| /*- |
| * SPDX-License-Identifier: BSD-2-Clause |
| * |
| * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG> |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| /* |
| * The algorithm is very close to that in "Implementing the complex arcsine |
| * and arccosine functions using exception handling" by T. E. Hull, Thomas F. |
| * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on |
| * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335, |
| * http://dl.acm.org/citation.cfm?id=275324. |
| * |
| * See catrig.c for complete comments. |
| * |
| * XXX comments were removed automatically, and even short ones on the right |
| * of statements were removed (all of them), contrary to normal style. Only |
| * a few comments on the right of declarations remain. |
| */ |
| |
| #include <complex.h> |
| #include <float.h> |
| |
| #include "math.h" |
| #include "math_private.h" |
| |
| #undef isinf |
| #define isinf(x) (fabsf(x) == INFINITY) |
| #undef isnan |
| #define isnan(x) ((x) != (x)) |
| #define raise_inexact() do { volatile float junk __unused = 1 + tiny; } while(0) |
| #undef signbit |
| #define signbit(x) (__builtin_signbitf(x)) |
| |
| static const float |
| A_crossover = 10, |
| B_crossover = 0.6417, |
| FOUR_SQRT_MIN = 0x1p-61, |
| QUARTER_SQRT_MAX = 0x1p61, |
| m_e = 2.7182818285e0, /* 0xadf854.0p-22 */ |
| m_ln2 = 6.9314718056e-1, /* 0xb17218.0p-24 */ |
| pio2_hi = 1.5707962513e0, /* 0xc90fda.0p-23 */ |
| RECIP_EPSILON = 1 / FLT_EPSILON, |
| SQRT_3_EPSILON = 5.9801995673e-4, /* 0x9cc471.0p-34 */ |
| SQRT_6_EPSILON = 8.4572793338e-4, /* 0xddb3d7.0p-34 */ |
| SQRT_MIN = 0x1p-63; |
| |
| static const volatile float |
| pio2_lo = 7.5497899549e-8, /* 0xa22169.0p-47 */ |
| tiny = 0x1p-100; |
| |
| static float complex clog_for_large_values(float complex z); |
| |
| static inline float |
| f(float a, float b, float hypot_a_b) |
| { |
| if (b < 0) |
| return ((hypot_a_b - b) / 2); |
| if (b == 0) |
| return (a / 2); |
| return (a * a / (hypot_a_b + b) / 2); |
| } |
| |
| static inline void |
| do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B, |
| float *sqrt_A2my2, float *new_y) |
| { |
| float R, S, A; |
| float Am1, Amy; |
| |
| R = hypotf(x, y + 1); |
| S = hypotf(x, y - 1); |
| |
| A = (R + S) / 2; |
| if (A < 1) |
| A = 1; |
| |
| if (A < A_crossover) { |
| if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) { |
| *rx = sqrtf(x); |
| } else if (x >= FLT_EPSILON * fabsf(y - 1)) { |
| Am1 = f(x, 1 + y, R) + f(x, 1 - y, S); |
| *rx = log1pf(Am1 + sqrtf(Am1 * (A + 1))); |
| } else if (y < 1) { |
| *rx = x / sqrtf((1 - y) * (1 + y)); |
| } else { |
| *rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1))); |
| } |
| } else { |
| *rx = logf(A + sqrtf(A * A - 1)); |
| } |
| |
| *new_y = y; |
| |
| if (y < FOUR_SQRT_MIN) { |
| *B_is_usable = 0; |
| *sqrt_A2my2 = A * (2 / FLT_EPSILON); |
| *new_y = y * (2 / FLT_EPSILON); |
| return; |
| } |
| |
| *B = y / A; |
| *B_is_usable = 1; |
| |
| if (*B > B_crossover) { |
| *B_is_usable = 0; |
| if (y == 1 && x < FLT_EPSILON / 128) { |
| *sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2); |
| } else if (x >= FLT_EPSILON * fabsf(y - 1)) { |
| Amy = f(x, y + 1, R) + f(x, y - 1, S); |
| *sqrt_A2my2 = sqrtf(Amy * (A + y)); |
| } else if (y > 1) { |
| *sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y / |
| sqrtf((y + 1) * (y - 1)); |
| *new_y = y * (4 / FLT_EPSILON / FLT_EPSILON); |
| } else { |
| *sqrt_A2my2 = sqrtf((1 - y) * (1 + y)); |
| } |
| } |
| } |
| |
| float complex |
| casinhf(float complex z) |
| { |
| float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y; |
| int B_is_usable; |
| float complex w; |
| |
| x = crealf(z); |
| y = cimagf(z); |
| ax = fabsf(x); |
| ay = fabsf(y); |
| |
| if (isnan(x) || isnan(y)) { |
| if (isinf(x)) |
| return (CMPLXF(x, y + y)); |
| if (isinf(y)) |
| return (CMPLXF(y, x + x)); |
| if (y == 0) |
| return (CMPLXF(x + x, y)); |
| return (CMPLXF(nan_mix(x, y), nan_mix(x, y))); |
| } |
| |
| if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { |
| if (signbit(x) == 0) |
| w = clog_for_large_values(z) + m_ln2; |
| else |
| w = clog_for_large_values(-z) + m_ln2; |
| return (CMPLXF(copysignf(crealf(w), x), |
| copysignf(cimagf(w), y))); |
| } |
| |
| if (x == 0 && y == 0) |
| return (z); |
| |
| raise_inexact(); |
| |
| if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) |
| return (z); |
| |
| do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y); |
| if (B_is_usable) |
| ry = asinf(B); |
| else |
| ry = atan2f(new_y, sqrt_A2my2); |
| return (CMPLXF(copysignf(rx, x), copysignf(ry, y))); |
| } |
| |
| float complex |
| casinf(float complex z) |
| { |
| float complex w = casinhf(CMPLXF(cimagf(z), crealf(z))); |
| |
| return (CMPLXF(cimagf(w), crealf(w))); |
| } |
| |
| float complex |
| cacosf(float complex z) |
| { |
| float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x; |
| int sx, sy; |
| int B_is_usable; |
| float complex w; |
| |
| x = crealf(z); |
| y = cimagf(z); |
| sx = signbit(x); |
| sy = signbit(y); |
| ax = fabsf(x); |
| ay = fabsf(y); |
| |
| if (isnan(x) || isnan(y)) { |
| if (isinf(x)) |
| return (CMPLXF(y + y, -INFINITY)); |
| if (isinf(y)) |
| return (CMPLXF(x + x, -y)); |
| if (x == 0) |
| return (CMPLXF(pio2_hi + pio2_lo, y + y)); |
| return (CMPLXF(nan_mix(x, y), nan_mix(x, y))); |
| } |
| |
| if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { |
| w = clog_for_large_values(z); |
| rx = fabsf(cimagf(w)); |
| ry = crealf(w) + m_ln2; |
| if (sy == 0) |
| ry = -ry; |
| return (CMPLXF(rx, ry)); |
| } |
| |
| if (x == 1 && y == 0) |
| return (CMPLXF(0, -y)); |
| |
| raise_inexact(); |
| |
| if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) |
| return (CMPLXF(pio2_hi - (x - pio2_lo), -y)); |
| |
| do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x); |
| if (B_is_usable) { |
| if (sx == 0) |
| rx = acosf(B); |
| else |
| rx = acosf(-B); |
| } else { |
| if (sx == 0) |
| rx = atan2f(sqrt_A2mx2, new_x); |
| else |
| rx = atan2f(sqrt_A2mx2, -new_x); |
| } |
| if (sy == 0) |
| ry = -ry; |
| return (CMPLXF(rx, ry)); |
| } |
| |
| float complex |
| cacoshf(float complex z) |
| { |
| float complex w; |
| float rx, ry; |
| |
| w = cacosf(z); |
| rx = crealf(w); |
| ry = cimagf(w); |
| if (isnan(rx) && isnan(ry)) |
| return (CMPLXF(ry, rx)); |
| if (isnan(rx)) |
| return (CMPLXF(fabsf(ry), rx)); |
| if (isnan(ry)) |
| return (CMPLXF(ry, ry)); |
| return (CMPLXF(fabsf(ry), copysignf(rx, cimagf(z)))); |
| } |
| |
| static float complex |
| clog_for_large_values(float complex z) |
| { |
| float x, y; |
| float ax, ay, t; |
| |
| x = crealf(z); |
| y = cimagf(z); |
| ax = fabsf(x); |
| ay = fabsf(y); |
| if (ax < ay) { |
| t = ax; |
| ax = ay; |
| ay = t; |
| } |
| |
| if (ax > FLT_MAX / 2) |
| return (CMPLXF(logf(hypotf(x / m_e, y / m_e)) + 1, |
| atan2f(y, x))); |
| |
| if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN) |
| return (CMPLXF(logf(hypotf(x, y)), atan2f(y, x))); |
| |
| return (CMPLXF(logf(ax * ax + ay * ay) / 2, atan2f(y, x))); |
| } |
| |
| static inline float |
| sum_squares(float x, float y) |
| { |
| |
| if (y < SQRT_MIN) |
| return (x * x); |
| |
| return (x * x + y * y); |
| } |
| |
| static inline float |
| real_part_reciprocal(float x, float y) |
| { |
| float scale; |
| uint32_t hx, hy; |
| int32_t ix, iy; |
| |
| GET_FLOAT_WORD(hx, x); |
| ix = hx & 0x7f800000; |
| GET_FLOAT_WORD(hy, y); |
| iy = hy & 0x7f800000; |
| #define BIAS (FLT_MAX_EXP - 1) |
| #define CUTOFF (FLT_MANT_DIG / 2 + 1) |
| if (ix - iy >= CUTOFF << 23 || isinf(x)) |
| return (1 / x); |
| if (iy - ix >= CUTOFF << 23) |
| return (x / y / y); |
| if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23) |
| return (x / (x * x + y * y)); |
| SET_FLOAT_WORD(scale, 0x7f800000 - ix); |
| x *= scale; |
| y *= scale; |
| return (x / (x * x + y * y) * scale); |
| } |
| |
| float complex |
| catanhf(float complex z) |
| { |
| float x, y, ax, ay, rx, ry; |
| |
| x = crealf(z); |
| y = cimagf(z); |
| ax = fabsf(x); |
| ay = fabsf(y); |
| |
| if (y == 0 && ax <= 1) |
| return (CMPLXF(atanhf(x), y)); |
| |
| if (x == 0) |
| return (CMPLXF(x, atanf(y))); |
| |
| if (isnan(x) || isnan(y)) { |
| if (isinf(x)) |
| return (CMPLXF(copysignf(0, x), y + y)); |
| if (isinf(y)) |
| return (CMPLXF(copysignf(0, x), |
| copysignf(pio2_hi + pio2_lo, y))); |
| return (CMPLXF(nan_mix(x, y), nan_mix(x, y))); |
| } |
| |
| if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) |
| return (CMPLXF(real_part_reciprocal(x, y), |
| copysignf(pio2_hi + pio2_lo, y))); |
| |
| if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) { |
| raise_inexact(); |
| return (z); |
| } |
| |
| if (ax == 1 && ay < FLT_EPSILON) |
| rx = (m_ln2 - logf(ay)) / 2; |
| else |
| rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4; |
| |
| if (ax == 1) |
| ry = atan2f(2, -ay) / 2; |
| else if (ay < FLT_EPSILON) |
| ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2; |
| else |
| ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2; |
| |
| return (CMPLXF(copysignf(rx, x), copysignf(ry, y))); |
| } |
| |
| float complex |
| catanf(float complex z) |
| { |
| float complex w = catanhf(CMPLXF(cimagf(z), crealf(z))); |
| |
| return (CMPLXF(cimagf(w), crealf(w))); |
| } |