free(ptr);
return result;
}
return ptr;
}
void LinkerMemoryAllocator::free(void* ptr) {
if (ptr == nullptr) {
return;
}
page_info* info = get_page_info(ptr);
if (info->type == kLargeObject) {
munmap(info, info->allocated_size);
} else {
LinkerSmallObjectAllocator* allocator = get_small_object_allocator(info->type);
if (allocator != info->allocator_addr) {
async_safe_fatal("invalid pointer %p (invalid allocator address for the page)", ptr);
}
allocator->free(ptr);
}
}
LinkerSmallObjectAllocator* LinkerMemoryAllocator::get_small_object_allocator(uint32_t type) {
if (type < kSmallObjectMinSizeLog2 || type > kSmallObjectMaxSizeLog2) {
async_safe_fatal("invalid type: %u", type);
}
initialize_allocators();
return &allocators_[type - kSmallObjectMinSizeLog2];
}