| /*- |
| * SPDX-License-Identifier: BSD-3-Clause |
| * |
| * Copyright (c) 1992, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| /* |
| * The original code, FreeBSD's old svn r93211, contained the following |
| * attribution: |
| * |
| * This code by P. McIlroy, Oct 1992; |
| * |
| * The financial support of UUNET Communications Services is greatfully |
| * acknowledged. |
| * |
| * The algorithm remains, but the code has been re-arranged to facilitate |
| * porting to other precisions. |
| */ |
| |
| #include <float.h> |
| |
| #include "math.h" |
| #include "math_private.h" |
| |
| /* Used in b_log.c and below. */ |
| struct Double { |
| double a; |
| double b; |
| }; |
| |
| #include "b_log.c" |
| #include "b_exp.c" |
| |
| /* |
| * The range is broken into several subranges. Each is handled by its |
| * helper functions. |
| * |
| * x >= 6.0: large_gam(x) |
| * 6.0 > x >= xleft: small_gam(x) where xleft = 1 + left + x0. |
| * xleft > x > iota: smaller_gam(x) where iota = 1e-17. |
| * iota > x > -itoa: Handle x near 0. |
| * -iota > x : neg_gam |
| * |
| * Special values: |
| * -Inf: return NaN and raise invalid; |
| * negative integer: return NaN and raise invalid; |
| * other x ~< 177.79: return +-0 and raise underflow; |
| * +-0: return +-Inf and raise divide-by-zero; |
| * finite x ~> 171.63: return +Inf and raise overflow; |
| * +Inf: return +Inf; |
| * NaN: return NaN. |
| * |
| * Accuracy: tgamma(x) is accurate to within |
| * x > 0: error provably < 0.9ulp. |
| * Maximum observed in 1,000,000 trials was .87ulp. |
| * x < 0: |
| * Maximum observed error < 4ulp in 1,000,000 trials. |
| */ |
| |
| /* |
| * Constants for large x approximation (x in [6, Inf]) |
| * (Accurate to 2.8*10^-19 absolute) |
| */ |
| |
| static const double zero = 0.; |
| static const volatile double tiny = 1e-300; |
| /* |
| * x >= 6 |
| * |
| * Use the asymptotic approximation (Stirling's formula) adjusted fof |
| * equal-ripples: |
| * |
| * log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x)) |
| * |
| * Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid |
| * premature round-off. |
| * |
| * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error. |
| */ |
| static const double |
| ln2pi_hi = 0.41894531250000000, |
| ln2pi_lo = -6.7792953272582197e-6, |
| Pa0 = 8.3333333333333329e-02, /* 0x3fb55555, 0x55555555 */ |
| Pa1 = -2.7777777777735404e-03, /* 0xbf66c16c, 0x16c145ec */ |
| Pa2 = 7.9365079044114095e-04, /* 0x3f4a01a0, 0x183de82d */ |
| Pa3 = -5.9523715464225254e-04, /* 0xbf438136, 0x0e681f62 */ |
| Pa4 = 8.4161391899445698e-04, /* 0x3f4b93f8, 0x21042a13 */ |
| Pa5 = -1.9065246069191080e-03, /* 0xbf5f3c8b, 0x357cb64e */ |
| Pa6 = 5.9047708485785158e-03, /* 0x3f782f99, 0xdaf5d65f */ |
| Pa7 = -1.6484018705183290e-02; /* 0xbf90e12f, 0xc4fb4df0 */ |
| |
| static struct Double |
| large_gam(double x) |
| { |
| double p, z, thi, tlo, xhi, xlo; |
| struct Double u; |
| |
| z = 1 / (x * x); |
| p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 + |
| z * (Pa6 + z * Pa7)))))); |
| p = p / x; |
| |
| u = __log__D(x); |
| u.a -= 1; |
| |
| /* Split (x - 0.5) in high and low parts. */ |
| x -= 0.5; |
| xhi = (float)x; |
| xlo = x - xhi; |
| |
| /* Compute t = (x-.5)*(log(x)-1) in extra precision. */ |
| thi = xhi * u.a; |
| tlo = xlo * u.a + x * u.b; |
| |
| /* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */ |
| tlo += ln2pi_lo; |
| tlo += p; |
| u.a = ln2pi_hi + tlo; |
| u.a += thi; |
| u.b = thi - u.a; |
| u.b += ln2pi_hi; |
| u.b += tlo; |
| return (u); |
| } |
| /* |
| * Rational approximation, A0 + x * x * P(x) / Q(x), on the interval |
| * [1.066.., 2.066..] accurate to 4.25e-19. |
| * |
| * Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated. |
| */ |
| static const double |
| #if 0 |
| a0_hi = 8.8560319441088875e-1, |
| a0_lo = -4.9964270364690197e-17, |
| #else |
| a0_hi = 8.8560319441088875e-01, /* 0x3fec56dc, 0x82a74aef */ |
| a0_lo = -4.9642368725563397e-17, /* 0xbc8c9deb, 0xaa64afc3 */ |
| #endif |
| P0 = 6.2138957182182086e-1, |
| P1 = 2.6575719865153347e-1, |
| P2 = 5.5385944642991746e-3, |
| P3 = 1.3845669830409657e-3, |
| P4 = 2.4065995003271137e-3, |
| Q0 = 1.4501953125000000e+0, |
| Q1 = 1.0625852194801617e+0, |
| Q2 = -2.0747456194385994e-1, |
| Q3 = -1.4673413178200542e-1, |
| Q4 = 3.0787817615617552e-2, |
| Q5 = 5.1244934798066622e-3, |
| Q6 = -1.7601274143166700e-3, |
| Q7 = 9.3502102357378894e-5, |
| Q8 = 6.1327550747244396e-6; |
| |
| static struct Double |
| ratfun_gam(double z, double c) |
| { |
| double p, q, thi, tlo; |
| struct Double r; |
| |
| q = Q0 + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 + |
| z * (Q6 + z * (Q7 + z * Q8))))))); |
| p = P0 + z * (P1 + z * (P2 + z * (P3 + z * P4))); |
| p = p / q; |
| |
| /* Split z into high and low parts. */ |
| thi = (float)z; |
| tlo = (z - thi) + c; |
| tlo *= (thi + z); |
| |
| /* Split (z+c)^2 into high and low parts. */ |
| thi *= thi; |
| q = thi; |
| thi = (float)thi; |
| tlo += (q - thi); |
| |
| /* Split p/q into high and low parts. */ |
| r.a = (float)p; |
| r.b = p - r.a; |
| |
| tlo = tlo * p + thi * r.b + a0_lo; |
| thi *= r.a; /* t = (z+c)^2*(P/Q) */ |
| r.a = (float)(thi + a0_hi); |
| r.b = ((a0_hi - r.a) + thi) + tlo; |
| return (r); /* r = a0 + t */ |
| } |
| /* |
| * x < 6 |
| * |
| * Use argument reduction G(x+1) = xG(x) to reach the range [1.066124, |
| * 2.066124]. Use a rational approximation centered at the minimum |
| * (x0+1) to ensure monotonicity. |
| * |
| * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.) |
| * It also has correct monotonicity. |
| */ |
| static const double |
| left = -0.3955078125, /* left boundary for rat. approx */ |
| x0 = 4.6163214496836236e-1; /* xmin - 1 */ |
| |
| static double |
| small_gam(double x) |
| { |
| double t, y, ym1; |
| struct Double yy, r; |
| |
| y = x - 1; |
| if (y <= 1 + (left + x0)) { |
| yy = ratfun_gam(y - x0, 0); |
| return (yy.a + yy.b); |
| } |
| |
| r.a = (float)y; |
| yy.a = r.a - 1; |
| y = y - 1 ; |
| r.b = yy.b = y - yy.a; |
| |
| /* Argument reduction: G(x+1) = x*G(x) */ |
| for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) { |
| t = r.a * yy.a; |
| r.b = r.a * yy.b + y * r.b; |
| r.a = (float)t; |
| r.b += (t - r.a); |
| } |
| |
| /* Return r*tgamma(y). */ |
| yy = ratfun_gam(y - x0, 0); |
| y = r.b * (yy.a + yy.b) + r.a * yy.b; |
| y += yy.a * r.a; |
| return (y); |
| } |
| /* |
| * Good on (0, 1+x0+left]. Accurate to 1 ulp. |
| */ |
| static double |
| smaller_gam(double x) |
| { |
| double d, rhi, rlo, t, xhi, xlo; |
| struct Double r; |
| |
| if (x < x0 + left) { |
| t = (float)x; |
| d = (t + x) * (x - t); |
| t *= t; |
| xhi = (float)(t + x); |
| xlo = x - xhi; |
| xlo += t; |
| xlo += d; |
| t = 1 - x0; |
| t += x; |
| d = 1 - x0; |
| d -= t; |
| d += x; |
| x = xhi + xlo; |
| } else { |
| xhi = (float)x; |
| xlo = x - xhi; |
| t = x - x0; |
| d = - x0 - t; |
| d += x; |
| } |
| |
| r = ratfun_gam(t, d); |
| d = (float)(r.a / x); |
| r.a -= d * xhi; |
| r.a -= d * xlo; |
| r.a += r.b; |
| |
| return (d + r.a / x); |
| } |
| /* |
| * x < 0 |
| * |
| * Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)). |
| * At negative integers, return NaN and raise invalid. |
| */ |
| static double |
| neg_gam(double x) |
| { |
| int sgn = 1; |
| struct Double lg, lsine; |
| double y, z; |
| |
| y = ceil(x); |
| if (y == x) /* Negative integer. */ |
| return ((x - x) / zero); |
| |
| z = y - x; |
| if (z > 0.5) |
| z = 1 - z; |
| |
| y = y / 2; |
| if (y == ceil(y)) |
| sgn = -1; |
| |
| if (z < 0.25) |
| z = sinpi(z); |
| else |
| z = cospi(0.5 - z); |
| |
| /* Special case: G(1-x) = Inf; G(x) may be nonzero. */ |
| if (x < -170) { |
| |
| if (x < -190) |
| return (sgn * tiny * tiny); |
| |
| y = 1 - x; /* exact: 128 < |x| < 255 */ |
| lg = large_gam(y); |
| lsine = __log__D(M_PI / z); /* = TRUNC(log(u)) + small */ |
| lg.a -= lsine.a; /* exact (opposite signs) */ |
| lg.b -= lsine.b; |
| y = -(lg.a + lg.b); |
| z = (y + lg.a) + lg.b; |
| y = __exp__D(y, z); |
| if (sgn < 0) y = -y; |
| return (y); |
| } |
| |
| y = 1 - x; |
| if (1 - y == x) |
| y = tgamma(y); |
| else /* 1-x is inexact */ |
| y = - x * tgamma(-x); |
| |
| if (sgn < 0) y = -y; |
| return (M_PI / (y * z)); |
| } |
| /* |
| * xmax comes from lgamma(xmax) - emax * log(2) = 0. |
| * static const float xmax = 35.040095f |
| * static const double xmax = 171.624376956302725; |
| * ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L), |
| * ld128: 1.75554834290446291700388921607020320e+03L, |
| * |
| * iota is a sloppy threshold to isolate x = 0. |
| */ |
| static const double xmax = 171.624376956302725; |
| static const double iota = 0x1p-56; |
| |
| double |
| tgamma(double x) |
| { |
| struct Double u; |
| |
| if (x >= 6) { |
| if (x > xmax) |
| return (x / zero); |
| u = large_gam(x); |
| return (__exp__D(u.a, u.b)); |
| } |
| |
| if (x >= 1 + left + x0) |
| return (small_gam(x)); |
| |
| if (x > iota) |
| return (smaller_gam(x)); |
| |
| if (x > -iota) { |
| if (x != 0.) |
| u.a = 1 - tiny; /* raise inexact */ |
| return (1 / x); |
| } |
| |
| if (!isfinite(x)) |
| return (x - x); /* x is NaN or -Inf */ |
| |
| return (neg_gam(x)); |
| } |
| |
| #if (LDBL_MANT_DIG == 53) |
| __weak_reference(tgamma, tgammal); |
| #endif |