| /* @(#)s_expm1.c 5.1 93/09/24 */ | 
 | /* | 
 |  * ==================================================== | 
 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 |  * | 
 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
 |  * Permission to use, copy, modify, and distribute this | 
 |  * software is freely granted, provided that this notice | 
 |  * is preserved. | 
 |  * ==================================================== | 
 |  */ | 
 |  | 
 | #include <sys/cdefs.h> | 
 | __FBSDID("$FreeBSD$"); | 
 |  | 
 | /* expm1(x) | 
 |  * Returns exp(x)-1, the exponential of x minus 1. | 
 |  * | 
 |  * Method | 
 |  *   1. Argument reduction: | 
 |  *	Given x, find r and integer k such that | 
 |  * | 
 |  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658 | 
 |  * | 
 |  *      Here a correction term c will be computed to compensate | 
 |  *	the error in r when rounded to a floating-point number. | 
 |  * | 
 |  *   2. Approximating expm1(r) by a special rational function on | 
 |  *	the interval [0,0.34658]: | 
 |  *	Since | 
 |  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... | 
 |  *	we define R1(r*r) by | 
 |  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) | 
 |  *	That is, | 
 |  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) | 
 |  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) | 
 |  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... | 
 |  *      We use a special Reme algorithm on [0,0.347] to generate | 
 |  * 	a polynomial of degree 5 in r*r to approximate R1. The | 
 |  *	maximum error of this polynomial approximation is bounded | 
 |  *	by 2**-61. In other words, | 
 |  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 | 
 |  *	where 	Q1  =  -1.6666666666666567384E-2, | 
 |  * 		Q2  =   3.9682539681370365873E-4, | 
 |  * 		Q3  =  -9.9206344733435987357E-6, | 
 |  * 		Q4  =   2.5051361420808517002E-7, | 
 |  * 		Q5  =  -6.2843505682382617102E-9; | 
 |  *		z   =  r*r, | 
 |  *	with error bounded by | 
 |  *	    |                  5           |     -61 | 
 |  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2 | 
 |  *	    |                              | | 
 |  * | 
 |  *	expm1(r) = exp(r)-1 is then computed by the following | 
 |  * 	specific way which minimize the accumulation rounding error: | 
 |  *			       2     3 | 
 |  *			      r     r    [ 3 - (R1 + R1*r/2)  ] | 
 |  *	      expm1(r) = r + --- + --- * [--------------------] | 
 |  *		              2     2    [ 6 - r*(3 - R1*r/2) ] | 
 |  * | 
 |  *	To compensate the error in the argument reduction, we use | 
 |  *		expm1(r+c) = expm1(r) + c + expm1(r)*c | 
 |  *			   ~ expm1(r) + c + r*c | 
 |  *	Thus c+r*c will be added in as the correction terms for | 
 |  *	expm1(r+c). Now rearrange the term to avoid optimization | 
 |  * 	screw up: | 
 |  *		        (      2                                    2 ) | 
 |  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  ) | 
 |  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) | 
 |  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  ) | 
 |  *                      (                                             ) | 
 |  * | 
 |  *		   = r - E | 
 |  *   3. Scale back to obtain expm1(x): | 
 |  *	From step 1, we have | 
 |  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1 | 
 |  *		    = or     2^k*[expm1(r) + (1-2^-k)] | 
 |  *   4. Implementation notes: | 
 |  *	(A). To save one multiplication, we scale the coefficient Qi | 
 |  *	     to Qi*2^i, and replace z by (x^2)/2. | 
 |  *	(B). To achieve maximum accuracy, we compute expm1(x) by | 
 |  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf) | 
 |  *	  (ii)  if k=0, return r-E | 
 |  *	  (iii) if k=-1, return 0.5*(r-E)-0.5 | 
 |  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E) | 
 |  *	       	       else	     return  1.0+2.0*(r-E); | 
 |  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) | 
 |  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else | 
 |  *	  (vii) return 2^k(1-((E+2^-k)-r)) | 
 |  * | 
 |  * Special cases: | 
 |  *	expm1(INF) is INF, expm1(NaN) is NaN; | 
 |  *	expm1(-INF) is -1, and | 
 |  *	for finite argument, only expm1(0)=0 is exact. | 
 |  * | 
 |  * Accuracy: | 
 |  *	according to an error analysis, the error is always less than | 
 |  *	1 ulp (unit in the last place). | 
 |  * | 
 |  * Misc. info. | 
 |  *	For IEEE double | 
 |  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow | 
 |  * | 
 |  * Constants: | 
 |  * The hexadecimal values are the intended ones for the following | 
 |  * constants. The decimal values may be used, provided that the | 
 |  * compiler will convert from decimal to binary accurately enough | 
 |  * to produce the hexadecimal values shown. | 
 |  */ | 
 |  | 
 | #include <float.h> | 
 |  | 
 | #include "math.h" | 
 | #include "math_private.h" | 
 |  | 
 | static const double | 
 | one		= 1.0, | 
 | tiny		= 1.0e-300, | 
 | o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ | 
 | ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ | 
 | ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ | 
 | invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ | 
 | /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */ | 
 | Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */ | 
 | Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ | 
 | Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ | 
 | Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ | 
 | Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ | 
 |  | 
 | static volatile double huge = 1.0e+300; | 
 |  | 
 | double | 
 | expm1(double x) | 
 | { | 
 | 	double y,hi,lo,c,t,e,hxs,hfx,r1,twopk; | 
 | 	int32_t k,xsb; | 
 | 	u_int32_t hx; | 
 |  | 
 | 	GET_HIGH_WORD(hx,x); | 
 | 	xsb = hx&0x80000000;		/* sign bit of x */ | 
 | 	hx &= 0x7fffffff;		/* high word of |x| */ | 
 |  | 
 |     /* filter out huge and non-finite argument */ | 
 | 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */ | 
 | 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */ | 
 |                 if(hx>=0x7ff00000) { | 
 | 		    u_int32_t low; | 
 | 		    GET_LOW_WORD(low,x); | 
 | 		    if(((hx&0xfffff)|low)!=0) | 
 | 		         return x+x; 	 /* NaN */ | 
 | 		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ | 
 | 	        } | 
 | 	        if(x > o_threshold) return huge*huge; /* overflow */ | 
 | 	    } | 
 | 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ | 
 | 		if(x+tiny<0.0)		/* raise inexact */ | 
 | 		return tiny-one;	/* return -1 */ | 
 | 	    } | 
 | 	} | 
 |  | 
 |     /* argument reduction */ | 
 | 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ | 
 | 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */ | 
 | 		if(xsb==0) | 
 | 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;} | 
 | 		else | 
 | 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;} | 
 | 	    } else { | 
 | 		k  = invln2*x+((xsb==0)?0.5:-0.5); | 
 | 		t  = k; | 
 | 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */ | 
 | 		lo = t*ln2_lo; | 
 | 	    } | 
 | 	    STRICT_ASSIGN(double, x, hi - lo); | 
 | 	    c  = (hi-x)-lo; | 
 | 	} | 
 | 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */ | 
 | 	    t = huge+x;	/* return x with inexact flags when x!=0 */ | 
 | 	    return x - (t-(huge+x)); | 
 | 	} | 
 | 	else k = 0; | 
 |  | 
 |     /* x is now in primary range */ | 
 | 	hfx = 0.5*x; | 
 | 	hxs = x*hfx; | 
 | 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); | 
 | 	t  = 3.0-r1*hfx; | 
 | 	e  = hxs*((r1-t)/(6.0 - x*t)); | 
 | 	if(k==0) return x - (x*e-hxs);		/* c is 0 */ | 
 | 	else { | 
 | 	    INSERT_WORDS(twopk,0x3ff00000+(k<<20),0);	/* 2^k */ | 
 | 	    e  = (x*(e-c)-c); | 
 | 	    e -= hxs; | 
 | 	    if(k== -1) return 0.5*(x-e)-0.5; | 
 | 	    if(k==1) { | 
 | 	       	if(x < -0.25) return -2.0*(e-(x+0.5)); | 
 | 	       	else 	      return  one+2.0*(x-e); | 
 | 	    } | 
 | 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */ | 
 | 	        y = one-(e-x); | 
 | 		if (k == 1024) y = y*2.0*0x1p1023; | 
 | 		else y = y*twopk; | 
 | 	        return y-one; | 
 | 	    } | 
 | 	    t = one; | 
 | 	    if(k<20) { | 
 | 	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */ | 
 | 	       	y = t-(e-x); | 
 | 		y = y*twopk; | 
 | 	   } else { | 
 | 		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */ | 
 | 	       	y = x-(e+t); | 
 | 	       	y += one; | 
 | 		y = y*twopk; | 
 | 	    } | 
 | 	} | 
 | 	return y; | 
 | } | 
 |  | 
 | #if (LDBL_MANT_DIG == 53) | 
 | __weak_reference(expm1, expm1l); | 
 | #endif |