|  | /* | 
|  | * Copyright (C) 2008 The Android Open Source Project | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | *  * Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | *  * Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
|  | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
|  | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
|  | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
|  | * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
|  | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
|  | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
|  | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | */ | 
|  | #include <new> | 
|  | #include <stdatomic.h> | 
|  | #include <stdio.h> | 
|  | #include <stdint.h> | 
|  | #include <stdlib.h> | 
|  | #include <unistd.h> | 
|  | #include <stddef.h> | 
|  | #include <errno.h> | 
|  | #include <poll.h> | 
|  | #include <fcntl.h> | 
|  | #include <stdbool.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <sys/mman.h> | 
|  |  | 
|  | #include <sys/socket.h> | 
|  | #include <sys/un.h> | 
|  | #include <sys/select.h> | 
|  | #include <sys/stat.h> | 
|  | #include <sys/types.h> | 
|  | #include <netinet/in.h> | 
|  |  | 
|  | #define _REALLY_INCLUDE_SYS__SYSTEM_PROPERTIES_H_ | 
|  | #include <sys/_system_properties.h> | 
|  | #include <sys/system_properties.h> | 
|  |  | 
|  | #include "private/bionic_atomic_inline.h" | 
|  | #include "private/bionic_futex.h" | 
|  | #include "private/bionic_macros.h" | 
|  |  | 
|  | static const char property_service_socket[] = "/dev/socket/" PROP_SERVICE_NAME; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Properties are stored in a hybrid trie/binary tree structure. | 
|  | * Each property's name is delimited at '.' characters, and the tokens are put | 
|  | * into a trie structure.  Siblings at each level of the trie are stored in a | 
|  | * binary tree.  For instance, "ro.secure"="1" could be stored as follows: | 
|  | * | 
|  | * +-----+   children    +----+   children    +--------+ | 
|  | * |     |-------------->| ro |-------------->| secure | | 
|  | * +-----+               +----+               +--------+ | 
|  | *                       /    \                /   | | 
|  | *                 left /      \ right   left /    |  prop   +===========+ | 
|  | *                     v        v            v     +-------->| ro.secure | | 
|  | *                  +-----+   +-----+     +-----+            +-----------+ | 
|  | *                  | net |   | sys |     | com |            |     1     | | 
|  | *                  +-----+   +-----+     +-----+            +===========+ | 
|  | */ | 
|  |  | 
|  | // Represents a node in the trie. | 
|  | struct prop_bt { | 
|  | uint8_t namelen; | 
|  | uint8_t reserved[3]; | 
|  |  | 
|  | // TODO: The following fields should be declared as atomic_uint32_t. | 
|  | // They should be assigned to with release semantics, instead of using | 
|  | // explicit fences.  Unfortunately, the read accesses are generally | 
|  | // followed by more dependent read accesses, and the dependence | 
|  | // is assumed to enforce memory ordering.  Which it does on supported | 
|  | // hardware.  This technically should use memory_order_consume, if | 
|  | // that worked as intended. | 
|  | // We should also avoid rereading these fields redundantly, since not | 
|  | // all processor implementations ensure that multiple loads from the | 
|  | // same field are carried out in the right order. | 
|  | volatile uint32_t prop; | 
|  |  | 
|  | volatile uint32_t left; | 
|  | volatile uint32_t right; | 
|  |  | 
|  | volatile uint32_t children; | 
|  |  | 
|  | char name[0]; | 
|  |  | 
|  | prop_bt(const char *name, const uint8_t name_length) { | 
|  | this->namelen = name_length; | 
|  | memcpy(this->name, name, name_length); | 
|  | this->name[name_length] = '\0'; | 
|  | ANDROID_MEMBAR_FULL();  // TODO: Instead use a release store | 
|  | // for subsequent pointer assignment. | 
|  | } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(prop_bt); | 
|  | }; | 
|  |  | 
|  | struct prop_area { | 
|  | uint32_t bytes_used; | 
|  | atomic_uint_least32_t serial; | 
|  | uint32_t magic; | 
|  | uint32_t version; | 
|  | uint32_t reserved[28]; | 
|  | char data[0]; | 
|  |  | 
|  | prop_area(const uint32_t magic, const uint32_t version) : | 
|  | magic(magic), version(version) { | 
|  | atomic_init(&serial, 0); | 
|  | memset(reserved, 0, sizeof(reserved)); | 
|  | // Allocate enough space for the root node. | 
|  | bytes_used = sizeof(prop_bt); | 
|  | } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(prop_area); | 
|  | }; | 
|  |  | 
|  | struct prop_info { | 
|  | atomic_uint_least32_t serial; | 
|  | char value[PROP_VALUE_MAX]; | 
|  | char name[0]; | 
|  |  | 
|  | prop_info(const char *name, const uint8_t namelen, const char *value, | 
|  | const uint8_t valuelen) { | 
|  | memcpy(this->name, name, namelen); | 
|  | this->name[namelen] = '\0'; | 
|  | atomic_init(&this->serial, valuelen << 24); | 
|  | memcpy(this->value, value, valuelen); | 
|  | this->value[valuelen] = '\0'; | 
|  | ANDROID_MEMBAR_FULL();  // TODO: Instead use a release store | 
|  | // for subsequent point assignment. | 
|  | } | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(prop_info); | 
|  | }; | 
|  |  | 
|  | struct find_nth_cookie { | 
|  | uint32_t count; | 
|  | const uint32_t n; | 
|  | const prop_info *pi; | 
|  |  | 
|  | find_nth_cookie(uint32_t n) : count(0), n(n), pi(NULL) { | 
|  | } | 
|  | }; | 
|  |  | 
|  | static char property_filename[PATH_MAX] = PROP_FILENAME; | 
|  | static bool compat_mode = false; | 
|  | static size_t pa_data_size; | 
|  | static size_t pa_size; | 
|  |  | 
|  | // NOTE: This isn't static because system_properties_compat.c | 
|  | // requires it. | 
|  | prop_area *__system_property_area__ = NULL; | 
|  |  | 
|  | static int get_fd_from_env(void) | 
|  | { | 
|  | // This environment variable consistes of two decimal integer | 
|  | // values separated by a ",". The first value is a file descriptor | 
|  | // and the second is the size of the system properties area. The | 
|  | // size is currently unused. | 
|  | char *env = getenv("ANDROID_PROPERTY_WORKSPACE"); | 
|  |  | 
|  | if (!env) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return atoi(env); | 
|  | } | 
|  |  | 
|  | static int map_prop_area_rw() | 
|  | { | 
|  | /* dev is a tmpfs that we can use to carve a shared workspace | 
|  | * out of, so let's do that... | 
|  | */ | 
|  | const int fd = open(property_filename, | 
|  | O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC | O_EXCL, 0444); | 
|  |  | 
|  | if (fd < 0) { | 
|  | if (errno == EACCES) { | 
|  | /* for consistency with the case where the process has already | 
|  | * mapped the page in and segfaults when trying to write to it | 
|  | */ | 
|  | abort(); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (ftruncate(fd, PA_SIZE) < 0) { | 
|  | close(fd); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | pa_size = PA_SIZE; | 
|  | pa_data_size = pa_size - sizeof(prop_area); | 
|  | compat_mode = false; | 
|  |  | 
|  | void *const memory_area = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); | 
|  | if (memory_area == MAP_FAILED) { | 
|  | close(fd); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | prop_area *pa = new(memory_area) prop_area(PROP_AREA_MAGIC, PROP_AREA_VERSION); | 
|  |  | 
|  | /* plug into the lib property services */ | 
|  | __system_property_area__ = pa; | 
|  |  | 
|  | close(fd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int map_fd_ro(const int fd) { | 
|  | struct stat fd_stat; | 
|  | if (fstat(fd, &fd_stat) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if ((fd_stat.st_uid != 0) | 
|  | || (fd_stat.st_gid != 0) | 
|  | || ((fd_stat.st_mode & (S_IWGRP | S_IWOTH)) != 0) | 
|  | || (fd_stat.st_size < static_cast<off_t>(sizeof(prop_area))) ) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | pa_size = fd_stat.st_size; | 
|  | pa_data_size = pa_size - sizeof(prop_area); | 
|  |  | 
|  | void* const map_result = mmap(NULL, pa_size, PROT_READ, MAP_SHARED, fd, 0); | 
|  | if (map_result == MAP_FAILED) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | prop_area* pa = reinterpret_cast<prop_area*>(map_result); | 
|  | if ((pa->magic != PROP_AREA_MAGIC) || (pa->version != PROP_AREA_VERSION && | 
|  | pa->version != PROP_AREA_VERSION_COMPAT)) { | 
|  | munmap(pa, pa_size); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (pa->version == PROP_AREA_VERSION_COMPAT) { | 
|  | compat_mode = true; | 
|  | } | 
|  |  | 
|  | __system_property_area__ = pa; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int map_prop_area() | 
|  | { | 
|  | int fd = open(property_filename, O_CLOEXEC | O_NOFOLLOW | O_RDONLY); | 
|  | bool close_fd = true; | 
|  | if (fd == -1 && errno == ENOENT) { | 
|  | /* | 
|  | * For backwards compatibility, if the file doesn't | 
|  | * exist, we use the environment to get the file descriptor. | 
|  | * For security reasons, we only use this backup if the kernel | 
|  | * returns ENOENT. We don't want to use the backup if the kernel | 
|  | * returns other errors such as ENOMEM or ENFILE, since it | 
|  | * might be possible for an external program to trigger this | 
|  | * condition. | 
|  | */ | 
|  | fd = get_fd_from_env(); | 
|  | close_fd = false; | 
|  | } | 
|  |  | 
|  | if (fd < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const int map_result = map_fd_ro(fd); | 
|  | if (close_fd) { | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | return map_result; | 
|  | } | 
|  |  | 
|  | static void *allocate_obj(const size_t size, uint32_t *const off) | 
|  | { | 
|  | prop_area *pa = __system_property_area__; | 
|  | const size_t aligned = BIONIC_ALIGN(size, sizeof(uint32_t)); | 
|  | if (pa->bytes_used + aligned > pa_data_size) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | *off = pa->bytes_used; | 
|  | pa->bytes_used += aligned; | 
|  | return pa->data + *off; | 
|  | } | 
|  |  | 
|  | static prop_bt *new_prop_bt(const char *name, uint8_t namelen, uint32_t *const off) | 
|  | { | 
|  | uint32_t new_offset; | 
|  | void *const offset = allocate_obj(sizeof(prop_bt) + namelen + 1, &new_offset); | 
|  | if (offset) { | 
|  | prop_bt* bt = new(offset) prop_bt(name, namelen); | 
|  | *off = new_offset; | 
|  | return bt; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static prop_info *new_prop_info(const char *name, uint8_t namelen, | 
|  | const char *value, uint8_t valuelen, uint32_t *const off) | 
|  | { | 
|  | uint32_t off_tmp; | 
|  | void* const offset = allocate_obj(sizeof(prop_info) + namelen + 1, &off_tmp); | 
|  | if (offset) { | 
|  | prop_info* info = new(offset) prop_info(name, namelen, value, valuelen); | 
|  | *off = off_tmp; | 
|  | return info; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *to_prop_obj(const uint32_t off) | 
|  | { | 
|  | if (off > pa_data_size) | 
|  | return NULL; | 
|  | if (!__system_property_area__) | 
|  | return NULL; | 
|  |  | 
|  | return (__system_property_area__->data + off); | 
|  | } | 
|  |  | 
|  | static prop_bt *root_node() | 
|  | { | 
|  | return reinterpret_cast<prop_bt*>(to_prop_obj(0)); | 
|  | } | 
|  |  | 
|  | static int cmp_prop_name(const char *one, uint8_t one_len, const char *two, | 
|  | uint8_t two_len) | 
|  | { | 
|  | if (one_len < two_len) | 
|  | return -1; | 
|  | else if (one_len > two_len) | 
|  | return 1; | 
|  | else | 
|  | return strncmp(one, two, one_len); | 
|  | } | 
|  |  | 
|  | static prop_bt *find_prop_bt(prop_bt *const bt, const char *name, | 
|  | uint8_t namelen, bool alloc_if_needed) | 
|  | { | 
|  |  | 
|  | prop_bt* current = bt; | 
|  | while (true) { | 
|  | if (!current) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | const int ret = cmp_prop_name(name, namelen, current->name, current->namelen); | 
|  | if (ret == 0) { | 
|  | return current; | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | if (current->left) { | 
|  | current = reinterpret_cast<prop_bt*>(to_prop_obj(current->left)); | 
|  | } else { | 
|  | if (!alloc_if_needed) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Note that there isn't a race condition here. "clients" never | 
|  | // reach this code-path since It's only the (single threaded) server | 
|  | // that allocates new nodes. Though "bt->left" is volatile, it can't | 
|  | // have changed since the last value was last read. | 
|  | uint32_t new_offset = 0; | 
|  | prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset); | 
|  | if (new_bt) { | 
|  | current->left = new_offset; | 
|  | } | 
|  | return new_bt; | 
|  | } | 
|  | } else { | 
|  | if (current->right) { | 
|  | current = reinterpret_cast<prop_bt*>(to_prop_obj(current->right)); | 
|  | } else { | 
|  | if (!alloc_if_needed) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | uint32_t new_offset; | 
|  | prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset); | 
|  | if (new_bt) { | 
|  | current->right = new_offset; | 
|  | } | 
|  | return new_bt; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static const prop_info *find_property(prop_bt *const trie, const char *name, | 
|  | uint8_t namelen, const char *value, uint8_t valuelen, | 
|  | bool alloc_if_needed) | 
|  | { | 
|  | if (!trie) return NULL; | 
|  |  | 
|  | const char *remaining_name = name; | 
|  | prop_bt* current = trie; | 
|  | while (true) { | 
|  | const char *sep = strchr(remaining_name, '.'); | 
|  | const bool want_subtree = (sep != NULL); | 
|  | const uint8_t substr_size = (want_subtree) ? | 
|  | sep - remaining_name : strlen(remaining_name); | 
|  |  | 
|  | if (!substr_size) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | prop_bt* root = NULL; | 
|  | if (current->children) { | 
|  | root = reinterpret_cast<prop_bt*>(to_prop_obj(current->children)); | 
|  | } else if (alloc_if_needed) { | 
|  | uint32_t new_bt_offset; | 
|  | root = new_prop_bt(remaining_name, substr_size, &new_bt_offset); | 
|  | if (root) { | 
|  | current->children = new_bt_offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!root) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | current = find_prop_bt(root, remaining_name, substr_size, alloc_if_needed); | 
|  | if (!current) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (!want_subtree) | 
|  | break; | 
|  |  | 
|  | remaining_name = sep + 1; | 
|  | } | 
|  |  | 
|  | if (current->prop) { | 
|  | return reinterpret_cast<prop_info*>(to_prop_obj(current->prop)); | 
|  | } else if (alloc_if_needed) { | 
|  | uint32_t new_info_offset; | 
|  | prop_info* new_info = new_prop_info(name, namelen, value, valuelen, &new_info_offset); | 
|  | if (new_info) { | 
|  | current->prop = new_info_offset; | 
|  | } | 
|  |  | 
|  | return new_info; | 
|  | } else { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int send_prop_msg(const prop_msg *msg) | 
|  | { | 
|  | const int fd = socket(AF_LOCAL, SOCK_STREAM, 0); | 
|  | if (fd < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const size_t namelen = strlen(property_service_socket); | 
|  |  | 
|  | sockaddr_un addr; | 
|  | memset(&addr, 0, sizeof(addr)); | 
|  | strlcpy(addr.sun_path, property_service_socket, sizeof(addr.sun_path)); | 
|  | addr.sun_family = AF_LOCAL; | 
|  | socklen_t alen = namelen + offsetof(sockaddr_un, sun_path) + 1; | 
|  | if (TEMP_FAILURE_RETRY(connect(fd, reinterpret_cast<sockaddr*>(&addr), alen)) < 0) { | 
|  | close(fd); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const int num_bytes = TEMP_FAILURE_RETRY(send(fd, msg, sizeof(prop_msg), 0)); | 
|  |  | 
|  | int result = -1; | 
|  | if (num_bytes == sizeof(prop_msg)) { | 
|  | // We successfully wrote to the property server but now we | 
|  | // wait for the property server to finish its work.  It | 
|  | // acknowledges its completion by closing the socket so we | 
|  | // poll here (on nothing), waiting for the socket to close. | 
|  | // If you 'adb shell setprop foo bar' you'll see the POLLHUP | 
|  | // once the socket closes.  Out of paranoia we cap our poll | 
|  | // at 250 ms. | 
|  | pollfd pollfds[1]; | 
|  | pollfds[0].fd = fd; | 
|  | pollfds[0].events = 0; | 
|  | const int poll_result = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */)); | 
|  | if (poll_result == 1 && (pollfds[0].revents & POLLHUP) != 0) { | 
|  | result = 0; | 
|  | } else { | 
|  | // Ignore the timeout and treat it like a success anyway. | 
|  | // The init process is single-threaded and its property | 
|  | // service is sometimes slow to respond (perhaps it's off | 
|  | // starting a child process or something) and thus this | 
|  | // times out and the caller thinks it failed, even though | 
|  | // it's still getting around to it.  So we fake it here, | 
|  | // mostly for ctl.* properties, but we do try and wait 250 | 
|  | // ms so callers who do read-after-write can reliably see | 
|  | // what they've written.  Most of the time. | 
|  | // TODO: fix the system properties design. | 
|  | result = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | close(fd); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void find_nth_fn(const prop_info *pi, void *ptr) | 
|  | { | 
|  | find_nth_cookie *cookie = reinterpret_cast<find_nth_cookie*>(ptr); | 
|  |  | 
|  | if (cookie->n == cookie->count) | 
|  | cookie->pi = pi; | 
|  |  | 
|  | cookie->count++; | 
|  | } | 
|  |  | 
|  | static int foreach_property(const uint32_t off, | 
|  | void (*propfn)(const prop_info *pi, void *cookie), void *cookie) | 
|  | { | 
|  | prop_bt *trie = reinterpret_cast<prop_bt*>(to_prop_obj(off)); | 
|  | if (!trie) | 
|  | return -1; | 
|  |  | 
|  | if (trie->left) { | 
|  | const int err = foreach_property(trie->left, propfn, cookie); | 
|  | if (err < 0) | 
|  | return -1; | 
|  | } | 
|  | if (trie->prop) { | 
|  | prop_info *info = reinterpret_cast<prop_info*>(to_prop_obj(trie->prop)); | 
|  | if (!info) | 
|  | return -1; | 
|  | propfn(info, cookie); | 
|  | } | 
|  | if (trie->children) { | 
|  | const int err = foreach_property(trie->children, propfn, cookie); | 
|  | if (err < 0) | 
|  | return -1; | 
|  | } | 
|  | if (trie->right) { | 
|  | const int err = foreach_property(trie->right, propfn, cookie); | 
|  | if (err < 0) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __system_properties_init() | 
|  | { | 
|  | return map_prop_area(); | 
|  | } | 
|  |  | 
|  | int __system_property_set_filename(const char *filename) | 
|  | { | 
|  | size_t len = strlen(filename); | 
|  | if (len >= sizeof(property_filename)) | 
|  | return -1; | 
|  |  | 
|  | strcpy(property_filename, filename); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __system_property_area_init() | 
|  | { | 
|  | return map_prop_area_rw(); | 
|  | } | 
|  |  | 
|  | const prop_info *__system_property_find(const char *name) | 
|  | { | 
|  | if (__predict_false(compat_mode)) { | 
|  | return __system_property_find_compat(name); | 
|  | } | 
|  | return find_property(root_node(), name, strlen(name), NULL, 0, false); | 
|  | } | 
|  |  | 
|  | // The C11 standard doesn't allow atomic loads from const fields, | 
|  | // though C++11 does.  Fudge it until standards get straightened out. | 
|  | static inline uint_least32_t load_const_atomic(const atomic_uint_least32_t* s, | 
|  | memory_order mo) { | 
|  | atomic_uint_least32_t* non_const_s = const_cast<atomic_uint_least32_t*>(s); | 
|  | return atomic_load_explicit(non_const_s, mo); | 
|  | } | 
|  |  | 
|  | int __system_property_read(const prop_info *pi, char *name, char *value) | 
|  | { | 
|  | if (__predict_false(compat_mode)) { | 
|  | return __system_property_read_compat(pi, name, value); | 
|  | } | 
|  |  | 
|  | while (true) { | 
|  | uint32_t serial = __system_property_serial(pi); // acquire semantics | 
|  | size_t len = SERIAL_VALUE_LEN(serial); | 
|  | memcpy(value, pi->value, len + 1); | 
|  | // TODO: Fix the synchronization scheme here. | 
|  | // There is no fully supported way to implement this kind | 
|  | // of synchronization in C++11, since the memcpy races with | 
|  | // updates to pi, and the data being accessed is not atomic. | 
|  | // The following fence is unintuitive, but would be the | 
|  | // correct one if memcpy used memory_order_relaxed atomic accesses. | 
|  | // In practice it seems unlikely that the generated code would | 
|  | // would be any different, so this should be OK. | 
|  | atomic_thread_fence(memory_order_acquire); | 
|  | if (serial == | 
|  | load_const_atomic(&(pi->serial), memory_order_relaxed)) { | 
|  | if (name != 0) { | 
|  | strcpy(name, pi->name); | 
|  | } | 
|  | return len; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int __system_property_get(const char *name, char *value) | 
|  | { | 
|  | const prop_info *pi = __system_property_find(name); | 
|  |  | 
|  | if (pi != 0) { | 
|  | return __system_property_read(pi, 0, value); | 
|  | } else { | 
|  | value[0] = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int __system_property_set(const char *key, const char *value) | 
|  | { | 
|  | if (key == 0) return -1; | 
|  | if (value == 0) value = ""; | 
|  | if (strlen(key) >= PROP_NAME_MAX) return -1; | 
|  | if (strlen(value) >= PROP_VALUE_MAX) return -1; | 
|  |  | 
|  | prop_msg msg; | 
|  | memset(&msg, 0, sizeof msg); | 
|  | msg.cmd = PROP_MSG_SETPROP; | 
|  | strlcpy(msg.name, key, sizeof msg.name); | 
|  | strlcpy(msg.value, value, sizeof msg.value); | 
|  |  | 
|  | const int err = send_prop_msg(&msg); | 
|  | if (err < 0) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __system_property_update(prop_info *pi, const char *value, unsigned int len) | 
|  | { | 
|  | prop_area *pa = __system_property_area__; | 
|  |  | 
|  | if (len >= PROP_VALUE_MAX) | 
|  | return -1; | 
|  |  | 
|  | uint32_t serial = atomic_load_explicit(&pi->serial, memory_order_relaxed); | 
|  | serial |= 1; | 
|  | atomic_store_explicit(&pi->serial, serial, memory_order_relaxed); | 
|  | // The memcpy call here also races.  Again pretend it | 
|  | // used memory_order_relaxed atomics, and use the analogous | 
|  | // counterintuitive fence. | 
|  | atomic_thread_fence(memory_order_release); | 
|  | memcpy(pi->value, value, len + 1); | 
|  | atomic_store_explicit( | 
|  | &pi->serial, | 
|  | (len << 24) | ((serial + 1) & 0xffffff), | 
|  | memory_order_release); | 
|  | __futex_wake(&pi->serial, INT32_MAX); | 
|  |  | 
|  | atomic_store_explicit( | 
|  | &pa->serial, | 
|  | atomic_load_explicit(&pa->serial, memory_order_relaxed) + 1, | 
|  | memory_order_release); | 
|  | __futex_wake(&pa->serial, INT32_MAX); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __system_property_add(const char *name, unsigned int namelen, | 
|  | const char *value, unsigned int valuelen) | 
|  | { | 
|  | prop_area *pa = __system_property_area__; | 
|  | const prop_info *pi; | 
|  |  | 
|  | if (namelen >= PROP_NAME_MAX) | 
|  | return -1; | 
|  | if (valuelen >= PROP_VALUE_MAX) | 
|  | return -1; | 
|  | if (namelen < 1) | 
|  | return -1; | 
|  |  | 
|  | pi = find_property(root_node(), name, namelen, value, valuelen, true); | 
|  | if (!pi) | 
|  | return -1; | 
|  |  | 
|  | // There is only a single mutator, but we want to make sure that | 
|  | // updates are visible to a reader waiting for the update. | 
|  | atomic_store_explicit( | 
|  | &pa->serial, | 
|  | atomic_load_explicit(&pa->serial, memory_order_relaxed) + 1, | 
|  | memory_order_release); | 
|  | __futex_wake(&pa->serial, INT32_MAX); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Wait for non-locked serial, and retrieve it with acquire semantics. | 
|  | unsigned int __system_property_serial(const prop_info *pi) | 
|  | { | 
|  | uint32_t serial = load_const_atomic(&pi->serial, memory_order_acquire); | 
|  | while (SERIAL_DIRTY(serial)) { | 
|  | __futex_wait(const_cast<volatile void *>( | 
|  | reinterpret_cast<const void *>(&pi->serial)), | 
|  | serial, NULL); | 
|  | serial = load_const_atomic(&pi->serial, memory_order_acquire); | 
|  | } | 
|  | return serial; | 
|  | } | 
|  |  | 
|  | unsigned int __system_property_wait_any(unsigned int serial) | 
|  | { | 
|  | prop_area *pa = __system_property_area__; | 
|  | uint32_t my_serial; | 
|  |  | 
|  | do { | 
|  | __futex_wait(&pa->serial, serial, NULL); | 
|  | my_serial = atomic_load_explicit(&pa->serial, memory_order_acquire); | 
|  | } while (my_serial == serial); | 
|  |  | 
|  | return my_serial; | 
|  | } | 
|  |  | 
|  | const prop_info *__system_property_find_nth(unsigned n) | 
|  | { | 
|  | find_nth_cookie cookie(n); | 
|  |  | 
|  | const int err = __system_property_foreach(find_nth_fn, &cookie); | 
|  | if (err < 0) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return cookie.pi; | 
|  | } | 
|  |  | 
|  | int __system_property_foreach(void (*propfn)(const prop_info *pi, void *cookie), | 
|  | void *cookie) | 
|  | { | 
|  | if (__predict_false(compat_mode)) { | 
|  | return __system_property_foreach_compat(propfn, cookie); | 
|  | } | 
|  |  | 
|  | return foreach_property(0, propfn, cookie); | 
|  | } |