|  | /* | 
|  | * Copyright (C) 2012 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <libgen.h> | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <pthread.h> | 
|  | #include <stdint.h> | 
|  | #include <stdlib.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/wait.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <limits> | 
|  | #include <string> | 
|  |  | 
|  | #include <android-base/macros.h> | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include "BionicDeathTest.h" | 
|  | #include "math_data_test.h" | 
|  | #include "utils.h" | 
|  |  | 
|  | #if defined(__BIONIC__) | 
|  | #define ALIGNED_ALLOC_AVAILABLE 1 | 
|  | #elif defined(__GLIBC_PREREQ) | 
|  | #if __GLIBC_PREREQ(2, 16) | 
|  | #define ALIGNED_ALLOC_AVAILABLE 1 | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | template <typename T = int (*)(char*)> | 
|  | class GenericTemporaryFile { | 
|  | public: | 
|  | explicit GenericTemporaryFile(T mk_fn = mkstemp) : mk_fn_(mk_fn) { | 
|  | // Since we might be running on the host or the target, and if we're | 
|  | // running on the host we might be running under bionic or glibc, | 
|  | // let's just try both possible temporary directories and take the | 
|  | // first one that works. | 
|  | init("/data/local/tmp"); | 
|  | if (fd == -1) { | 
|  | init("/tmp"); | 
|  | } | 
|  | } | 
|  |  | 
|  | ~GenericTemporaryFile() { | 
|  | close(fd); | 
|  | unlink(path); | 
|  | } | 
|  |  | 
|  | int fd; | 
|  | char path[1024]; | 
|  |  | 
|  | private: | 
|  | T mk_fn_; | 
|  |  | 
|  | void init(const char* tmp_dir) { | 
|  | snprintf(path, sizeof(path), "%s/TemporaryFile-XXXXXX", tmp_dir); | 
|  | fd = mk_fn_(path); | 
|  | } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(GenericTemporaryFile); | 
|  | }; | 
|  |  | 
|  | typedef GenericTemporaryFile<> MyTemporaryFile; | 
|  |  | 
|  | // The random number generator tests all set the seed, get four values, reset the seed and check | 
|  | // that they get the first two values repeated, and then reset the seed and check two more values | 
|  | // to rule out the possibility that we're just going round a cycle of four values. | 
|  | // TODO: factor this out. | 
|  |  | 
|  | TEST(stdlib, drand48) { | 
|  | srand48(0x01020304); | 
|  | EXPECT_DOUBLE_EQ(0.65619299195623526, drand48()); | 
|  | EXPECT_DOUBLE_EQ(0.18522597229772941, drand48()); | 
|  | EXPECT_DOUBLE_EQ(0.42015087072844537, drand48()); | 
|  | EXPECT_DOUBLE_EQ(0.061637783047395089, drand48()); | 
|  | srand48(0x01020304); | 
|  | EXPECT_DOUBLE_EQ(0.65619299195623526, drand48()); | 
|  | EXPECT_DOUBLE_EQ(0.18522597229772941, drand48()); | 
|  | srand48(0x01020304); | 
|  | EXPECT_DOUBLE_EQ(0.65619299195623526, drand48()); | 
|  | EXPECT_DOUBLE_EQ(0.18522597229772941, drand48()); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, erand48) { | 
|  | const unsigned short seed[3] = { 0x330e, 0xabcd, 0x1234 }; | 
|  | unsigned short xsubi[3]; | 
|  | memcpy(xsubi, seed, sizeof(seed)); | 
|  | EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi)); | 
|  | EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi)); | 
|  | EXPECT_DOUBLE_EQ(0.35333609724524351, erand48(xsubi)); | 
|  | EXPECT_DOUBLE_EQ(0.44658343479654405, erand48(xsubi)); | 
|  | memcpy(xsubi, seed, sizeof(seed)); | 
|  | EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi)); | 
|  | EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi)); | 
|  | memcpy(xsubi, seed, sizeof(seed)); | 
|  | EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi)); | 
|  | EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, lcong48) { | 
|  | unsigned short p[7] = { 0x0102, 0x0304, 0x0506, 0x0708, 0x090a, 0x0b0c, 0x0d0e }; | 
|  | lcong48(p); | 
|  | EXPECT_EQ(1531389981, lrand48()); | 
|  | EXPECT_EQ(1598801533, lrand48()); | 
|  | EXPECT_EQ(2080534853, lrand48()); | 
|  | EXPECT_EQ(1102488897, lrand48()); | 
|  | lcong48(p); | 
|  | EXPECT_EQ(1531389981, lrand48()); | 
|  | EXPECT_EQ(1598801533, lrand48()); | 
|  | lcong48(p); | 
|  | EXPECT_EQ(1531389981, lrand48()); | 
|  | EXPECT_EQ(1598801533, lrand48()); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, lrand48) { | 
|  | srand48(0x01020304); | 
|  | EXPECT_EQ(1409163720, lrand48()); | 
|  | EXPECT_EQ(397769746, lrand48()); | 
|  | EXPECT_EQ(902267124, lrand48()); | 
|  | EXPECT_EQ(132366131, lrand48()); | 
|  | srand48(0x01020304); | 
|  | EXPECT_EQ(1409163720, lrand48()); | 
|  | EXPECT_EQ(397769746, lrand48()); | 
|  | srand48(0x01020304); | 
|  | EXPECT_EQ(1409163720, lrand48()); | 
|  | EXPECT_EQ(397769746, lrand48()); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, random) { | 
|  | srandom(0x01020304); | 
|  | EXPECT_EQ(55436735, random()); | 
|  | EXPECT_EQ(1399865117, random()); | 
|  | EXPECT_EQ(2032643283, random()); | 
|  | EXPECT_EQ(571329216, random()); | 
|  | srandom(0x01020304); | 
|  | EXPECT_EQ(55436735, random()); | 
|  | EXPECT_EQ(1399865117, random()); | 
|  | srandom(0x01020304); | 
|  | EXPECT_EQ(55436735, random()); | 
|  | EXPECT_EQ(1399865117, random()); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, rand) { | 
|  | srand(0x01020304); | 
|  | EXPECT_EQ(55436735, rand()); | 
|  | EXPECT_EQ(1399865117, rand()); | 
|  | EXPECT_EQ(2032643283, rand()); | 
|  | EXPECT_EQ(571329216, rand()); | 
|  | srand(0x01020304); | 
|  | EXPECT_EQ(55436735, rand()); | 
|  | EXPECT_EQ(1399865117, rand()); | 
|  | srand(0x01020304); | 
|  | EXPECT_EQ(55436735, rand()); | 
|  | EXPECT_EQ(1399865117, rand()); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, mrand48) { | 
|  | srand48(0x01020304); | 
|  | EXPECT_EQ(-1476639856, mrand48()); | 
|  | EXPECT_EQ(795539493, mrand48()); | 
|  | EXPECT_EQ(1804534249, mrand48()); | 
|  | EXPECT_EQ(264732262, mrand48()); | 
|  | srand48(0x01020304); | 
|  | EXPECT_EQ(-1476639856, mrand48()); | 
|  | EXPECT_EQ(795539493, mrand48()); | 
|  | srand48(0x01020304); | 
|  | EXPECT_EQ(-1476639856, mrand48()); | 
|  | EXPECT_EQ(795539493, mrand48()); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, jrand48_distribution) { | 
|  | const int iterations = 4096; | 
|  | const int pivot_low  = 1536; | 
|  | const int pivot_high = 2560; | 
|  |  | 
|  | unsigned short xsubi[3]; | 
|  | int bits[32] = {}; | 
|  |  | 
|  | for (int iter = 0; iter < iterations; ++iter) { | 
|  | long rand_val = jrand48(xsubi); | 
|  | for (int bit = 0; bit < 32; ++bit) { | 
|  | bits[bit] += (static_cast<unsigned long>(rand_val) >> bit) & 0x01; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that bit probability is uniform | 
|  | for (int bit = 0; bit < 32; ++bit) { | 
|  | EXPECT_TRUE((pivot_low <= bits[bit]) && (bits[bit] <= pivot_high)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stdlib, mrand48_distribution) { | 
|  | const int iterations = 4096; | 
|  | const int pivot_low  = 1536; | 
|  | const int pivot_high = 2560; | 
|  |  | 
|  | int bits[32] = {}; | 
|  |  | 
|  | for (int iter = 0; iter < iterations; ++iter) { | 
|  | long rand_val = mrand48(); | 
|  | for (int bit = 0; bit < 32; ++bit) { | 
|  | bits[bit] += (static_cast<unsigned long>(rand_val) >> bit) & 0x01; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that bit probability is uniform | 
|  | for (int bit = 0; bit < 32; ++bit) { | 
|  | EXPECT_TRUE((pivot_low <= bits[bit]) && (bits[bit] <= pivot_high)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stdlib, posix_memalign_sweep) { | 
|  | SKIP_WITH_HWASAN; | 
|  | void* ptr; | 
|  |  | 
|  | // These should all fail. | 
|  | for (size_t align = 0; align < sizeof(long); align++) { | 
|  | ASSERT_EQ(EINVAL, posix_memalign(&ptr, align, 256)) | 
|  | << "Unexpected value at align " << align; | 
|  | } | 
|  |  | 
|  | // Verify powers of 2 up to 2048 allocate, and verify that all other | 
|  | // alignment values between the powers of 2 fail. | 
|  | size_t last_align = sizeof(long); | 
|  | for (size_t align = sizeof(long); align <= 2048; align <<= 1) { | 
|  | // Try all of the non power of 2 values from the last until this value. | 
|  | for (size_t fail_align = last_align + 1; fail_align < align; fail_align++) { | 
|  | ASSERT_EQ(EINVAL, posix_memalign(&ptr, fail_align, 256)) | 
|  | << "Unexpected success at align " << fail_align; | 
|  | } | 
|  | ASSERT_EQ(0, posix_memalign(&ptr, align, 256)) | 
|  | << "Unexpected failure at align " << align; | 
|  | ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) & (align - 1)) | 
|  | << "Did not return a valid aligned ptr " << ptr << " expected alignment " << align; | 
|  | free(ptr); | 
|  | last_align = align; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stdlib, posix_memalign_various_sizes) { | 
|  | std::vector<size_t> sizes{1, 4, 8, 256, 1024, 65000, 128000, 256000, 1000000}; | 
|  | for (auto size : sizes) { | 
|  | void* ptr; | 
|  | ASSERT_EQ(0, posix_memalign(&ptr, 16, 1)) | 
|  | << "posix_memalign failed at size " << size; | 
|  | ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) & 0xf) | 
|  | << "Pointer not aligned at size " << size << " ptr " << ptr; | 
|  | free(ptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stdlib, posix_memalign_overflow) { | 
|  | SKIP_WITH_HWASAN; | 
|  | void* ptr; | 
|  | ASSERT_NE(0, posix_memalign(&ptr, 16, SIZE_MAX)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, aligned_alloc_sweep) { | 
|  | SKIP_WITH_HWASAN; | 
|  | #if defined(ALIGNED_ALLOC_AVAILABLE) | 
|  | // Verify powers of 2 up to 2048 allocate, and verify that all other | 
|  | // alignment values between the powers of 2 fail. | 
|  | size_t last_align = 1; | 
|  | for (size_t align = 1; align <= 2048; align <<= 1) { | 
|  | // Try all of the non power of 2 values from the last until this value. | 
|  | for (size_t fail_align = last_align + 1; fail_align < align; fail_align++) { | 
|  | ASSERT_TRUE(aligned_alloc(fail_align, 256) == nullptr) | 
|  | << "Unexpected success at align " << fail_align; | 
|  | ASSERT_EQ(EINVAL, errno) << "Unexpected errno at align " << fail_align; | 
|  | } | 
|  | void* ptr = aligned_alloc(align, 256); | 
|  | ASSERT_TRUE(ptr != nullptr) << "Unexpected failure at align " << align; | 
|  | ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) & (align - 1)) | 
|  | << "Did not return a valid aligned ptr " << ptr << " expected alignment " << align; | 
|  | free(ptr); | 
|  | last_align = align; | 
|  | } | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test requires a C library that has aligned_alloc.\n"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(stdlib, aligned_alloc_overflow) { | 
|  | SKIP_WITH_HWASAN; | 
|  | #if defined(ALIGNED_ALLOC_AVAILABLE) | 
|  | ASSERT_TRUE(aligned_alloc(16, SIZE_MAX) == nullptr); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test requires a C library that has aligned_alloc.\n"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(stdlib, aligned_alloc_size_not_multiple_of_alignment) { | 
|  | SKIP_WITH_HWASAN; | 
|  | #if defined(ALIGNED_ALLOC_AVAILABLE) | 
|  | for (size_t size = 1; size <= 2048; size++) { | 
|  | void* ptr = aligned_alloc(2048, size); | 
|  | ASSERT_TRUE(ptr != nullptr) << "Failed at size " << std::to_string(size); | 
|  | free(ptr); | 
|  | } | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test requires a C library that has aligned_alloc.\n"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(stdlib, realpath__NULL_filename) { | 
|  | errno = 0; | 
|  | // Work around the compile-time error generated by FORTIFY here. | 
|  | const char* path = nullptr; | 
|  | char* p = realpath(path, nullptr); | 
|  | ASSERT_TRUE(p == nullptr); | 
|  | ASSERT_EQ(EINVAL, errno); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, realpath__empty_filename) { | 
|  | errno = 0; | 
|  | char* p = realpath("", nullptr); | 
|  | ASSERT_TRUE(p == nullptr); | 
|  | ASSERT_EQ(ENOENT, errno); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, realpath__ENOENT) { | 
|  | errno = 0; | 
|  | char* p = realpath("/this/directory/path/almost/certainly/does/not/exist", nullptr); | 
|  | ASSERT_TRUE(p == nullptr); | 
|  | ASSERT_EQ(ENOENT, errno); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, realpath__component_after_non_directory) { | 
|  | errno = 0; | 
|  | char* p = realpath("/dev/null/.", nullptr); | 
|  | ASSERT_TRUE(p == nullptr); | 
|  | ASSERT_EQ(ENOTDIR, errno); | 
|  |  | 
|  | errno = 0; | 
|  | p = realpath("/dev/null/..", nullptr); | 
|  | ASSERT_TRUE(p == nullptr); | 
|  | ASSERT_EQ(ENOTDIR, errno); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, realpath) { | 
|  | // Get the name of this executable. | 
|  | char executable_path[PATH_MAX]; | 
|  | int rc = readlink("/proc/self/exe", executable_path, sizeof(executable_path)); | 
|  | ASSERT_NE(rc, -1); | 
|  | executable_path[rc] = '\0'; | 
|  |  | 
|  | char buf[PATH_MAX + 1]; | 
|  | char* p = realpath("/proc/self/exe", buf); | 
|  | ASSERT_STREQ(executable_path, p); | 
|  |  | 
|  | p = realpath("/proc/self/exe", nullptr); | 
|  | ASSERT_STREQ(executable_path, p); | 
|  | free(p); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, qsort) { | 
|  | struct s { | 
|  | char name[16]; | 
|  | static int comparator(const void* lhs, const void* rhs) { | 
|  | return strcmp(reinterpret_cast<const s*>(lhs)->name, reinterpret_cast<const s*>(rhs)->name); | 
|  | } | 
|  | }; | 
|  | s entries[3]; | 
|  | strcpy(entries[0].name, "charlie"); | 
|  | strcpy(entries[1].name, "bravo"); | 
|  | strcpy(entries[2].name, "alpha"); | 
|  |  | 
|  | qsort(entries, 3, sizeof(s), s::comparator); | 
|  | ASSERT_STREQ("alpha", entries[0].name); | 
|  | ASSERT_STREQ("bravo", entries[1].name); | 
|  | ASSERT_STREQ("charlie", entries[2].name); | 
|  |  | 
|  | qsort(entries, 3, sizeof(s), s::comparator); | 
|  | ASSERT_STREQ("alpha", entries[0].name); | 
|  | ASSERT_STREQ("bravo", entries[1].name); | 
|  | ASSERT_STREQ("charlie", entries[2].name); | 
|  | } | 
|  |  | 
|  | static void* TestBug57421_child(void* arg) { | 
|  | pthread_t main_thread = reinterpret_cast<pthread_t>(arg); | 
|  | pthread_join(main_thread, nullptr); | 
|  | char* value = getenv("ENVIRONMENT_VARIABLE"); | 
|  | if (value == nullptr) { | 
|  | setenv("ENVIRONMENT_VARIABLE", "value", 1); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static void TestBug57421_main() { | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug57421_child, reinterpret_cast<void*>(pthread_self()))); | 
|  | pthread_exit(nullptr); | 
|  | } | 
|  |  | 
|  | // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to | 
|  | // run this test (which exits normally) in its own process. | 
|  |  | 
|  | class stdlib_DeathTest : public BionicDeathTest {}; | 
|  |  | 
|  | TEST_F(stdlib_DeathTest, getenv_after_main_thread_exits) { | 
|  | // https://code.google.com/p/android/issues/detail?id=57421 | 
|  | ASSERT_EXIT(TestBug57421_main(), ::testing::ExitedWithCode(0), ""); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, mkostemp64) { | 
|  | MyTemporaryFile tf([](char* path) { return mkostemp64(path, O_CLOEXEC); }); | 
|  | AssertCloseOnExec(tf.fd, true); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, mkostemp) { | 
|  | MyTemporaryFile tf([](char* path) { return mkostemp(path, O_CLOEXEC); }); | 
|  | AssertCloseOnExec(tf.fd, true); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, mkstemp64) { | 
|  | MyTemporaryFile tf(mkstemp64); | 
|  | struct stat64 sb; | 
|  | ASSERT_EQ(0, fstat64(tf.fd, &sb)); | 
|  | ASSERT_EQ(O_LARGEFILE, fcntl(tf.fd, F_GETFL) & O_LARGEFILE); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, mkstemp) { | 
|  | MyTemporaryFile tf(mkstemp); | 
|  | struct stat sb; | 
|  | ASSERT_EQ(0, fstat(tf.fd, &sb)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, system) { | 
|  | int status; | 
|  |  | 
|  | status = system("exit 0"); | 
|  | ASSERT_TRUE(WIFEXITED(status)); | 
|  | ASSERT_EQ(0, WEXITSTATUS(status)); | 
|  |  | 
|  | status = system("exit 1"); | 
|  | ASSERT_TRUE(WIFEXITED(status)); | 
|  | ASSERT_EQ(1, WEXITSTATUS(status)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, atof) { | 
|  | ASSERT_DOUBLE_EQ(1.23, atof("1.23")); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static void CheckStrToFloat(T fn(const char* s, char** end)) { | 
|  | FpUlpEq<0, T> pred; | 
|  |  | 
|  | EXPECT_PRED_FORMAT2(pred, 9.0, fn("9.0", nullptr)); | 
|  | EXPECT_PRED_FORMAT2(pred, 9.0, fn("0.9e1", nullptr)); | 
|  | EXPECT_PRED_FORMAT2(pred, 9.0, fn("0x1.2p3", nullptr)); | 
|  |  | 
|  | const char* s = " \t\v\f\r\n9.0"; | 
|  | char* p; | 
|  | EXPECT_PRED_FORMAT2(pred, 9.0, fn(s, &p)); | 
|  | EXPECT_EQ(s + strlen(s), p); | 
|  |  | 
|  | EXPECT_TRUE(isnan(fn("+nan", nullptr))); | 
|  | EXPECT_TRUE(isnan(fn("nan", nullptr))); | 
|  | EXPECT_TRUE(isnan(fn("-nan", nullptr))); | 
|  |  | 
|  | EXPECT_TRUE(isnan(fn("+nan(0xff)", nullptr))); | 
|  | EXPECT_TRUE(isnan(fn("nan(0xff)", nullptr))); | 
|  | EXPECT_TRUE(isnan(fn("-nan(0xff)", nullptr))); | 
|  |  | 
|  | EXPECT_TRUE(isnan(fn("+nanny", &p))); | 
|  | EXPECT_STREQ("ny", p); | 
|  | EXPECT_TRUE(isnan(fn("nanny", &p))); | 
|  | EXPECT_STREQ("ny", p); | 
|  | EXPECT_TRUE(isnan(fn("-nanny", &p))); | 
|  | EXPECT_STREQ("ny", p); | 
|  |  | 
|  | EXPECT_EQ(0, fn("muppet", &p)); | 
|  | EXPECT_STREQ("muppet", p); | 
|  | EXPECT_EQ(0, fn("  muppet", &p)); | 
|  | EXPECT_STREQ("  muppet", p); | 
|  |  | 
|  | EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("+inf", nullptr)); | 
|  | EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("inf", nullptr)); | 
|  | EXPECT_EQ(-std::numeric_limits<T>::infinity(), fn("-inf", nullptr)); | 
|  |  | 
|  | EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("+infinity", nullptr)); | 
|  | EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("infinity", nullptr)); | 
|  | EXPECT_EQ(-std::numeric_limits<T>::infinity(), fn("-infinity", nullptr)); | 
|  |  | 
|  | EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("+infinitude", &p)); | 
|  | EXPECT_STREQ("initude", p); | 
|  | EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("infinitude", &p)); | 
|  | EXPECT_STREQ("initude", p); | 
|  | EXPECT_EQ(-std::numeric_limits<T>::infinity(), fn("-infinitude", &p)); | 
|  | EXPECT_STREQ("initude", p); | 
|  |  | 
|  | // Check case-insensitivity. | 
|  | EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("InFiNiTy", nullptr)); | 
|  | EXPECT_TRUE(isnan(fn("NaN", nullptr))); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtod) { | 
|  | CheckStrToFloat(strtod); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtof) { | 
|  | CheckStrToFloat(strtof); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtold) { | 
|  | CheckStrToFloat(strtold); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtof_2206701) { | 
|  | ASSERT_EQ(0.0f, strtof("7.0064923216240853546186479164495e-46", nullptr)); | 
|  | ASSERT_EQ(1.4e-45f, strtof("7.0064923216240853546186479164496e-46", nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtod_largest_subnormal) { | 
|  | // This value has been known to cause javac and java to infinite loop. | 
|  | // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/ | 
|  | ASSERT_EQ(2.2250738585072014e-308, strtod("2.2250738585072012e-308", nullptr)); | 
|  | ASSERT_EQ(2.2250738585072014e-308, strtod("0.00022250738585072012e-304", nullptr)); | 
|  | ASSERT_EQ(2.2250738585072014e-308, strtod("00000002.2250738585072012e-308", nullptr)); | 
|  | ASSERT_EQ(2.2250738585072014e-308, strtod("2.225073858507201200000e-308", nullptr)); | 
|  | ASSERT_EQ(2.2250738585072014e-308, strtod("2.2250738585072012e-00308", nullptr)); | 
|  | ASSERT_EQ(2.2250738585072014e-308, strtod("2.22507385850720129978001e-308", nullptr)); | 
|  | ASSERT_EQ(-2.2250738585072014e-308, strtod("-2.2250738585072012e-308", nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, quick_exit) { | 
|  | pid_t pid = fork(); | 
|  | ASSERT_NE(-1, pid) << strerror(errno); | 
|  |  | 
|  | if (pid == 0) { | 
|  | quick_exit(99); | 
|  | } | 
|  |  | 
|  | AssertChildExited(pid, 99); | 
|  | } | 
|  |  | 
|  | static int quick_exit_status = 0; | 
|  |  | 
|  | static void quick_exit_1(void) { | 
|  | ASSERT_EQ(quick_exit_status, 0); | 
|  | quick_exit_status = 1; | 
|  | } | 
|  |  | 
|  | static void quick_exit_2(void) { | 
|  | ASSERT_EQ(quick_exit_status, 1); | 
|  | } | 
|  |  | 
|  | static void not_run(void) { | 
|  | FAIL(); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, at_quick_exit) { | 
|  | pid_t pid = fork(); | 
|  | ASSERT_NE(-1, pid) << strerror(errno); | 
|  |  | 
|  | if (pid == 0) { | 
|  | ASSERT_EQ(at_quick_exit(quick_exit_2), 0); | 
|  | ASSERT_EQ(at_quick_exit(quick_exit_1), 0); | 
|  | atexit(not_run); | 
|  | quick_exit(99); | 
|  | } | 
|  |  | 
|  | AssertChildExited(pid, 99); | 
|  | } | 
|  |  | 
|  | TEST(unistd, _Exit) { | 
|  | pid_t pid = fork(); | 
|  | ASSERT_NE(-1, pid) << strerror(errno); | 
|  |  | 
|  | if (pid == 0) { | 
|  | _Exit(99); | 
|  | } | 
|  |  | 
|  | AssertChildExited(pid, 99); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, pty_smoke) { | 
|  | // getpt returns a pty with O_RDWR|O_NOCTTY. | 
|  | int fd = getpt(); | 
|  | ASSERT_NE(-1, fd); | 
|  |  | 
|  | // grantpt is a no-op. | 
|  | ASSERT_EQ(0, grantpt(fd)); | 
|  |  | 
|  | // ptsname_r should start "/dev/pts/". | 
|  | char name_r[128]; | 
|  | ASSERT_EQ(0, ptsname_r(fd, name_r, sizeof(name_r))); | 
|  | name_r[9] = 0; | 
|  | ASSERT_STREQ("/dev/pts/", name_r); | 
|  |  | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, posix_openpt) { | 
|  | int fd = posix_openpt(O_RDWR|O_NOCTTY|O_CLOEXEC); | 
|  | ASSERT_NE(-1, fd); | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, ptsname_r_ENOTTY) { | 
|  | errno = 0; | 
|  | char buf[128]; | 
|  | ASSERT_EQ(ENOTTY, ptsname_r(STDOUT_FILENO, buf, sizeof(buf))); | 
|  | ASSERT_EQ(ENOTTY, errno); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, ptsname_r_EINVAL) { | 
|  | int fd = getpt(); | 
|  | ASSERT_NE(-1, fd); | 
|  | errno = 0; | 
|  | char* buf = nullptr; | 
|  | ASSERT_EQ(EINVAL, ptsname_r(fd, buf, 128)); | 
|  | ASSERT_EQ(EINVAL, errno); | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, ptsname_r_ERANGE) { | 
|  | int fd = getpt(); | 
|  | ASSERT_NE(-1, fd); | 
|  | errno = 0; | 
|  | char buf[1]; | 
|  | ASSERT_EQ(ERANGE, ptsname_r(fd, buf, sizeof(buf))); | 
|  | ASSERT_EQ(ERANGE, errno); | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, ttyname) { | 
|  | int fd = getpt(); | 
|  | ASSERT_NE(-1, fd); | 
|  |  | 
|  | // ttyname returns "/dev/ptmx" for a pty. | 
|  | ASSERT_STREQ("/dev/ptmx", ttyname(fd)); | 
|  |  | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, ttyname_r) { | 
|  | int fd = getpt(); | 
|  | ASSERT_NE(-1, fd); | 
|  |  | 
|  | // ttyname_r returns "/dev/ptmx" for a pty. | 
|  | char name_r[128]; | 
|  | ASSERT_EQ(0, ttyname_r(fd, name_r, sizeof(name_r))); | 
|  | ASSERT_STREQ("/dev/ptmx", name_r); | 
|  |  | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, ttyname_r_ENOTTY) { | 
|  | int fd = open("/dev/null", O_WRONLY); | 
|  | errno = 0; | 
|  | char buf[128]; | 
|  | ASSERT_EQ(ENOTTY, ttyname_r(fd, buf, sizeof(buf))); | 
|  | ASSERT_EQ(ENOTTY, errno); | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, ttyname_r_EINVAL) { | 
|  | int fd = getpt(); | 
|  | ASSERT_NE(-1, fd); | 
|  | errno = 0; | 
|  | char* buf = nullptr; | 
|  | ASSERT_EQ(EINVAL, ttyname_r(fd, buf, 128)); | 
|  | ASSERT_EQ(EINVAL, errno); | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, ttyname_r_ERANGE) { | 
|  | int fd = getpt(); | 
|  | ASSERT_NE(-1, fd); | 
|  | errno = 0; | 
|  | char buf[1]; | 
|  | ASSERT_EQ(ERANGE, ttyname_r(fd, buf, sizeof(buf))); | 
|  | ASSERT_EQ(ERANGE, errno); | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, unlockpt_ENOTTY) { | 
|  | int fd = open("/dev/null", O_WRONLY); | 
|  | errno = 0; | 
|  | ASSERT_EQ(-1, unlockpt(fd)); | 
|  | ASSERT_EQ(ENOTTY, errno); | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, getsubopt) { | 
|  | char* const tokens[] = { | 
|  | const_cast<char*>("a"), | 
|  | const_cast<char*>("b"), | 
|  | const_cast<char*>("foo"), | 
|  | nullptr | 
|  | }; | 
|  | std::string input = "a,b,foo=bar,a,unknown"; | 
|  | char* subopts = &input[0]; | 
|  | char* value = nullptr; | 
|  |  | 
|  | ASSERT_EQ(0, getsubopt(&subopts, tokens, &value)); | 
|  | ASSERT_EQ(nullptr, value); | 
|  | ASSERT_EQ(1, getsubopt(&subopts, tokens, &value)); | 
|  | ASSERT_EQ(nullptr, value); | 
|  | ASSERT_EQ(2, getsubopt(&subopts, tokens, &value)); | 
|  | ASSERT_STREQ("bar", value); | 
|  | ASSERT_EQ(0, getsubopt(&subopts, tokens, &value)); | 
|  | ASSERT_EQ(nullptr, value); | 
|  |  | 
|  | ASSERT_EQ(-1, getsubopt(&subopts, tokens, &value)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, mblen) { | 
|  | // "If s is a null pointer, mblen() shall return a non-zero or 0 value, if character encodings, | 
|  | // respectively, do or do not have state-dependent encodings." We're always UTF-8. | 
|  | EXPECT_EQ(0, mblen(nullptr, 1)); | 
|  |  | 
|  | ASSERT_STREQ("C.UTF-8", setlocale(LC_ALL, "C.UTF-8")); | 
|  |  | 
|  | // 1-byte UTF-8. | 
|  | EXPECT_EQ(1, mblen("abcdef", 6)); | 
|  | // 2-byte UTF-8. | 
|  | EXPECT_EQ(2, mblen("\xc2\xa2" "cdef", 6)); | 
|  | // 3-byte UTF-8. | 
|  | EXPECT_EQ(3, mblen("\xe2\x82\xac" "def", 6)); | 
|  | // 4-byte UTF-8. | 
|  | EXPECT_EQ(4, mblen("\xf0\xa4\xad\xa2" "ef", 6)); | 
|  |  | 
|  | // Illegal over-long sequence. | 
|  | ASSERT_EQ(-1, mblen("\xf0\x82\x82\xac" "ef", 6)); | 
|  |  | 
|  | // "mblen() shall ... return 0 (if s points to the null byte)". | 
|  | EXPECT_EQ(0, mblen("", 1)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static void CheckStrToInt(T fn(const char* s, char** end, int base)) { | 
|  | char* end_p; | 
|  |  | 
|  | // Negative base => invalid. | 
|  | errno = 0; | 
|  | ASSERT_EQ(T(0), fn("123", &end_p, -1)); | 
|  | ASSERT_EQ(EINVAL, errno); | 
|  |  | 
|  | // Base 1 => invalid (base 0 means "please guess"). | 
|  | errno = 0; | 
|  | ASSERT_EQ(T(0), fn("123", &end_p, 1)); | 
|  | ASSERT_EQ(EINVAL, errno); | 
|  |  | 
|  | // Base > 36 => invalid. | 
|  | errno = 0; | 
|  | ASSERT_EQ(T(0), fn("123", &end_p, 37)); | 
|  | ASSERT_EQ(EINVAL, errno); | 
|  |  | 
|  | // If we see "0x" *not* followed by a hex digit, we shouldn't swallow the 'x'. | 
|  | ASSERT_EQ(T(0), fn("0xy", &end_p, 16)); | 
|  | ASSERT_EQ('x', *end_p); | 
|  |  | 
|  | if (std::numeric_limits<T>::is_signed) { | 
|  | // Minimum (such as -128). | 
|  | std::string min{std::to_string(std::numeric_limits<T>::min())}; | 
|  | end_p = nullptr; | 
|  | errno = 0; | 
|  | ASSERT_EQ(std::numeric_limits<T>::min(), fn(min.c_str(), &end_p, 0)); | 
|  | ASSERT_EQ(0, errno); | 
|  | ASSERT_EQ('\0', *end_p); | 
|  | // Too negative (such as -129). | 
|  | min.back() = (min.back() + 1); | 
|  | end_p = nullptr; | 
|  | errno = 0; | 
|  | ASSERT_EQ(std::numeric_limits<T>::min(), fn(min.c_str(), &end_p, 0)); | 
|  | ASSERT_EQ(ERANGE, errno); | 
|  | ASSERT_EQ('\0', *end_p); | 
|  | } | 
|  |  | 
|  | // Maximum (such as 127). | 
|  | std::string max{std::to_string(std::numeric_limits<T>::max())}; | 
|  | end_p = nullptr; | 
|  | errno = 0; | 
|  | ASSERT_EQ(std::numeric_limits<T>::max(), fn(max.c_str(), &end_p, 0)); | 
|  | ASSERT_EQ(0, errno); | 
|  | ASSERT_EQ('\0', *end_p); | 
|  | // Too positive (such as 128). | 
|  | max.back() = (max.back() + 1); | 
|  | end_p = nullptr; | 
|  | errno = 0; | 
|  | ASSERT_EQ(std::numeric_limits<T>::max(), fn(max.c_str(), &end_p, 0)); | 
|  | ASSERT_EQ(ERANGE, errno); | 
|  | ASSERT_EQ('\0', *end_p); | 
|  |  | 
|  | // In case of overflow, strto* leaves us pointing past the end of the number, | 
|  | // not at the digit that overflowed. | 
|  | end_p = nullptr; | 
|  | errno = 0; | 
|  | ASSERT_EQ(std::numeric_limits<T>::max(), | 
|  | fn("99999999999999999999999999999999999999999999999999999abc", &end_p, 0)); | 
|  | ASSERT_EQ(ERANGE, errno); | 
|  | ASSERT_STREQ("abc", end_p); | 
|  | if (std::numeric_limits<T>::is_signed) { | 
|  | end_p = nullptr; | 
|  | errno = 0; | 
|  | ASSERT_EQ(std::numeric_limits<T>::min(), | 
|  | fn("-99999999999999999999999999999999999999999999999999999abc", &end_p, 0)); | 
|  | ASSERT_EQ(ERANGE, errno); | 
|  | ASSERT_STREQ("abc", end_p); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtol_smoke) { | 
|  | CheckStrToInt(strtol); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtoll_smoke) { | 
|  | CheckStrToInt(strtoll); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtoul_smoke) { | 
|  | CheckStrToInt(strtoul); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtoull_smoke) { | 
|  | CheckStrToInt(strtoull); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtoimax_smoke) { | 
|  | CheckStrToInt(strtoimax); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, strtoumax_smoke) { | 
|  | CheckStrToInt(strtoumax); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, abs) { | 
|  | ASSERT_EQ(INT_MAX, abs(-INT_MAX)); | 
|  | ASSERT_EQ(INT_MAX, abs(INT_MAX)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, labs) { | 
|  | ASSERT_EQ(LONG_MAX, labs(-LONG_MAX)); | 
|  | ASSERT_EQ(LONG_MAX, labs(LONG_MAX)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, llabs) { | 
|  | ASSERT_EQ(LLONG_MAX, llabs(-LLONG_MAX)); | 
|  | ASSERT_EQ(LLONG_MAX, llabs(LLONG_MAX)); | 
|  | } | 
|  |  | 
|  | TEST(stdlib, getloadavg) { | 
|  | double load[3]; | 
|  |  | 
|  | // The second argument should have been size_t. | 
|  | ASSERT_EQ(-1, getloadavg(load, -1)); | 
|  | ASSERT_EQ(-1, getloadavg(load, INT_MIN)); | 
|  |  | 
|  | // Zero is a no-op. | 
|  | ASSERT_EQ(0, getloadavg(load, 0)); | 
|  |  | 
|  | // The Linux kernel doesn't support more than 3 (but you can ask for fewer). | 
|  | ASSERT_EQ(1, getloadavg(load, 1)); | 
|  | ASSERT_EQ(2, getloadavg(load, 2)); | 
|  | ASSERT_EQ(3, getloadavg(load, 3)); | 
|  | ASSERT_EQ(3, getloadavg(load, 4)); | 
|  | ASSERT_EQ(3, getloadavg(load, INT_MAX)); | 
|  |  | 
|  | // Read /proc/loadavg and check that it's "close enough". | 
|  | load[0] = nan(""); | 
|  | double expected[3]; | 
|  | std::unique_ptr<FILE, decltype(&fclose)> fp{fopen("/proc/loadavg", "re"), fclose}; | 
|  | ASSERT_EQ(3, fscanf(fp.get(), "%lf %lf %lf", &expected[0], &expected[1], &expected[2])); | 
|  | ASSERT_EQ(3, getloadavg(load, 3)); | 
|  |  | 
|  | // It's probably too flaky if we look at the 1-minute average, so we just place a NaN there | 
|  | // and check that it's overwritten with _something_. | 
|  | ASSERT_FALSE(isnan(load[0])); | 
|  | // For the others, rounding to an integer is pessimistic but at least gives us a sanity check. | 
|  | ASSERT_DOUBLE_EQ(rint(expected[1]), rint(load[1])); | 
|  | ASSERT_DOUBLE_EQ(rint(expected[2]), rint(load[2])); | 
|  | } |