| /* | 
 |  * Copyright (C) 2012 The Android Open Source Project | 
 |  * All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  *  * Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  *  * Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
 |  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
 |  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
 |  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
 |  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
 |  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
 |  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
 |  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
 |  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  */ | 
 |  | 
 | #include "linker_phdr.h" | 
 |  | 
 | #include <errno.h> | 
 | #include <string.h> | 
 | #include <sys/mman.h> | 
 | #include <sys/types.h> | 
 | #include <sys/stat.h> | 
 | #include <unistd.h> | 
 |  | 
 | #include "linker.h" | 
 | #include "linker_debug.h" | 
 |  | 
 | static int GetTargetElfMachine() { | 
 | #if defined(__arm__) | 
 |   return EM_ARM; | 
 | #elif defined(__aarch64__) | 
 |   return EM_AARCH64; | 
 | #elif defined(__i386__) | 
 |   return EM_386; | 
 | #elif defined(__mips__) | 
 |   return EM_MIPS; | 
 | #elif defined(__x86_64__) | 
 |   return EM_X86_64; | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |   TECHNICAL NOTE ON ELF LOADING. | 
 |  | 
 |   An ELF file's program header table contains one or more PT_LOAD | 
 |   segments, which corresponds to portions of the file that need to | 
 |   be mapped into the process' address space. | 
 |  | 
 |   Each loadable segment has the following important properties: | 
 |  | 
 |     p_offset  -> segment file offset | 
 |     p_filesz  -> segment file size | 
 |     p_memsz   -> segment memory size (always >= p_filesz) | 
 |     p_vaddr   -> segment's virtual address | 
 |     p_flags   -> segment flags (e.g. readable, writable, executable) | 
 |  | 
 |   We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now. | 
 |  | 
 |   The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz) | 
 |   ranges of virtual addresses. A few rules apply: | 
 |  | 
 |   - the virtual address ranges should not overlap. | 
 |  | 
 |   - if a segment's p_filesz is smaller than its p_memsz, the extra bytes | 
 |     between them should always be initialized to 0. | 
 |  | 
 |   - ranges do not necessarily start or end at page boundaries. Two distinct | 
 |     segments can have their start and end on the same page. In this case, the | 
 |     page inherits the mapping flags of the latter segment. | 
 |  | 
 |   Finally, the real load addrs of each segment is not p_vaddr. Instead the | 
 |   loader decides where to load the first segment, then will load all others | 
 |   relative to the first one to respect the initial range layout. | 
 |  | 
 |   For example, consider the following list: | 
 |  | 
 |     [ offset:0,      filesz:0x4000, memsz:0x4000, vaddr:0x30000 ], | 
 |     [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ], | 
 |  | 
 |   This corresponds to two segments that cover these virtual address ranges: | 
 |  | 
 |        0x30000...0x34000 | 
 |        0x40000...0x48000 | 
 |  | 
 |   If the loader decides to load the first segment at address 0xa0000000 | 
 |   then the segments' load address ranges will be: | 
 |  | 
 |        0xa0030000...0xa0034000 | 
 |        0xa0040000...0xa0048000 | 
 |  | 
 |   In other words, all segments must be loaded at an address that has the same | 
 |   constant offset from their p_vaddr value. This offset is computed as the | 
 |   difference between the first segment's load address, and its p_vaddr value. | 
 |  | 
 |   However, in practice, segments do _not_ start at page boundaries. Since we | 
 |   can only memory-map at page boundaries, this means that the bias is | 
 |   computed as: | 
 |  | 
 |        load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr) | 
 |  | 
 |   (NOTE: The value must be used as a 32-bit unsigned integer, to deal with | 
 |           possible wrap around UINT32_MAX for possible large p_vaddr values). | 
 |  | 
 |   And that the phdr0_load_address must start at a page boundary, with | 
 |   the segment's real content starting at: | 
 |  | 
 |        phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr) | 
 |  | 
 |   Note that ELF requires the following condition to make the mmap()-ing work: | 
 |  | 
 |       PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset) | 
 |  | 
 |   The load_bias must be added to any p_vaddr value read from the ELF file to | 
 |   determine the corresponding memory address. | 
 |  | 
 |  **/ | 
 |  | 
 | #define MAYBE_MAP_FLAG(x, from, to)  (((x) & (from)) ? (to) : 0) | 
 | #define PFLAGS_TO_PROT(x)            (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \ | 
 |                                       MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \ | 
 |                                       MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE)) | 
 |  | 
 | ElfReader::ElfReader(const char* name, int fd, off64_t file_offset, off64_t file_size) | 
 |     : name_(name), fd_(fd), file_offset_(file_offset), file_size_(file_size), | 
 |       phdr_num_(0), phdr_mmap_(nullptr), phdr_table_(nullptr), phdr_size_(0), | 
 |       load_start_(nullptr), load_size_(0), load_bias_(0), | 
 |       loaded_phdr_(nullptr) { | 
 | } | 
 |  | 
 | ElfReader::~ElfReader() { | 
 |   if (phdr_mmap_ != nullptr) { | 
 |     munmap(phdr_mmap_, phdr_size_); | 
 |   } | 
 | } | 
 |  | 
 | bool ElfReader::Load(const android_dlextinfo* extinfo) { | 
 |   return ReadElfHeader() && | 
 |          VerifyElfHeader() && | 
 |          ReadProgramHeader() && | 
 |          ReserveAddressSpace(extinfo) && | 
 |          LoadSegments() && | 
 |          FindPhdr(); | 
 | } | 
 |  | 
 | bool ElfReader::ReadElfHeader() { | 
 |   ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_)); | 
 |   if (rc < 0) { | 
 |     DL_ERR("can't read file \"%s\": %s", name_, strerror(errno)); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (rc != sizeof(header_)) { | 
 |     DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_, | 
 |            static_cast<size_t>(rc)); | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool ElfReader::VerifyElfHeader() { | 
 |   if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) { | 
 |     DL_ERR("\"%s\" has bad ELF magic", name_); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Try to give a clear diagnostic for ELF class mismatches, since they're | 
 |   // an easy mistake to make during the 32-bit/64-bit transition period. | 
 |   int elf_class = header_.e_ident[EI_CLASS]; | 
 | #if defined(__LP64__) | 
 |   if (elf_class != ELFCLASS64) { | 
 |     if (elf_class == ELFCLASS32) { | 
 |       DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_); | 
 |     } else { | 
 |       DL_ERR("\"%s\" has unknown ELF class: %d", name_, elf_class); | 
 |     } | 
 |     return false; | 
 |   } | 
 | #else | 
 |   if (elf_class != ELFCLASS32) { | 
 |     if (elf_class == ELFCLASS64) { | 
 |       DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_); | 
 |     } else { | 
 |       DL_ERR("\"%s\" has unknown ELF class: %d", name_, elf_class); | 
 |     } | 
 |     return false; | 
 |   } | 
 | #endif | 
 |  | 
 |   if (header_.e_ident[EI_DATA] != ELFDATA2LSB) { | 
 |     DL_ERR("\"%s\" not little-endian: %d", name_, header_.e_ident[EI_DATA]); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (header_.e_type != ET_DYN) { | 
 |     DL_ERR("\"%s\" has unexpected e_type: %d", name_, header_.e_type); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (header_.e_version != EV_CURRENT) { | 
 |     DL_ERR("\"%s\" has unexpected e_version: %d", name_, header_.e_version); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (header_.e_machine != GetTargetElfMachine()) { | 
 |     DL_ERR("\"%s\" has unexpected e_machine: %d", name_, header_.e_machine); | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Loads the program header table from an ELF file into a read-only private | 
 | // anonymous mmap-ed block. | 
 | bool ElfReader::ReadProgramHeader() { | 
 |   phdr_num_ = header_.e_phnum; | 
 |  | 
 |   // Like the kernel, we only accept program header tables that | 
 |   // are smaller than 64KiB. | 
 |   if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) { | 
 |     DL_ERR("\"%s\" has invalid e_phnum: %zd", name_, phdr_num_); | 
 |     return false; | 
 |   } | 
 |  | 
 |   ElfW(Addr) page_min = PAGE_START(header_.e_phoff); | 
 |   ElfW(Addr) page_max = PAGE_END(header_.e_phoff + (phdr_num_ * sizeof(ElfW(Phdr)))); | 
 |   ElfW(Addr) page_offset = PAGE_OFFSET(header_.e_phoff); | 
 |  | 
 |   phdr_size_ = page_max - page_min; | 
 |  | 
 |   void* mmap_result = | 
 |       mmap64(nullptr, phdr_size_, PROT_READ, MAP_PRIVATE, fd_, file_offset_ + page_min); | 
 |   if (mmap_result == MAP_FAILED) { | 
 |     DL_ERR("\"%s\" phdr mmap failed: %s", name_, strerror(errno)); | 
 |     return false; | 
 |   } | 
 |  | 
 |   phdr_mmap_ = mmap_result; | 
 |   phdr_table_ = reinterpret_cast<ElfW(Phdr)*>(reinterpret_cast<char*>(mmap_result) + page_offset); | 
 |   return true; | 
 | } | 
 |  | 
 | /* Returns the size of the extent of all the possibly non-contiguous | 
 |  * loadable segments in an ELF program header table. This corresponds | 
 |  * to the page-aligned size in bytes that needs to be reserved in the | 
 |  * process' address space. If there are no loadable segments, 0 is | 
 |  * returned. | 
 |  * | 
 |  * If out_min_vaddr or out_max_vaddr are not null, they will be | 
 |  * set to the minimum and maximum addresses of pages to be reserved, | 
 |  * or 0 if there is nothing to load. | 
 |  */ | 
 | size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count, | 
 |                                 ElfW(Addr)* out_min_vaddr, | 
 |                                 ElfW(Addr)* out_max_vaddr) { | 
 |   ElfW(Addr) min_vaddr = UINTPTR_MAX; | 
 |   ElfW(Addr) max_vaddr = 0; | 
 |  | 
 |   bool found_pt_load = false; | 
 |   for (size_t i = 0; i < phdr_count; ++i) { | 
 |     const ElfW(Phdr)* phdr = &phdr_table[i]; | 
 |  | 
 |     if (phdr->p_type != PT_LOAD) { | 
 |       continue; | 
 |     } | 
 |     found_pt_load = true; | 
 |  | 
 |     if (phdr->p_vaddr < min_vaddr) { | 
 |       min_vaddr = phdr->p_vaddr; | 
 |     } | 
 |  | 
 |     if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) { | 
 |       max_vaddr = phdr->p_vaddr + phdr->p_memsz; | 
 |     } | 
 |   } | 
 |   if (!found_pt_load) { | 
 |     min_vaddr = 0; | 
 |   } | 
 |  | 
 |   min_vaddr = PAGE_START(min_vaddr); | 
 |   max_vaddr = PAGE_END(max_vaddr); | 
 |  | 
 |   if (out_min_vaddr != nullptr) { | 
 |     *out_min_vaddr = min_vaddr; | 
 |   } | 
 |   if (out_max_vaddr != nullptr) { | 
 |     *out_max_vaddr = max_vaddr; | 
 |   } | 
 |   return max_vaddr - min_vaddr; | 
 | } | 
 |  | 
 | // Reserve a virtual address range big enough to hold all loadable | 
 | // segments of a program header table. This is done by creating a | 
 | // private anonymous mmap() with PROT_NONE. | 
 | bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) { | 
 |   ElfW(Addr) min_vaddr; | 
 |   load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr); | 
 |   if (load_size_ == 0) { | 
 |     DL_ERR("\"%s\" has no loadable segments", name_); | 
 |     return false; | 
 |   } | 
 |  | 
 |   uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr); | 
 |   void* start; | 
 |   size_t reserved_size = 0; | 
 |   bool reserved_hint = true; | 
 |   // Assume position independent executable by default. | 
 |   uint8_t* mmap_hint = nullptr; | 
 |  | 
 |   if (extinfo != nullptr) { | 
 |     if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) { | 
 |       reserved_size = extinfo->reserved_size; | 
 |       reserved_hint = false; | 
 |     } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) { | 
 |       reserved_size = extinfo->reserved_size; | 
 |     } | 
 |  | 
 |     if ((extinfo->flags & ANDROID_DLEXT_FORCE_FIXED_VADDR) != 0) { | 
 |       mmap_hint = addr; | 
 |     } | 
 |   } | 
 |  | 
 |   if (load_size_ > reserved_size) { | 
 |     if (!reserved_hint) { | 
 |       DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"", | 
 |              reserved_size - load_size_, load_size_, name_); | 
 |       return false; | 
 |     } | 
 |     int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS; | 
 |     start = mmap(mmap_hint, load_size_, PROT_NONE, mmap_flags, -1, 0); | 
 |     if (start == MAP_FAILED) { | 
 |       DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_); | 
 |       return false; | 
 |     } | 
 |   } else { | 
 |     start = extinfo->reserved_addr; | 
 |   } | 
 |  | 
 |   load_start_ = start; | 
 |   load_bias_ = reinterpret_cast<uint8_t*>(start) - addr; | 
 |   return true; | 
 | } | 
 |  | 
 | bool ElfReader::LoadSegments() { | 
 |   for (size_t i = 0; i < phdr_num_; ++i) { | 
 |     const ElfW(Phdr)* phdr = &phdr_table_[i]; | 
 |  | 
 |     if (phdr->p_type != PT_LOAD) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Segment addresses in memory. | 
 |     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; | 
 |     ElfW(Addr) seg_end   = seg_start + phdr->p_memsz; | 
 |  | 
 |     ElfW(Addr) seg_page_start = PAGE_START(seg_start); | 
 |     ElfW(Addr) seg_page_end   = PAGE_END(seg_end); | 
 |  | 
 |     ElfW(Addr) seg_file_end   = seg_start + phdr->p_filesz; | 
 |  | 
 |     // File offsets. | 
 |     ElfW(Addr) file_start = phdr->p_offset; | 
 |     ElfW(Addr) file_end   = file_start + phdr->p_filesz; | 
 |  | 
 |     ElfW(Addr) file_page_start = PAGE_START(file_start); | 
 |     ElfW(Addr) file_length = file_end - file_page_start; | 
 |  | 
 |     if (file_size_ <= 0) { | 
 |       DL_ERR("\"%s\" invalid file size: %" PRId64, name_, file_size_); | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (file_end > static_cast<size_t>(file_size_)) { | 
 |       DL_ERR("invalid ELF file \"%s\" load segment[%zd]:" | 
 |           " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")", | 
 |           name_, i, reinterpret_cast<void*>(phdr->p_offset), | 
 |           reinterpret_cast<void*>(phdr->p_filesz), | 
 |           reinterpret_cast<void*>(file_end), file_size_); | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (file_length != 0) { | 
 |       void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start), | 
 |                             file_length, | 
 |                             PFLAGS_TO_PROT(phdr->p_flags), | 
 |                             MAP_FIXED|MAP_PRIVATE, | 
 |                             fd_, | 
 |                             file_offset_ + file_page_start); | 
 |       if (seg_addr == MAP_FAILED) { | 
 |         DL_ERR("couldn't map \"%s\" segment %zd: %s", name_, i, strerror(errno)); | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     // if the segment is writable, and does not end on a page boundary, | 
 |     // zero-fill it until the page limit. | 
 |     if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) { | 
 |       memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end)); | 
 |     } | 
 |  | 
 |     seg_file_end = PAGE_END(seg_file_end); | 
 |  | 
 |     // seg_file_end is now the first page address after the file | 
 |     // content. If seg_end is larger, we need to zero anything | 
 |     // between them. This is done by using a private anonymous | 
 |     // map for all extra pages. | 
 |     if (seg_page_end > seg_file_end) { | 
 |       void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end), | 
 |                            seg_page_end - seg_file_end, | 
 |                            PFLAGS_TO_PROT(phdr->p_flags), | 
 |                            MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE, | 
 |                            -1, | 
 |                            0); | 
 |       if (zeromap == MAP_FAILED) { | 
 |         DL_ERR("couldn't zero fill \"%s\" gap: %s", name_, strerror(errno)); | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /* Used internally. Used to set the protection bits of all loaded segments | 
 |  * with optional extra flags (i.e. really PROT_WRITE). Used by | 
 |  * phdr_table_protect_segments and phdr_table_unprotect_segments. | 
 |  */ | 
 | static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count, | 
 |                                      ElfW(Addr) load_bias, int extra_prot_flags) { | 
 |   const ElfW(Phdr)* phdr = phdr_table; | 
 |   const ElfW(Phdr)* phdr_limit = phdr + phdr_count; | 
 |  | 
 |   for (; phdr < phdr_limit; phdr++) { | 
 |     if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; | 
 |     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; | 
 |  | 
 |     int prot = PFLAGS_TO_PROT(phdr->p_flags); | 
 |     if ((extra_prot_flags & PROT_WRITE) != 0) { | 
 |       // make sure we're never simultaneously writable / executable | 
 |       prot &= ~PROT_EXEC; | 
 |     } | 
 |  | 
 |     int ret = mprotect(reinterpret_cast<void*>(seg_page_start), | 
 |                        seg_page_end - seg_page_start, | 
 |                        prot | extra_prot_flags); | 
 |     if (ret < 0) { | 
 |       return -1; | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Restore the original protection modes for all loadable segments. | 
 |  * You should only call this after phdr_table_unprotect_segments and | 
 |  * applying all relocations. | 
 |  * | 
 |  * Input: | 
 |  *   phdr_table  -> program header table | 
 |  *   phdr_count  -> number of entries in tables | 
 |  *   load_bias   -> load bias | 
 |  * Return: | 
 |  *   0 on error, -1 on failure (error code in errno). | 
 |  */ | 
 | int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table, | 
 |                                 size_t phdr_count, ElfW(Addr) load_bias) { | 
 |   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0); | 
 | } | 
 |  | 
 | /* Change the protection of all loaded segments in memory to writable. | 
 |  * This is useful before performing relocations. Once completed, you | 
 |  * will have to call phdr_table_protect_segments to restore the original | 
 |  * protection flags on all segments. | 
 |  * | 
 |  * Note that some writable segments can also have their content turned | 
 |  * to read-only by calling phdr_table_protect_gnu_relro. This is no | 
 |  * performed here. | 
 |  * | 
 |  * Input: | 
 |  *   phdr_table  -> program header table | 
 |  *   phdr_count  -> number of entries in tables | 
 |  *   load_bias   -> load bias | 
 |  * Return: | 
 |  *   0 on error, -1 on failure (error code in errno). | 
 |  */ | 
 | int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table, | 
 |                                   size_t phdr_count, ElfW(Addr) load_bias) { | 
 |   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE); | 
 | } | 
 |  | 
 | /* Used internally by phdr_table_protect_gnu_relro and | 
 |  * phdr_table_unprotect_gnu_relro. | 
 |  */ | 
 | static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count, | 
 |                                           ElfW(Addr) load_bias, int prot_flags) { | 
 |   const ElfW(Phdr)* phdr = phdr_table; | 
 |   const ElfW(Phdr)* phdr_limit = phdr + phdr_count; | 
 |  | 
 |   for (phdr = phdr_table; phdr < phdr_limit; phdr++) { | 
 |     if (phdr->p_type != PT_GNU_RELRO) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Tricky: what happens when the relro segment does not start | 
 |     // or end at page boundaries? We're going to be over-protective | 
 |     // here and put every page touched by the segment as read-only. | 
 |  | 
 |     // This seems to match Ian Lance Taylor's description of the | 
 |     // feature at http://www.airs.com/blog/archives/189. | 
 |  | 
 |     //    Extract: | 
 |     //       Note that the current dynamic linker code will only work | 
 |     //       correctly if the PT_GNU_RELRO segment starts on a page | 
 |     //       boundary. This is because the dynamic linker rounds the | 
 |     //       p_vaddr field down to the previous page boundary. If | 
 |     //       there is anything on the page which should not be read-only, | 
 |     //       the program is likely to fail at runtime. So in effect the | 
 |     //       linker must only emit a PT_GNU_RELRO segment if it ensures | 
 |     //       that it starts on a page boundary. | 
 |     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; | 
 |     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; | 
 |  | 
 |     int ret = mprotect(reinterpret_cast<void*>(seg_page_start), | 
 |                        seg_page_end - seg_page_start, | 
 |                        prot_flags); | 
 |     if (ret < 0) { | 
 |       return -1; | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Apply GNU relro protection if specified by the program header. This will | 
 |  * turn some of the pages of a writable PT_LOAD segment to read-only, as | 
 |  * specified by one or more PT_GNU_RELRO segments. This must be always | 
 |  * performed after relocations. | 
 |  * | 
 |  * The areas typically covered are .got and .data.rel.ro, these are | 
 |  * read-only from the program's POV, but contain absolute addresses | 
 |  * that need to be relocated before use. | 
 |  * | 
 |  * Input: | 
 |  *   phdr_table  -> program header table | 
 |  *   phdr_count  -> number of entries in tables | 
 |  *   load_bias   -> load bias | 
 |  * Return: | 
 |  *   0 on error, -1 on failure (error code in errno). | 
 |  */ | 
 | int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table, | 
 |                                  size_t phdr_count, ElfW(Addr) load_bias) { | 
 |   return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ); | 
 | } | 
 |  | 
 | /* Serialize the GNU relro segments to the given file descriptor. This can be | 
 |  * performed after relocations to allow another process to later share the | 
 |  * relocated segment, if it was loaded at the same address. | 
 |  * | 
 |  * Input: | 
 |  *   phdr_table  -> program header table | 
 |  *   phdr_count  -> number of entries in tables | 
 |  *   load_bias   -> load bias | 
 |  *   fd          -> writable file descriptor to use | 
 |  * Return: | 
 |  *   0 on error, -1 on failure (error code in errno). | 
 |  */ | 
 | int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table, | 
 |                                    size_t phdr_count, | 
 |                                    ElfW(Addr) load_bias, | 
 |                                    int fd) { | 
 |   const ElfW(Phdr)* phdr = phdr_table; | 
 |   const ElfW(Phdr)* phdr_limit = phdr + phdr_count; | 
 |   ssize_t file_offset = 0; | 
 |  | 
 |   for (phdr = phdr_table; phdr < phdr_limit; phdr++) { | 
 |     if (phdr->p_type != PT_GNU_RELRO) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; | 
 |     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; | 
 |     ssize_t size = seg_page_end - seg_page_start; | 
 |  | 
 |     ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size)); | 
 |     if (written != size) { | 
 |       return -1; | 
 |     } | 
 |     void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ, | 
 |                      MAP_PRIVATE|MAP_FIXED, fd, file_offset); | 
 |     if (map == MAP_FAILED) { | 
 |       return -1; | 
 |     } | 
 |     file_offset += size; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Where possible, replace the GNU relro segments with mappings of the given | 
 |  * file descriptor. This can be performed after relocations to allow a file | 
 |  * previously created by phdr_table_serialize_gnu_relro in another process to | 
 |  * replace the dirty relocated pages, saving memory, if it was loaded at the | 
 |  * same address. We have to compare the data before we map over it, since some | 
 |  * parts of the relro segment may not be identical due to other libraries in | 
 |  * the process being loaded at different addresses. | 
 |  * | 
 |  * Input: | 
 |  *   phdr_table  -> program header table | 
 |  *   phdr_count  -> number of entries in tables | 
 |  *   load_bias   -> load bias | 
 |  *   fd          -> readable file descriptor to use | 
 |  * Return: | 
 |  *   0 on error, -1 on failure (error code in errno). | 
 |  */ | 
 | int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table, | 
 |                              size_t phdr_count, | 
 |                              ElfW(Addr) load_bias, | 
 |                              int fd) { | 
 |   // Map the file at a temporary location so we can compare its contents. | 
 |   struct stat file_stat; | 
 |   if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) { | 
 |     return -1; | 
 |   } | 
 |   off_t file_size = file_stat.st_size; | 
 |   void* temp_mapping = nullptr; | 
 |   if (file_size > 0) { | 
 |     temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0); | 
 |     if (temp_mapping == MAP_FAILED) { | 
 |       return -1; | 
 |     } | 
 |   } | 
 |   size_t file_offset = 0; | 
 |  | 
 |   // Iterate over the relro segments and compare/remap the pages. | 
 |   const ElfW(Phdr)* phdr = phdr_table; | 
 |   const ElfW(Phdr)* phdr_limit = phdr + phdr_count; | 
 |  | 
 |   for (phdr = phdr_table; phdr < phdr_limit; phdr++) { | 
 |     if (phdr->p_type != PT_GNU_RELRO) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; | 
 |     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; | 
 |  | 
 |     char* file_base = static_cast<char*>(temp_mapping) + file_offset; | 
 |     char* mem_base = reinterpret_cast<char*>(seg_page_start); | 
 |     size_t match_offset = 0; | 
 |     size_t size = seg_page_end - seg_page_start; | 
 |  | 
 |     if (file_size - file_offset < size) { | 
 |       // File is too short to compare to this segment. The contents are likely | 
 |       // different as well (it's probably for a different library version) so | 
 |       // just don't bother checking. | 
 |       break; | 
 |     } | 
 |  | 
 |     while (match_offset < size) { | 
 |       // Skip over dissimilar pages. | 
 |       while (match_offset < size && | 
 |              memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) { | 
 |         match_offset += PAGE_SIZE; | 
 |       } | 
 |  | 
 |       // Count similar pages. | 
 |       size_t mismatch_offset = match_offset; | 
 |       while (mismatch_offset < size && | 
 |              memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) { | 
 |         mismatch_offset += PAGE_SIZE; | 
 |       } | 
 |  | 
 |       // Map over similar pages. | 
 |       if (mismatch_offset > match_offset) { | 
 |         void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset, | 
 |                          PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset); | 
 |         if (map == MAP_FAILED) { | 
 |           munmap(temp_mapping, file_size); | 
 |           return -1; | 
 |         } | 
 |       } | 
 |  | 
 |       match_offset = mismatch_offset; | 
 |     } | 
 |  | 
 |     // Add to the base file offset in case there are multiple relro segments. | 
 |     file_offset += size; | 
 |   } | 
 |   munmap(temp_mapping, file_size); | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | #if defined(__arm__) | 
 |  | 
 | #  ifndef PT_ARM_EXIDX | 
 | #    define PT_ARM_EXIDX    0x70000001      /* .ARM.exidx segment */ | 
 | #  endif | 
 |  | 
 | /* Return the address and size of the .ARM.exidx section in memory, | 
 |  * if present. | 
 |  * | 
 |  * Input: | 
 |  *   phdr_table  -> program header table | 
 |  *   phdr_count  -> number of entries in tables | 
 |  *   load_bias   -> load bias | 
 |  * Output: | 
 |  *   arm_exidx       -> address of table in memory (null on failure). | 
 |  *   arm_exidx_count -> number of items in table (0 on failure). | 
 |  * Return: | 
 |  *   0 on error, -1 on failure (_no_ error code in errno) | 
 |  */ | 
 | int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count, | 
 |                              ElfW(Addr) load_bias, | 
 |                              ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) { | 
 |   const ElfW(Phdr)* phdr = phdr_table; | 
 |   const ElfW(Phdr)* phdr_limit = phdr + phdr_count; | 
 |  | 
 |   for (phdr = phdr_table; phdr < phdr_limit; phdr++) { | 
 |     if (phdr->p_type != PT_ARM_EXIDX) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr); | 
 |     *arm_exidx_count = phdr->p_memsz / 8; | 
 |     return 0; | 
 |   } | 
 |   *arm_exidx = nullptr; | 
 |   *arm_exidx_count = 0; | 
 |   return -1; | 
 | } | 
 | #endif | 
 |  | 
 | /* Return the address and size of the ELF file's .dynamic section in memory, | 
 |  * or null if missing. | 
 |  * | 
 |  * Input: | 
 |  *   phdr_table  -> program header table | 
 |  *   phdr_count  -> number of entries in tables | 
 |  *   load_bias   -> load bias | 
 |  * Output: | 
 |  *   dynamic       -> address of table in memory (null on failure). | 
 |  *   dynamic_flags -> protection flags for section (unset on failure) | 
 |  * Return: | 
 |  *   void | 
 |  */ | 
 | void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count, | 
 |                                     ElfW(Addr) load_bias, ElfW(Dyn)** dynamic, | 
 |                                     ElfW(Word)* dynamic_flags) { | 
 |   *dynamic = nullptr; | 
 |   for (size_t i = 0; i<phdr_count; ++i) { | 
 |     const ElfW(Phdr)& phdr = phdr_table[i]; | 
 |     if (phdr.p_type == PT_DYNAMIC) { | 
 |       *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr); | 
 |       if (dynamic_flags) { | 
 |         *dynamic_flags = phdr.p_flags; | 
 |       } | 
 |       return; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /* Return the program interpreter string, or nullptr if missing. | 
 |  * | 
 |  * Input: | 
 |  *   phdr_table  -> program header table | 
 |  *   phdr_count  -> number of entries in tables | 
 |  *   load_bias   -> load bias | 
 |  * Return: | 
 |  *   pointer to the program interpreter string. | 
 |  */ | 
 | const char* phdr_table_get_interpreter_name(const ElfW(Phdr) * phdr_table, size_t phdr_count, | 
 |                                             ElfW(Addr) load_bias) { | 
 |   for (size_t i = 0; i<phdr_count; ++i) { | 
 |     const ElfW(Phdr)& phdr = phdr_table[i]; | 
 |     if (phdr.p_type == PT_INTERP) { | 
 |       return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr); | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // Sets loaded_phdr_ to the address of the program header table as it appears | 
 | // in the loaded segments in memory. This is in contrast with phdr_table_, | 
 | // which is temporary and will be released before the library is relocated. | 
 | bool ElfReader::FindPhdr() { | 
 |   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_; | 
 |  | 
 |   // If there is a PT_PHDR, use it directly. | 
 |   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { | 
 |     if (phdr->p_type == PT_PHDR) { | 
 |       return CheckPhdr(load_bias_ + phdr->p_vaddr); | 
 |     } | 
 |   } | 
 |  | 
 |   // Otherwise, check the first loadable segment. If its file offset | 
 |   // is 0, it starts with the ELF header, and we can trivially find the | 
 |   // loaded program header from it. | 
 |   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { | 
 |     if (phdr->p_type == PT_LOAD) { | 
 |       if (phdr->p_offset == 0) { | 
 |         ElfW(Addr)  elf_addr = load_bias_ + phdr->p_vaddr; | 
 |         const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr); | 
 |         ElfW(Addr)  offset = ehdr->e_phoff; | 
 |         return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset); | 
 |       } | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   DL_ERR("can't find loaded phdr for \"%s\"", name_); | 
 |   return false; | 
 | } | 
 |  | 
 | // Ensures that our program header is actually within a loadable | 
 | // segment. This should help catch badly-formed ELF files that | 
 | // would cause the linker to crash later when trying to access it. | 
 | bool ElfReader::CheckPhdr(ElfW(Addr) loaded) { | 
 |   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_; | 
 |   ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr))); | 
 |   for (ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { | 
 |     if (phdr->p_type != PT_LOAD) { | 
 |       continue; | 
 |     } | 
 |     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; | 
 |     ElfW(Addr) seg_end = phdr->p_filesz + seg_start; | 
 |     if (seg_start <= loaded && loaded_end <= seg_end) { | 
 |       loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   DL_ERR("\"%s\" loaded phdr %p not in loadable segment", name_, reinterpret_cast<void*>(loaded)); | 
 |   return false; | 
 | } |