|  | /* | 
|  | * Copyright (C) 2012 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <inttypes.h> | 
|  | #include <limits.h> | 
|  | #include <malloc.h> | 
|  | #include <pthread.h> | 
|  | #include <signal.h> | 
|  | #include <stdio.h> | 
|  | #include <sys/mman.h> | 
|  | #include <sys/prctl.h> | 
|  | #include <sys/syscall.h> | 
|  | #include <time.h> | 
|  | #include <unistd.h> | 
|  | #include <unwind.h> | 
|  |  | 
|  | #include <atomic> | 
|  | #include <vector> | 
|  |  | 
|  | #include <android-base/parseint.h> | 
|  | #include <android-base/scopeguard.h> | 
|  | #include <android-base/strings.h> | 
|  |  | 
|  | #include "private/bionic_constants.h" | 
|  | #include "private/bionic_macros.h" | 
|  | #include "BionicDeathTest.h" | 
|  | #include "SignalUtils.h" | 
|  | #include "utils.h" | 
|  |  | 
|  | TEST(pthread, pthread_key_create) { | 
|  | pthread_key_t key; | 
|  | ASSERT_EQ(0, pthread_key_create(&key, nullptr)); | 
|  | ASSERT_EQ(0, pthread_key_delete(key)); | 
|  | // Can't delete a key that's already been deleted. | 
|  | ASSERT_EQ(EINVAL, pthread_key_delete(key)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_keys_max) { | 
|  | // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX. | 
|  | ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX); | 
|  | } | 
|  |  | 
|  | TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) { | 
|  | int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX); | 
|  | ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_key_many_distinct) { | 
|  | // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX | 
|  | // pthread keys, but We should be able to allocate at least this many keys. | 
|  | int nkeys = PTHREAD_KEYS_MAX / 2; | 
|  | std::vector<pthread_key_t> keys; | 
|  |  | 
|  | auto scope_guard = android::base::make_scope_guard([&keys] { | 
|  | for (const auto& key : keys) { | 
|  | EXPECT_EQ(0, pthread_key_delete(key)); | 
|  | } | 
|  | }); | 
|  |  | 
|  | for (int i = 0; i < nkeys; ++i) { | 
|  | pthread_key_t key; | 
|  | // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong. | 
|  | ASSERT_EQ(0, pthread_key_create(&key, nullptr)) << i << " of " << nkeys; | 
|  | keys.push_back(key); | 
|  | ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i))); | 
|  | } | 
|  |  | 
|  | for (int i = keys.size() - 1; i >= 0; --i) { | 
|  | ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back())); | 
|  | pthread_key_t key = keys.back(); | 
|  | keys.pop_back(); | 
|  | ASSERT_EQ(0, pthread_key_delete(key)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) { | 
|  | std::vector<pthread_key_t> keys; | 
|  | int rv = 0; | 
|  |  | 
|  | // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should | 
|  | // be more than we are allowed to allocate now. | 
|  | for (int i = 0; i < PTHREAD_KEYS_MAX; i++) { | 
|  | pthread_key_t key; | 
|  | rv = pthread_key_create(&key, nullptr); | 
|  | if (rv == EAGAIN) { | 
|  | break; | 
|  | } | 
|  | EXPECT_EQ(0, rv); | 
|  | keys.push_back(key); | 
|  | } | 
|  |  | 
|  | // Don't leak keys. | 
|  | for (const auto& key : keys) { | 
|  | EXPECT_EQ(0, pthread_key_delete(key)); | 
|  | } | 
|  | keys.clear(); | 
|  |  | 
|  | // We should have eventually reached the maximum number of keys and received | 
|  | // EAGAIN. | 
|  | ASSERT_EQ(EAGAIN, rv); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_key_delete) { | 
|  | void* expected = reinterpret_cast<void*>(1234); | 
|  | pthread_key_t key; | 
|  | ASSERT_EQ(0, pthread_key_create(&key, nullptr)); | 
|  | ASSERT_EQ(0, pthread_setspecific(key, expected)); | 
|  | ASSERT_EQ(expected, pthread_getspecific(key)); | 
|  | ASSERT_EQ(0, pthread_key_delete(key)); | 
|  | // After deletion, pthread_getspecific returns nullptr. | 
|  | ASSERT_EQ(nullptr, pthread_getspecific(key)); | 
|  | // And you can't use pthread_setspecific with the deleted key. | 
|  | ASSERT_EQ(EINVAL, pthread_setspecific(key, expected)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_key_fork) { | 
|  | void* expected = reinterpret_cast<void*>(1234); | 
|  | pthread_key_t key; | 
|  | ASSERT_EQ(0, pthread_key_create(&key, nullptr)); | 
|  | ASSERT_EQ(0, pthread_setspecific(key, expected)); | 
|  | ASSERT_EQ(expected, pthread_getspecific(key)); | 
|  |  | 
|  | pid_t pid = fork(); | 
|  | ASSERT_NE(-1, pid) << strerror(errno); | 
|  |  | 
|  | if (pid == 0) { | 
|  | // The surviving thread inherits all the forking thread's TLS values... | 
|  | ASSERT_EQ(expected, pthread_getspecific(key)); | 
|  | _exit(99); | 
|  | } | 
|  |  | 
|  | AssertChildExited(pid, 99); | 
|  |  | 
|  | ASSERT_EQ(expected, pthread_getspecific(key)); | 
|  | ASSERT_EQ(0, pthread_key_delete(key)); | 
|  | } | 
|  |  | 
|  | static void* DirtyKeyFn(void* key) { | 
|  | return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_key_dirty) { | 
|  | pthread_key_t key; | 
|  | ASSERT_EQ(0, pthread_key_create(&key, nullptr)); | 
|  |  | 
|  | size_t stack_size = 640 * 1024; | 
|  | void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); | 
|  | ASSERT_NE(MAP_FAILED, stack); | 
|  | memset(stack, 0xff, stack_size); | 
|  |  | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attr)); | 
|  | ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size)); | 
|  |  | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key)); | 
|  |  | 
|  | void* result; | 
|  | ASSERT_EQ(0, pthread_join(t, &result)); | 
|  | ASSERT_EQ(nullptr, result); // Not ~0! | 
|  |  | 
|  | ASSERT_EQ(0, munmap(stack, stack_size)); | 
|  | ASSERT_EQ(0, pthread_key_delete(key)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, static_pthread_key_used_before_creation) { | 
|  | #if defined(__BIONIC__) | 
|  | // See http://b/19625804. The bug is about a static/global pthread key being used before creation. | 
|  | // So here tests if the static/global default value 0 can be detected as invalid key. | 
|  | static pthread_key_t key; | 
|  | ASSERT_EQ(nullptr, pthread_getspecific(key)); | 
|  | ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr)); | 
|  | ASSERT_EQ(EINVAL, pthread_key_delete(key)); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void* IdFn(void* arg) { | 
|  | return arg; | 
|  | } | 
|  |  | 
|  | class SpinFunctionHelper { | 
|  | public: | 
|  | SpinFunctionHelper() { | 
|  | SpinFunctionHelper::spin_flag_ = true; | 
|  | } | 
|  |  | 
|  | ~SpinFunctionHelper() { | 
|  | UnSpin(); | 
|  | } | 
|  |  | 
|  | auto GetFunction() -> void* (*)(void*) { | 
|  | return SpinFunctionHelper::SpinFn; | 
|  | } | 
|  |  | 
|  | void UnSpin() { | 
|  | SpinFunctionHelper::spin_flag_ = false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | static void* SpinFn(void*) { | 
|  | while (spin_flag_) {} | 
|  | return nullptr; | 
|  | } | 
|  | static std::atomic<bool> spin_flag_; | 
|  | }; | 
|  |  | 
|  | // It doesn't matter if spin_flag_ is used in several tests, | 
|  | // because it is always set to false after each test. Each thread | 
|  | // loops on spin_flag_ can find it becomes false at some time. | 
|  | std::atomic<bool> SpinFunctionHelper::spin_flag_; | 
|  |  | 
|  | static void* JoinFn(void* arg) { | 
|  | return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), nullptr)); | 
|  | } | 
|  |  | 
|  | static void AssertDetached(pthread_t t, bool is_detached) { | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_getattr_np(t, &attr)); | 
|  | int detach_state; | 
|  | ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state)); | 
|  | pthread_attr_destroy(&attr); | 
|  | ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED)); | 
|  | } | 
|  |  | 
|  | static void MakeDeadThread(pthread_t& t) { | 
|  | ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, nullptr)); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_create) { | 
|  | void* expected_result = reinterpret_cast<void*>(123); | 
|  | // Can we create a thread? | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, expected_result)); | 
|  | // If we join, do we get the expected value back? | 
|  | void* result; | 
|  | ASSERT_EQ(0, pthread_join(t, &result)); | 
|  | ASSERT_EQ(expected_result, result); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_create_EAGAIN) { | 
|  | pthread_attr_t attributes; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attributes)); | 
|  | ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1))); | 
|  |  | 
|  | pthread_t t; | 
|  | ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_no_join_after_detach) { | 
|  | SpinFunctionHelper spin_helper; | 
|  |  | 
|  | pthread_t t1; | 
|  | ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr)); | 
|  |  | 
|  | // After a pthread_detach... | 
|  | ASSERT_EQ(0, pthread_detach(t1)); | 
|  | AssertDetached(t1, true); | 
|  |  | 
|  | // ...pthread_join should fail. | 
|  | ASSERT_EQ(EINVAL, pthread_join(t1, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_no_op_detach_after_join) { | 
|  | SpinFunctionHelper spin_helper; | 
|  |  | 
|  | pthread_t t1; | 
|  | ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr)); | 
|  |  | 
|  | // If thread 2 is already waiting to join thread 1... | 
|  | pthread_t t2; | 
|  | ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1))); | 
|  |  | 
|  | sleep(1); // (Give t2 a chance to call pthread_join.) | 
|  |  | 
|  | #if defined(__BIONIC__) | 
|  | ASSERT_EQ(EINVAL, pthread_detach(t1)); | 
|  | #else | 
|  | ASSERT_EQ(0, pthread_detach(t1)); | 
|  | #endif | 
|  | AssertDetached(t1, false); | 
|  |  | 
|  | spin_helper.UnSpin(); | 
|  |  | 
|  | // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). | 
|  | void* join_result; | 
|  | ASSERT_EQ(0, pthread_join(t2, &join_result)); | 
|  | ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_join_self) { | 
|  | ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), nullptr)); | 
|  | } | 
|  |  | 
|  | struct TestBug37410 { | 
|  | pthread_t main_thread; | 
|  | pthread_mutex_t mutex; | 
|  |  | 
|  | static void main() { | 
|  | TestBug37410 data; | 
|  | data.main_thread = pthread_self(); | 
|  | ASSERT_EQ(0, pthread_mutex_init(&data.mutex, nullptr)); | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); | 
|  |  | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug37410::thread_fn, reinterpret_cast<void*>(&data))); | 
|  |  | 
|  | // Wait for the thread to be running... | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex)); | 
|  |  | 
|  | // ...and exit. | 
|  | pthread_exit(nullptr); | 
|  | } | 
|  |  | 
|  | private: | 
|  | static void* thread_fn(void* arg) { | 
|  | TestBug37410* data = reinterpret_cast<TestBug37410*>(arg); | 
|  |  | 
|  | // Let the main thread know we're running. | 
|  | pthread_mutex_unlock(&data->mutex); | 
|  |  | 
|  | // And wait for the main thread to exit. | 
|  | pthread_join(data->main_thread, nullptr); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to | 
|  | // run this test (which exits normally) in its own process. | 
|  |  | 
|  | class pthread_DeathTest : public BionicDeathTest {}; | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_bug_37410) { | 
|  | // http://code.google.com/p/android/issues/detail?id=37410 | 
|  | ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), ""); | 
|  | } | 
|  |  | 
|  | static void* SignalHandlerFn(void* arg) { | 
|  | sigset64_t wait_set; | 
|  | sigfillset64(&wait_set); | 
|  | return reinterpret_cast<void*>(sigwait64(&wait_set, reinterpret_cast<int*>(arg))); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_sigmask) { | 
|  | // Check that SIGUSR1 isn't blocked. | 
|  | sigset_t original_set; | 
|  | sigemptyset(&original_set); | 
|  | ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &original_set)); | 
|  | ASSERT_FALSE(sigismember(&original_set, SIGUSR1)); | 
|  |  | 
|  | // Block SIGUSR1. | 
|  | sigset_t set; | 
|  | sigemptyset(&set); | 
|  | sigaddset(&set, SIGUSR1); | 
|  | ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, nullptr)); | 
|  |  | 
|  | // Check that SIGUSR1 is blocked. | 
|  | sigset_t final_set; | 
|  | sigemptyset(&final_set); | 
|  | ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &final_set)); | 
|  | ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); | 
|  | // ...and that sigprocmask agrees with pthread_sigmask. | 
|  | sigemptyset(&final_set); | 
|  | ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &final_set)); | 
|  | ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); | 
|  |  | 
|  | // Spawn a thread that calls sigwait and tells us what it received. | 
|  | pthread_t signal_thread; | 
|  | int received_signal = -1; | 
|  | ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal)); | 
|  |  | 
|  | // Send that thread SIGUSR1. | 
|  | pthread_kill(signal_thread, SIGUSR1); | 
|  |  | 
|  | // See what it got. | 
|  | void* join_result; | 
|  | ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); | 
|  | ASSERT_EQ(SIGUSR1, received_signal); | 
|  | ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); | 
|  |  | 
|  | // Restore the original signal mask. | 
|  | ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_sigmask64_SIGTRMIN) { | 
|  | // Check that SIGRTMIN isn't blocked. | 
|  | sigset64_t original_set; | 
|  | sigemptyset64(&original_set); | 
|  | ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &original_set)); | 
|  | ASSERT_FALSE(sigismember64(&original_set, SIGRTMIN)); | 
|  |  | 
|  | // Block SIGRTMIN. | 
|  | sigset64_t set; | 
|  | sigemptyset64(&set); | 
|  | sigaddset64(&set, SIGRTMIN); | 
|  | ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &set, nullptr)); | 
|  |  | 
|  | // Check that SIGRTMIN is blocked. | 
|  | sigset64_t final_set; | 
|  | sigemptyset64(&final_set); | 
|  | ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &final_set)); | 
|  | ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN)); | 
|  | // ...and that sigprocmask64 agrees with pthread_sigmask64. | 
|  | sigemptyset64(&final_set); | 
|  | ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, nullptr, &final_set)); | 
|  | ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN)); | 
|  |  | 
|  | // Spawn a thread that calls sigwait64 and tells us what it received. | 
|  | pthread_t signal_thread; | 
|  | int received_signal = -1; | 
|  | ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal)); | 
|  |  | 
|  | // Send that thread SIGRTMIN. | 
|  | pthread_kill(signal_thread, SIGRTMIN); | 
|  |  | 
|  | // See what it got. | 
|  | void* join_result; | 
|  | ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); | 
|  | ASSERT_EQ(SIGRTMIN, received_signal); | 
|  | ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); | 
|  |  | 
|  | // Restore the original signal mask. | 
|  | ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &original_set, nullptr)); | 
|  | } | 
|  |  | 
|  | static void test_pthread_setname_np__pthread_getname_np(pthread_t t) { | 
|  | ASSERT_EQ(0, pthread_setname_np(t, "short")); | 
|  | char name[32]; | 
|  | ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name))); | 
|  | ASSERT_STREQ("short", name); | 
|  |  | 
|  | // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL. | 
|  | ASSERT_EQ(0, pthread_setname_np(t, "123456789012345")); | 
|  | ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name))); | 
|  | ASSERT_STREQ("123456789012345", name); | 
|  |  | 
|  | ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456")); | 
|  |  | 
|  | // The passed-in buffer should be at least 16 bytes. | 
|  | ASSERT_EQ(0, pthread_getname_np(t, name, 16)); | 
|  | ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_setname_np__pthread_getname_np__self) { | 
|  | test_pthread_setname_np__pthread_getname_np(pthread_self()); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_setname_np__pthread_getname_np__other) { | 
|  | SpinFunctionHelper spin_helper; | 
|  |  | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr)); | 
|  | test_pthread_setname_np__pthread_getname_np(t); | 
|  | spin_helper.UnSpin(); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | } | 
|  |  | 
|  | // http://b/28051133: a kernel misfeature means that you can't change the | 
|  | // name of another thread if you've set PR_SET_DUMPABLE to 0. | 
|  | TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) { | 
|  | ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno); | 
|  |  | 
|  | SpinFunctionHelper spin_helper; | 
|  |  | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr)); | 
|  | test_pthread_setname_np__pthread_getname_np(t); | 
|  | spin_helper.UnSpin(); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) { | 
|  | pthread_t dead_thread; | 
|  | MakeDeadThread(dead_thread); | 
|  |  | 
|  | EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"), "invalid pthread_t"); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) { | 
|  | pthread_t null_thread = 0; | 
|  | EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3")); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) { | 
|  | pthread_t dead_thread; | 
|  | MakeDeadThread(dead_thread); | 
|  |  | 
|  | char name[64]; | 
|  | EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)), "invalid pthread_t"); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) { | 
|  | pthread_t null_thread = 0; | 
|  |  | 
|  | char name[64]; | 
|  | EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name))); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_kill__0) { | 
|  | // Signal 0 just tests that the thread exists, so it's safe to call on ourselves. | 
|  | ASSERT_EQ(0, pthread_kill(pthread_self(), 0)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_kill__invalid_signal) { | 
|  | ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1)); | 
|  | } | 
|  |  | 
|  | static void pthread_kill__in_signal_handler_helper(int signal_number) { | 
|  | static int count = 0; | 
|  | ASSERT_EQ(SIGALRM, signal_number); | 
|  | if (++count == 1) { | 
|  | // Can we call pthread_kill from a signal handler? | 
|  | ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_kill__in_signal_handler) { | 
|  | ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper); | 
|  | ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) { | 
|  | pthread_t dead_thread; | 
|  | MakeDeadThread(dead_thread); | 
|  |  | 
|  | EXPECT_DEATH(pthread_detach(dead_thread), "invalid pthread_t"); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_detach__null_thread) { | 
|  | pthread_t null_thread = 0; | 
|  | EXPECT_EQ(ESRCH, pthread_detach(null_thread)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_getcpuclockid__clock_gettime) { | 
|  | SpinFunctionHelper spin_helper; | 
|  |  | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr)); | 
|  |  | 
|  | clockid_t c; | 
|  | ASSERT_EQ(0, pthread_getcpuclockid(t, &c)); | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(c, &ts)); | 
|  | spin_helper.UnSpin(); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) { | 
|  | pthread_t dead_thread; | 
|  | MakeDeadThread(dead_thread); | 
|  |  | 
|  | clockid_t c; | 
|  | EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c), "invalid pthread_t"); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) { | 
|  | pthread_t null_thread = 0; | 
|  | clockid_t c; | 
|  | EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) { | 
|  | pthread_t dead_thread; | 
|  | MakeDeadThread(dead_thread); | 
|  |  | 
|  | int policy; | 
|  | sched_param param; | 
|  | EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, ¶m), "invalid pthread_t"); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) { | 
|  | pthread_t null_thread = 0; | 
|  | int policy; | 
|  | sched_param param; | 
|  | EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, ¶m)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) { | 
|  | pthread_t dead_thread; | 
|  | MakeDeadThread(dead_thread); | 
|  |  | 
|  | int policy = 0; | 
|  | sched_param param; | 
|  | EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, ¶m), "invalid pthread_t"); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) { | 
|  | pthread_t null_thread = 0; | 
|  | int policy = 0; | 
|  | sched_param param; | 
|  | EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, ¶m)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_setschedprio__no_such_thread) { | 
|  | pthread_t dead_thread; | 
|  | MakeDeadThread(dead_thread); | 
|  |  | 
|  | EXPECT_DEATH(pthread_setschedprio(dead_thread, 123), "invalid pthread_t"); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_setschedprio__null_thread) { | 
|  | pthread_t null_thread = 0; | 
|  | EXPECT_EQ(ESRCH, pthread_setschedprio(null_thread, 123)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_join__no_such_thread) { | 
|  | pthread_t dead_thread; | 
|  | MakeDeadThread(dead_thread); | 
|  |  | 
|  | EXPECT_DEATH(pthread_join(dead_thread, nullptr), "invalid pthread_t"); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_join__null_thread) { | 
|  | pthread_t null_thread = 0; | 
|  | EXPECT_EQ(ESRCH, pthread_join(null_thread, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) { | 
|  | pthread_t dead_thread; | 
|  | MakeDeadThread(dead_thread); | 
|  |  | 
|  | EXPECT_DEATH(pthread_kill(dead_thread, 0), "invalid pthread_t"); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_kill__null_thread) { | 
|  | pthread_t null_thread = 0; | 
|  | EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_join__multijoin) { | 
|  | SpinFunctionHelper spin_helper; | 
|  |  | 
|  | pthread_t t1; | 
|  | ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr)); | 
|  |  | 
|  | pthread_t t2; | 
|  | ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1))); | 
|  |  | 
|  | sleep(1); // (Give t2 a chance to call pthread_join.) | 
|  |  | 
|  | // Multiple joins to the same thread should fail. | 
|  | ASSERT_EQ(EINVAL, pthread_join(t1, nullptr)); | 
|  |  | 
|  | spin_helper.UnSpin(); | 
|  |  | 
|  | // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). | 
|  | void* join_result; | 
|  | ASSERT_EQ(0, pthread_join(t2, &join_result)); | 
|  | ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_join__race) { | 
|  | // http://b/11693195 --- pthread_join could return before the thread had actually exited. | 
|  | // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread. | 
|  | for (size_t i = 0; i < 1024; ++i) { | 
|  | size_t stack_size = 640*1024; | 
|  | void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); | 
|  |  | 
|  | pthread_attr_t a; | 
|  | pthread_attr_init(&a); | 
|  | pthread_attr_setstack(&a, stack, stack_size); | 
|  |  | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, &a, IdFn, nullptr)); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | ASSERT_EQ(0, munmap(stack, stack_size)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void* GetActualGuardSizeFn(void* arg) { | 
|  | pthread_attr_t attributes; | 
|  | pthread_getattr_np(pthread_self(), &attributes); | 
|  | pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg)); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static size_t GetActualGuardSize(const pthread_attr_t& attributes) { | 
|  | size_t result; | 
|  | pthread_t t; | 
|  | pthread_create(&t, &attributes, GetActualGuardSizeFn, &result); | 
|  | pthread_join(t, nullptr); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void* GetActualStackSizeFn(void* arg) { | 
|  | pthread_attr_t attributes; | 
|  | pthread_getattr_np(pthread_self(), &attributes); | 
|  | pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg)); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static size_t GetActualStackSize(const pthread_attr_t& attributes) { | 
|  | size_t result; | 
|  | pthread_t t; | 
|  | pthread_create(&t, &attributes, GetActualStackSizeFn, &result); | 
|  | pthread_join(t, nullptr); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_setguardsize_tiny) { | 
|  | pthread_attr_t attributes; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attributes)); | 
|  |  | 
|  | // No such thing as too small: will be rounded up to one page by pthread_create. | 
|  | ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128)); | 
|  | size_t guard_size; | 
|  | ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); | 
|  | ASSERT_EQ(128U, guard_size); | 
|  | ASSERT_EQ(4096U, GetActualGuardSize(attributes)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_setguardsize_reasonable) { | 
|  | pthread_attr_t attributes; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attributes)); | 
|  |  | 
|  | // Large enough and a multiple of the page size. | 
|  | ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024)); | 
|  | size_t guard_size; | 
|  | ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); | 
|  | ASSERT_EQ(32*1024U, guard_size); | 
|  | ASSERT_EQ(32*1024U, GetActualGuardSize(attributes)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_setguardsize_needs_rounding) { | 
|  | pthread_attr_t attributes; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attributes)); | 
|  |  | 
|  | // Large enough but not a multiple of the page size. | 
|  | ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1)); | 
|  | size_t guard_size; | 
|  | ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); | 
|  | ASSERT_EQ(32*1024U + 1, guard_size); | 
|  | ASSERT_EQ(36*1024U, GetActualGuardSize(attributes)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_setguardsize_enormous) { | 
|  | pthread_attr_t attributes; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attributes)); | 
|  |  | 
|  | // Larger than the stack itself. (Historically we mistakenly carved | 
|  | // the guard out of the stack itself, rather than adding it after the | 
|  | // end.) | 
|  | ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024*1024)); | 
|  | size_t guard_size; | 
|  | ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); | 
|  | ASSERT_EQ(32*1024*1024U, guard_size); | 
|  | ASSERT_EQ(32*1024*1024U, GetActualGuardSize(attributes)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_setstacksize) { | 
|  | pthread_attr_t attributes; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attributes)); | 
|  |  | 
|  | // Get the default stack size. | 
|  | size_t default_stack_size; | 
|  | ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size)); | 
|  |  | 
|  | // Too small. | 
|  | ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128)); | 
|  | size_t stack_size; | 
|  | ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); | 
|  | ASSERT_EQ(default_stack_size, stack_size); | 
|  | ASSERT_GE(GetActualStackSize(attributes), default_stack_size); | 
|  |  | 
|  | // Large enough and a multiple of the page size; may be rounded up by pthread_create. | 
|  | ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024)); | 
|  | ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); | 
|  | ASSERT_EQ(32*1024U, stack_size); | 
|  | ASSERT_GE(GetActualStackSize(attributes), 32*1024U); | 
|  |  | 
|  | // Large enough but not aligned; will be rounded up by pthread_create. | 
|  | ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1)); | 
|  | ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); | 
|  | ASSERT_EQ(32*1024U + 1, stack_size); | 
|  | #if defined(__BIONIC__) | 
|  | ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1); | 
|  | #else // __BIONIC__ | 
|  | // glibc rounds down, in violation of POSIX. They document this in their BUGS section. | 
|  | ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); | 
|  | #endif // __BIONIC__ | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlockattr_smoke) { | 
|  | pthread_rwlockattr_t attr; | 
|  | ASSERT_EQ(0, pthread_rwlockattr_init(&attr)); | 
|  |  | 
|  | int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED}; | 
|  | for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) { | 
|  | ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i])); | 
|  | int pshared; | 
|  | ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared)); | 
|  | ASSERT_EQ(pshared_value_array[i], pshared); | 
|  | } | 
|  |  | 
|  | int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP, | 
|  | PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP}; | 
|  | for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) { | 
|  | ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i])); | 
|  | int kind; | 
|  | ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind)); | 
|  | ASSERT_EQ(kind_array[i], kind); | 
|  | } | 
|  |  | 
|  | ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) { | 
|  | pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER; | 
|  | pthread_rwlock_t lock2; | 
|  | ASSERT_EQ(0, pthread_rwlock_init(&lock2, nullptr)); | 
|  | ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1))); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_smoke) { | 
|  | pthread_rwlock_t l; | 
|  | ASSERT_EQ(0, pthread_rwlock_init(&l, nullptr)); | 
|  |  | 
|  | // Single read lock | 
|  | ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  |  | 
|  | // Multiple read lock | 
|  | ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  |  | 
|  | // Write lock | 
|  | ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  |  | 
|  | // Try writer lock | 
|  | ASSERT_EQ(0, pthread_rwlock_trywrlock(&l)); | 
|  | ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); | 
|  | ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  |  | 
|  | // Try reader lock | 
|  | ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); | 
|  | ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  |  | 
|  | // Try writer lock after unlock | 
|  | ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  |  | 
|  | // EDEADLK in "read after write" | 
|  | ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); | 
|  | ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  |  | 
|  | // EDEADLK in "write after write" | 
|  | ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); | 
|  | ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&l)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_rwlock_destroy(&l)); | 
|  | } | 
|  |  | 
|  | struct RwlockWakeupHelperArg { | 
|  | pthread_rwlock_t lock; | 
|  | enum Progress { | 
|  | LOCK_INITIALIZED, | 
|  | LOCK_WAITING, | 
|  | LOCK_RELEASED, | 
|  | LOCK_ACCESSED, | 
|  | LOCK_TIMEDOUT, | 
|  | }; | 
|  | std::atomic<Progress> progress; | 
|  | std::atomic<pid_t> tid; | 
|  | std::function<int (pthread_rwlock_t*)> trylock_function; | 
|  | std::function<int (pthread_rwlock_t*)> lock_function; | 
|  | std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function; | 
|  | clockid_t clock; | 
|  | }; | 
|  |  | 
|  | static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) { | 
|  | arg->tid = gettid(); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); | 
|  | arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; | 
|  |  | 
|  | ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock)); | 
|  | ASSERT_EQ(0, arg->lock_function(&arg->lock)); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock)); | 
|  |  | 
|  | arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED; | 
|  | } | 
|  |  | 
|  | static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) { | 
|  | RwlockWakeupHelperArg wakeup_arg; | 
|  | ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); | 
|  | ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); | 
|  | wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; | 
|  | wakeup_arg.tid = 0; | 
|  | wakeup_arg.trylock_function = &pthread_rwlock_trywrlock; | 
|  | wakeup_arg.lock_function = lock_function; | 
|  |  | 
|  | pthread_t thread; | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg)); | 
|  | WaitUntilThreadSleep(wakeup_arg.tid); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); | 
|  |  | 
|  | wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_join(thread, nullptr)); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); | 
|  | ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_reader_wakeup_writer) { | 
|  | test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) { | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); | 
|  | ts.tv_sec += 1; | 
|  | test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) { | 
|  | return pthread_rwlock_timedwrlock(lock, &ts); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np) { | 
|  | #if defined(__BIONIC__) | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); | 
|  | ts.tv_sec += 1; | 
|  | test_pthread_rwlock_reader_wakeup_writer( | 
|  | [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock_monotonic_np(lock, &ts); }); | 
|  | #else   // __BIONIC__ | 
|  | GTEST_LOG_(INFO) << "This test does nothing since pthread_rwlock_timedwrlock_monotonic_np is " | 
|  | "only supported on bionic"; | 
|  | #endif  // __BIONIC__ | 
|  | } | 
|  |  | 
|  | static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) { | 
|  | RwlockWakeupHelperArg wakeup_arg; | 
|  | ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); | 
|  | ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); | 
|  | wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; | 
|  | wakeup_arg.tid = 0; | 
|  | wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock; | 
|  | wakeup_arg.lock_function = lock_function; | 
|  |  | 
|  | pthread_t thread; | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg)); | 
|  | WaitUntilThreadSleep(wakeup_arg.tid); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); | 
|  |  | 
|  | wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_join(thread, nullptr)); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); | 
|  | ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_writer_wakeup_reader) { | 
|  | test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) { | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); | 
|  | ts.tv_sec += 1; | 
|  | test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) { | 
|  | return pthread_rwlock_timedrdlock(lock, &ts); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np) { | 
|  | #if defined(__BIONIC__) | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); | 
|  | ts.tv_sec += 1; | 
|  | test_pthread_rwlock_writer_wakeup_reader( | 
|  | [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock_monotonic_np(lock, &ts); }); | 
|  | #else   // __BIONIC__ | 
|  | GTEST_LOG_(INFO) << "This test does nothing since pthread_rwlock_timedrdlock_monotonic_np is " | 
|  | "only supported on bionic"; | 
|  | #endif  // __BIONIC__ | 
|  | } | 
|  |  | 
|  | static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) { | 
|  | arg->tid = gettid(); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); | 
|  | arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; | 
|  |  | 
|  | ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock)); | 
|  |  | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(arg->clock, &ts)); | 
|  | ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); | 
|  | ts.tv_nsec = -1; | 
|  | ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts)); | 
|  | ts.tv_nsec = NS_PER_S; | 
|  | ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts)); | 
|  | ts.tv_nsec = NS_PER_S - 1; | 
|  | ts.tv_sec = -1; | 
|  | ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); | 
|  | ASSERT_EQ(0, clock_gettime(arg->clock, &ts)); | 
|  | ts.tv_sec += 1; | 
|  | ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress); | 
|  | arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT; | 
|  | } | 
|  |  | 
|  | static void pthread_rwlock_timedrdlock_timeout_helper( | 
|  | clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) { | 
|  | RwlockWakeupHelperArg wakeup_arg; | 
|  | ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); | 
|  | ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); | 
|  | wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; | 
|  | wakeup_arg.tid = 0; | 
|  | wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock; | 
|  | wakeup_arg.timed_lock_function = lock_function; | 
|  | wakeup_arg.clock = clock; | 
|  |  | 
|  | pthread_t thread; | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg)); | 
|  | WaitUntilThreadSleep(wakeup_arg.tid); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_join(thread, nullptr)); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); | 
|  | ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_timedrdlock_timeout) { | 
|  | pthread_rwlock_timedrdlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedrdlock); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_timedrdlock_monotonic_np_timeout) { | 
|  | #if defined(__BIONIC__) | 
|  | pthread_rwlock_timedrdlock_timeout_helper(CLOCK_MONOTONIC, | 
|  | pthread_rwlock_timedrdlock_monotonic_np); | 
|  | #else   // __BIONIC__ | 
|  | GTEST_LOG_(INFO) << "This test does nothing since pthread_rwlock_timedrdlock_monotonic_np is " | 
|  | "only supported on bionic"; | 
|  | #endif  // __BIONIC__ | 
|  | } | 
|  |  | 
|  | static void pthread_rwlock_timedwrlock_timeout_helper( | 
|  | clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) { | 
|  | RwlockWakeupHelperArg wakeup_arg; | 
|  | ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); | 
|  | ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); | 
|  | wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; | 
|  | wakeup_arg.tid = 0; | 
|  | wakeup_arg.trylock_function = &pthread_rwlock_trywrlock; | 
|  | wakeup_arg.timed_lock_function = lock_function; | 
|  | wakeup_arg.clock = clock; | 
|  |  | 
|  | pthread_t thread; | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg)); | 
|  | WaitUntilThreadSleep(wakeup_arg.tid); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_join(thread, nullptr)); | 
|  | ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); | 
|  | ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_timedwrlock_timeout) { | 
|  | pthread_rwlock_timedwrlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedwrlock); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_timedwrlock_monotonic_np_timeout) { | 
|  | #if defined(__BIONIC__) | 
|  | pthread_rwlock_timedwrlock_timeout_helper(CLOCK_MONOTONIC, | 
|  | pthread_rwlock_timedwrlock_monotonic_np); | 
|  | #else   // __BIONIC__ | 
|  | GTEST_LOG_(INFO) << "This test does nothing since pthread_rwlock_timedwrlock_monotonic_np is " | 
|  | "only supported on bionic"; | 
|  | #endif  // __BIONIC__ | 
|  | } | 
|  |  | 
|  | class RwlockKindTestHelper { | 
|  | private: | 
|  | struct ThreadArg { | 
|  | RwlockKindTestHelper* helper; | 
|  | std::atomic<pid_t>& tid; | 
|  |  | 
|  | ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid) | 
|  | : helper(helper), tid(tid) { } | 
|  | }; | 
|  |  | 
|  | public: | 
|  | pthread_rwlock_t lock; | 
|  |  | 
|  | public: | 
|  | explicit RwlockKindTestHelper(int kind_type) { | 
|  | InitRwlock(kind_type); | 
|  | } | 
|  |  | 
|  | ~RwlockKindTestHelper() { | 
|  | DestroyRwlock(); | 
|  | } | 
|  |  | 
|  | void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) { | 
|  | tid = 0; | 
|  | ThreadArg* arg = new ThreadArg(this, tid); | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg)); | 
|  | } | 
|  |  | 
|  | void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) { | 
|  | tid = 0; | 
|  | ThreadArg* arg = new ThreadArg(this, tid); | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void InitRwlock(int kind_type) { | 
|  | pthread_rwlockattr_t attr; | 
|  | ASSERT_EQ(0, pthread_rwlockattr_init(&attr)); | 
|  | ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type)); | 
|  | ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr)); | 
|  | ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr)); | 
|  | } | 
|  |  | 
|  | void DestroyRwlock() { | 
|  | ASSERT_EQ(0, pthread_rwlock_destroy(&lock)); | 
|  | } | 
|  |  | 
|  | static void WriterThreadFn(ThreadArg* arg) { | 
|  | arg->tid = gettid(); | 
|  |  | 
|  | RwlockKindTestHelper* helper = arg->helper; | 
|  | ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock)); | 
|  | delete arg; | 
|  | } | 
|  |  | 
|  | static void ReaderThreadFn(ThreadArg* arg) { | 
|  | arg->tid = gettid(); | 
|  |  | 
|  | RwlockKindTestHelper* helper = arg->helper; | 
|  | ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock)); | 
|  | delete arg; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) { | 
|  | RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP); | 
|  | ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock)); | 
|  |  | 
|  | pthread_t writer_thread; | 
|  | std::atomic<pid_t> writer_tid; | 
|  | helper.CreateWriterThread(writer_thread, writer_tid); | 
|  | WaitUntilThreadSleep(writer_tid); | 
|  |  | 
|  | pthread_t reader_thread; | 
|  | std::atomic<pid_t> reader_tid; | 
|  | helper.CreateReaderThread(reader_thread, reader_tid); | 
|  | ASSERT_EQ(0, pthread_join(reader_thread, nullptr)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock)); | 
|  | ASSERT_EQ(0, pthread_join(writer_thread, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) { | 
|  | RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP); | 
|  | ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock)); | 
|  |  | 
|  | pthread_t writer_thread; | 
|  | std::atomic<pid_t> writer_tid; | 
|  | helper.CreateWriterThread(writer_thread, writer_tid); | 
|  | WaitUntilThreadSleep(writer_tid); | 
|  |  | 
|  | pthread_t reader_thread; | 
|  | std::atomic<pid_t> reader_tid; | 
|  | helper.CreateReaderThread(reader_thread, reader_tid); | 
|  | WaitUntilThreadSleep(reader_tid); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock)); | 
|  | ASSERT_EQ(0, pthread_join(writer_thread, nullptr)); | 
|  | ASSERT_EQ(0, pthread_join(reader_thread, nullptr)); | 
|  | } | 
|  |  | 
|  | static int g_once_fn_call_count = 0; | 
|  | static void OnceFn() { | 
|  | ++g_once_fn_call_count; | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_once_smoke) { | 
|  | pthread_once_t once_control = PTHREAD_ONCE_INIT; | 
|  | ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); | 
|  | ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); | 
|  | ASSERT_EQ(1, g_once_fn_call_count); | 
|  | } | 
|  |  | 
|  | static std::string pthread_once_1934122_result = ""; | 
|  |  | 
|  | static void Routine2() { | 
|  | pthread_once_1934122_result += "2"; | 
|  | } | 
|  |  | 
|  | static void Routine1() { | 
|  | pthread_once_t once_control_2 = PTHREAD_ONCE_INIT; | 
|  | pthread_once_1934122_result += "1"; | 
|  | pthread_once(&once_control_2, &Routine2); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_once_1934122) { | 
|  | // Very old versions of Android couldn't call pthread_once from a | 
|  | // pthread_once init routine. http://b/1934122. | 
|  | pthread_once_t once_control_1 = PTHREAD_ONCE_INIT; | 
|  | ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1)); | 
|  | ASSERT_EQ("12", pthread_once_1934122_result); | 
|  | } | 
|  |  | 
|  | static int g_atfork_prepare_calls = 0; | 
|  | static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; } | 
|  | static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; } | 
|  | static int g_atfork_parent_calls = 0; | 
|  | static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; } | 
|  | static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; } | 
|  | static int g_atfork_child_calls = 0; | 
|  | static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; } | 
|  | static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; } | 
|  |  | 
|  | TEST(pthread, pthread_atfork_smoke) { | 
|  | ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); | 
|  | ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); | 
|  |  | 
|  | pid_t pid = fork(); | 
|  | ASSERT_NE(-1, pid) << strerror(errno); | 
|  |  | 
|  | // Child and parent calls are made in the order they were registered. | 
|  | if (pid == 0) { | 
|  | ASSERT_EQ(12, g_atfork_child_calls); | 
|  | _exit(0); | 
|  | } | 
|  | ASSERT_EQ(12, g_atfork_parent_calls); | 
|  |  | 
|  | // Prepare calls are made in the reverse order. | 
|  | ASSERT_EQ(21, g_atfork_prepare_calls); | 
|  | AssertChildExited(pid, 0); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_getscope) { | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attr)); | 
|  |  | 
|  | int scope; | 
|  | ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope)); | 
|  | ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_condattr_init) { | 
|  | pthread_condattr_t attr; | 
|  | pthread_condattr_init(&attr); | 
|  |  | 
|  | clockid_t clock; | 
|  | ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); | 
|  | ASSERT_EQ(CLOCK_REALTIME, clock); | 
|  |  | 
|  | int pshared; | 
|  | ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); | 
|  | ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_condattr_setclock) { | 
|  | pthread_condattr_t attr; | 
|  | pthread_condattr_init(&attr); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME)); | 
|  | clockid_t clock; | 
|  | ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); | 
|  | ASSERT_EQ(CLOCK_REALTIME, clock); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); | 
|  | ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); | 
|  | ASSERT_EQ(CLOCK_MONOTONIC, clock); | 
|  |  | 
|  | ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) { | 
|  | #if defined(__BIONIC__) | 
|  | pthread_condattr_t attr; | 
|  | pthread_condattr_init(&attr); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); | 
|  | ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); | 
|  |  | 
|  | pthread_cond_t cond_var; | 
|  | ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_cond_signal(&cond_var)); | 
|  | ASSERT_EQ(0, pthread_cond_broadcast(&cond_var)); | 
|  |  | 
|  | attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private)); | 
|  | clockid_t clock; | 
|  | ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); | 
|  | ASSERT_EQ(CLOCK_MONOTONIC, clock); | 
|  | int pshared; | 
|  | ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); | 
|  | ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); | 
|  | #else  // !defined(__BIONIC__) | 
|  | GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n"; | 
|  | #endif  // !defined(__BIONIC__) | 
|  | } | 
|  |  | 
|  | class pthread_CondWakeupTest : public ::testing::Test { | 
|  | protected: | 
|  | pthread_mutex_t mutex; | 
|  | pthread_cond_t cond; | 
|  |  | 
|  | enum Progress { | 
|  | INITIALIZED, | 
|  | WAITING, | 
|  | SIGNALED, | 
|  | FINISHED, | 
|  | }; | 
|  | std::atomic<Progress> progress; | 
|  | pthread_t thread; | 
|  | std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function; | 
|  |  | 
|  | protected: | 
|  | void SetUp() override { | 
|  | ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr)); | 
|  | } | 
|  |  | 
|  | void InitCond(clockid_t clock=CLOCK_REALTIME) { | 
|  | pthread_condattr_t attr; | 
|  | ASSERT_EQ(0, pthread_condattr_init(&attr)); | 
|  | ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock)); | 
|  | ASSERT_EQ(0, pthread_cond_init(&cond, &attr)); | 
|  | ASSERT_EQ(0, pthread_condattr_destroy(&attr)); | 
|  | } | 
|  |  | 
|  | void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) { | 
|  | progress = INITIALIZED; | 
|  | this->wait_function = wait_function; | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this)); | 
|  | while (progress != WAITING) { | 
|  | usleep(5000); | 
|  | } | 
|  | usleep(5000); | 
|  | } | 
|  |  | 
|  | void TearDown() override { | 
|  | ASSERT_EQ(0, pthread_join(thread, nullptr)); | 
|  | ASSERT_EQ(FINISHED, progress); | 
|  | ASSERT_EQ(0, pthread_cond_destroy(&cond)); | 
|  | ASSERT_EQ(0, pthread_mutex_destroy(&mutex)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | static void WaitThreadFn(pthread_CondWakeupTest* test) { | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&test->mutex)); | 
|  | test->progress = WAITING; | 
|  | while (test->progress == WAITING) { | 
|  | ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex)); | 
|  | } | 
|  | ASSERT_EQ(SIGNALED, test->progress); | 
|  | test->progress = FINISHED; | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST_F(pthread_CondWakeupTest, signal_wait) { | 
|  | InitCond(); | 
|  | StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) { | 
|  | return pthread_cond_wait(cond, mutex); | 
|  | }); | 
|  | progress = SIGNALED; | 
|  | ASSERT_EQ(0, pthread_cond_signal(&cond)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_CondWakeupTest, broadcast_wait) { | 
|  | InitCond(); | 
|  | StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) { | 
|  | return pthread_cond_wait(cond, mutex); | 
|  | }); | 
|  | progress = SIGNALED; | 
|  | ASSERT_EQ(0, pthread_cond_broadcast(&cond)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) { | 
|  | InitCond(CLOCK_REALTIME); | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); | 
|  | ts.tv_sec += 1; | 
|  | StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) { | 
|  | return pthread_cond_timedwait(cond, mutex, &ts); | 
|  | }); | 
|  | progress = SIGNALED; | 
|  | ASSERT_EQ(0, pthread_cond_signal(&cond)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) { | 
|  | InitCond(CLOCK_MONOTONIC); | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); | 
|  | ts.tv_sec += 1; | 
|  | StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) { | 
|  | return pthread_cond_timedwait(cond, mutex, &ts); | 
|  | }); | 
|  | progress = SIGNALED; | 
|  | ASSERT_EQ(0, pthread_cond_signal(&cond)); | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC_np) { | 
|  | #if defined(__BIONIC__) | 
|  | InitCond(CLOCK_REALTIME); | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); | 
|  | ts.tv_sec += 1; | 
|  | StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) { | 
|  | return pthread_cond_timedwait_monotonic_np(cond, mutex, &ts); | 
|  | }); | 
|  | progress = SIGNALED; | 
|  | ASSERT_EQ(0, pthread_cond_signal(&cond)); | 
|  | #else   // __BIONIC__ | 
|  | GTEST_LOG_(INFO) << "This test does nothing since pthread_cond_timedwait_monotonic_np is only " | 
|  | "supported on bionic"; | 
|  | #endif  // __BIONIC__ | 
|  | } | 
|  |  | 
|  | static void pthread_cond_timedwait_timeout_helper(clockid_t clock, | 
|  | int (*wait_function)(pthread_cond_t* __cond, | 
|  | pthread_mutex_t* __mutex, | 
|  | const timespec* __timeout)) { | 
|  | pthread_mutex_t mutex; | 
|  | ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr)); | 
|  | pthread_cond_t cond; | 
|  | ASSERT_EQ(0, pthread_cond_init(&cond, nullptr)); | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&mutex)); | 
|  |  | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(clock, &ts)); | 
|  | ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts)); | 
|  | ts.tv_nsec = -1; | 
|  | ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts)); | 
|  | ts.tv_nsec = NS_PER_S; | 
|  | ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts)); | 
|  | ts.tv_nsec = NS_PER_S - 1; | 
|  | ts.tv_sec = -1; | 
|  | ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&mutex)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_cond_timedwait_timeout) { | 
|  | pthread_cond_timedwait_timeout_helper(CLOCK_REALTIME, pthread_cond_timedwait); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_cond_timedwait_monotonic_np_timeout) { | 
|  | #if defined(__BIONIC__) | 
|  | pthread_cond_timedwait_timeout_helper(CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np); | 
|  | #else   // __BIONIC__ | 
|  | GTEST_LOG_(INFO) << "This test does nothing since pthread_cond_timedwait_monotonic_np is only " | 
|  | "supported on bionic"; | 
|  | #endif  // __BIONIC__ | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_getstack__main_thread) { | 
|  | // This test is only meaningful for the main thread, so make sure we're running on it! | 
|  | ASSERT_EQ(getpid(), syscall(__NR_gettid)); | 
|  |  | 
|  | // Get the main thread's attributes. | 
|  | pthread_attr_t attributes; | 
|  | ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); | 
|  |  | 
|  | // Check that we correctly report that the main thread has no guard page. | 
|  | size_t guard_size; | 
|  | ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); | 
|  | ASSERT_EQ(0U, guard_size); // The main thread has no guard page. | 
|  |  | 
|  | // Get the stack base and the stack size (both ways). | 
|  | void* stack_base; | 
|  | size_t stack_size; | 
|  | ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); | 
|  | size_t stack_size2; | 
|  | ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); | 
|  |  | 
|  | // The two methods of asking for the stack size should agree. | 
|  | EXPECT_EQ(stack_size, stack_size2); | 
|  |  | 
|  | #if defined(__BIONIC__) | 
|  | // Find stack in /proc/self/maps using a pointer to the stack. | 
|  | // | 
|  | // We do not use "[stack]" label because in native-bridge environment it is not | 
|  | // guaranteed to point to the right stack. A native bridge implementation may | 
|  | // keep separate stack for the guest code. | 
|  | void* maps_stack_hi = nullptr; | 
|  | std::vector<map_record> maps; | 
|  | ASSERT_TRUE(Maps::parse_maps(&maps)); | 
|  | uintptr_t stack_address = reinterpret_cast<uintptr_t>(&maps_stack_hi); | 
|  | for (const auto& map : maps) { | 
|  | if (map.addr_start <= stack_address && map.addr_end > stack_address){ | 
|  | maps_stack_hi = reinterpret_cast<void*>(map.addr_end); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The high address of the /proc/self/maps stack region should equal stack_base + stack_size. | 
|  | // Remember that the stack grows down (and is mapped in on demand), so the low address of the | 
|  | // region isn't very interesting. | 
|  | EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size); | 
|  |  | 
|  | // The stack size should correspond to RLIMIT_STACK. | 
|  | rlimit rl; | 
|  | ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl)); | 
|  | uint64_t original_rlim_cur = rl.rlim_cur; | 
|  | if (rl.rlim_cur == RLIM_INFINITY) { | 
|  | rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB. | 
|  | } | 
|  | EXPECT_EQ(rl.rlim_cur, stack_size); | 
|  |  | 
|  | auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() { | 
|  | rl.rlim_cur = original_rlim_cur; | 
|  | ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); | 
|  | }); | 
|  |  | 
|  | // | 
|  | // What if RLIMIT_STACK is smaller than the stack's current extent? | 
|  | // | 
|  | rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already. | 
|  | rl.rlim_max = RLIM_INFINITY; | 
|  | ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); | 
|  | ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); | 
|  | ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); | 
|  |  | 
|  | EXPECT_EQ(stack_size, stack_size2); | 
|  | ASSERT_EQ(1024U, stack_size); | 
|  |  | 
|  | // | 
|  | // What if RLIMIT_STACK isn't a whole number of pages? | 
|  | // | 
|  | rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages. | 
|  | rl.rlim_max = RLIM_INFINITY; | 
|  | ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); | 
|  | ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); | 
|  | ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); | 
|  |  | 
|  | EXPECT_EQ(stack_size, stack_size2); | 
|  | ASSERT_EQ(6666U, stack_size); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct GetStackSignalHandlerArg { | 
|  | volatile bool done; | 
|  | void* signal_stack_base; | 
|  | size_t signal_stack_size; | 
|  | void* main_stack_base; | 
|  | size_t main_stack_size; | 
|  | }; | 
|  |  | 
|  | static GetStackSignalHandlerArg getstack_signal_handler_arg; | 
|  |  | 
|  | static void getstack_signal_handler(int sig) { | 
|  | ASSERT_EQ(SIGUSR1, sig); | 
|  | // Use sleep() to make current thread be switched out by the kernel to provoke the error. | 
|  | sleep(1); | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr)); | 
|  | void* stack_base; | 
|  | size_t stack_size; | 
|  | ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size)); | 
|  |  | 
|  | // Verify if the stack used by the signal handler is the alternate stack just registered. | 
|  | ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr); | 
|  | ASSERT_LT(static_cast<void*>(&attr), | 
|  | static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) + | 
|  | getstack_signal_handler_arg.signal_stack_size); | 
|  |  | 
|  | // Verify if the main thread's stack got in the signal handler is correct. | 
|  | ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base); | 
|  | ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size); | 
|  |  | 
|  | getstack_signal_handler_arg.done = true; | 
|  | } | 
|  |  | 
|  | // The previous code obtained the main thread's stack by reading the entry in | 
|  | // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel | 
|  | // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel | 
|  | // switches a process while the main thread is in an alternate stack, then the kernel will label | 
|  | // the wrong map with [stack]. This test verifies that when the above situation happens, the main | 
|  | // thread's stack is found correctly. | 
|  | TEST(pthread, pthread_attr_getstack_in_signal_handler) { | 
|  | // This test is only meaningful for the main thread, so make sure we're running on it! | 
|  | ASSERT_EQ(getpid(), syscall(__NR_gettid)); | 
|  |  | 
|  | const size_t sig_stack_size = 16 * 1024; | 
|  | void* sig_stack = mmap(nullptr, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, | 
|  | -1, 0); | 
|  | ASSERT_NE(MAP_FAILED, sig_stack); | 
|  | stack_t ss; | 
|  | ss.ss_sp = sig_stack; | 
|  | ss.ss_size = sig_stack_size; | 
|  | ss.ss_flags = 0; | 
|  | stack_t oss; | 
|  | ASSERT_EQ(0, sigaltstack(&ss, &oss)); | 
|  |  | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr)); | 
|  | void* main_stack_base; | 
|  | size_t main_stack_size; | 
|  | ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size)); | 
|  |  | 
|  | ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK); | 
|  | getstack_signal_handler_arg.done = false; | 
|  | getstack_signal_handler_arg.signal_stack_base = sig_stack; | 
|  | getstack_signal_handler_arg.signal_stack_size = sig_stack_size; | 
|  | getstack_signal_handler_arg.main_stack_base = main_stack_base; | 
|  | getstack_signal_handler_arg.main_stack_size = main_stack_size; | 
|  | kill(getpid(), SIGUSR1); | 
|  | ASSERT_EQ(true, getstack_signal_handler_arg.done); | 
|  |  | 
|  | ASSERT_EQ(0, sigaltstack(&oss, nullptr)); | 
|  | ASSERT_EQ(0, munmap(sig_stack, sig_stack_size)); | 
|  | } | 
|  |  | 
|  | static void pthread_attr_getstack_18908062_helper(void*) { | 
|  | char local_variable; | 
|  | pthread_attr_t attributes; | 
|  | pthread_getattr_np(pthread_self(), &attributes); | 
|  | void* stack_base; | 
|  | size_t stack_size; | 
|  | pthread_attr_getstack(&attributes, &stack_base, &stack_size); | 
|  |  | 
|  | // Test whether &local_variable is in [stack_base, stack_base + stack_size). | 
|  | ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable); | 
|  | ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size); | 
|  | } | 
|  |  | 
|  | // Check whether something on stack is in the range of | 
|  | // [stack_base, stack_base + stack_size). see b/18908062. | 
|  | TEST(pthread, pthread_attr_getstack_18908062) { | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper), | 
|  | nullptr)); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | } | 
|  |  | 
|  | #if defined(__BIONIC__) | 
|  | static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER; | 
|  |  | 
|  | static void* pthread_gettid_np_helper(void* arg) { | 
|  | *reinterpret_cast<pid_t*>(arg) = gettid(); | 
|  |  | 
|  | // Wait for our parent to call pthread_gettid_np on us before exiting. | 
|  | pthread_mutex_lock(&pthread_gettid_np_mutex); | 
|  | pthread_mutex_unlock(&pthread_gettid_np_mutex); | 
|  | return nullptr; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | TEST(pthread, pthread_gettid_np) { | 
|  | #if defined(__BIONIC__) | 
|  | ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self())); | 
|  |  | 
|  | // Ensure the other thread doesn't exit until after we've called | 
|  | // pthread_gettid_np on it. | 
|  | pthread_mutex_lock(&pthread_gettid_np_mutex); | 
|  |  | 
|  | pid_t t_gettid_result; | 
|  | pthread_t t; | 
|  | pthread_create(&t, nullptr, pthread_gettid_np_helper, &t_gettid_result); | 
|  |  | 
|  | pid_t t_pthread_gettid_np_result = pthread_gettid_np(t); | 
|  |  | 
|  | // Release the other thread and wait for it to exit. | 
|  | pthread_mutex_unlock(&pthread_gettid_np_mutex); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  |  | 
|  | ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test does nothing.\n"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static size_t cleanup_counter = 0; | 
|  |  | 
|  | static void AbortCleanupRoutine(void*) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static void CountCleanupRoutine(void*) { | 
|  | ++cleanup_counter; | 
|  | } | 
|  |  | 
|  | static void PthreadCleanupTester() { | 
|  | pthread_cleanup_push(CountCleanupRoutine, nullptr); | 
|  | pthread_cleanup_push(CountCleanupRoutine, nullptr); | 
|  | pthread_cleanup_push(AbortCleanupRoutine, nullptr); | 
|  |  | 
|  | pthread_cleanup_pop(0); // Pop the abort without executing it. | 
|  | pthread_cleanup_pop(1); // Pop one count while executing it. | 
|  | ASSERT_EQ(1U, cleanup_counter); | 
|  | // Exit while the other count is still on the cleanup stack. | 
|  | pthread_exit(nullptr); | 
|  |  | 
|  | // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced. | 
|  | pthread_cleanup_pop(0); | 
|  | } | 
|  |  | 
|  | static void* PthreadCleanupStartRoutine(void*) { | 
|  | PthreadCleanupTester(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) { | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, nullptr, PthreadCleanupStartRoutine, nullptr)); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | ASSERT_EQ(2U, cleanup_counter); | 
|  | } | 
|  |  | 
|  | TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) { | 
|  | ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutexattr_gettype) { | 
|  | pthread_mutexattr_t attr; | 
|  | ASSERT_EQ(0, pthread_mutexattr_init(&attr)); | 
|  |  | 
|  | int attr_type; | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); | 
|  | ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); | 
|  | ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)); | 
|  | ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); | 
|  | ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)); | 
|  | ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); | 
|  | ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutexattr_protocol) { | 
|  | pthread_mutexattr_t attr; | 
|  | ASSERT_EQ(0, pthread_mutexattr_init(&attr)); | 
|  |  | 
|  | int protocol; | 
|  | ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol)); | 
|  | ASSERT_EQ(PTHREAD_PRIO_NONE, protocol); | 
|  | for (size_t repeat = 0; repeat < 2; ++repeat) { | 
|  | for (int set_protocol : {PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT}) { | 
|  | ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, set_protocol)); | 
|  | ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol)); | 
|  | ASSERT_EQ(protocol, set_protocol); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct PthreadMutex { | 
|  | pthread_mutex_t lock; | 
|  |  | 
|  | explicit PthreadMutex(int mutex_type, int protocol = PTHREAD_PRIO_NONE) { | 
|  | init(mutex_type, protocol); | 
|  | } | 
|  |  | 
|  | ~PthreadMutex() { | 
|  | destroy(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void init(int mutex_type, int protocol) { | 
|  | pthread_mutexattr_t attr; | 
|  | ASSERT_EQ(0, pthread_mutexattr_init(&attr)); | 
|  | ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type)); | 
|  | ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, protocol)); | 
|  | ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); | 
|  | ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); | 
|  | } | 
|  |  | 
|  | void destroy() { | 
|  | ASSERT_EQ(0, pthread_mutex_destroy(&lock)); | 
|  | } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(PthreadMutex); | 
|  | }; | 
|  |  | 
|  | static void TestPthreadMutexLockNormal(int protocol) { | 
|  | PthreadMutex m(PTHREAD_MUTEX_NORMAL, protocol); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); | 
|  | ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | } | 
|  |  | 
|  | static void TestPthreadMutexLockErrorCheck(int protocol) { | 
|  | PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK, protocol); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); | 
|  | ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); | 
|  | if (protocol == PTHREAD_PRIO_NONE) { | 
|  | ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock)); | 
|  | } else { | 
|  | ASSERT_EQ(EDEADLK, pthread_mutex_trylock(&m.lock)); | 
|  | } | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock)); | 
|  | } | 
|  |  | 
|  | static void TestPthreadMutexLockRecursive(int protocol) { | 
|  | PthreadMutex m(PTHREAD_MUTEX_RECURSIVE, protocol); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_lock_NORMAL) { | 
|  | TestPthreadMutexLockNormal(PTHREAD_PRIO_NONE); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_lock_ERRORCHECK) { | 
|  | TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_NONE); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_lock_RECURSIVE) { | 
|  | TestPthreadMutexLockRecursive(PTHREAD_PRIO_NONE); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_lock_pi) { | 
|  | TestPthreadMutexLockNormal(PTHREAD_PRIO_INHERIT); | 
|  | TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_INHERIT); | 
|  | TestPthreadMutexLockRecursive(PTHREAD_PRIO_INHERIT); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_pi_count_limit) { | 
|  | #if defined(__BIONIC__) && !defined(__LP64__) | 
|  | // Bionic only supports 65536 pi mutexes in 32-bit programs. | 
|  | pthread_mutexattr_t attr; | 
|  | ASSERT_EQ(0, pthread_mutexattr_init(&attr)); | 
|  | ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT)); | 
|  | std::vector<pthread_mutex_t> mutexes(65536); | 
|  | // Test if we can use 65536 pi mutexes at the same time. | 
|  | // Run 2 times to check if freed pi mutexes can be recycled. | 
|  | for (int repeat = 0; repeat < 2; ++repeat) { | 
|  | for (auto& m : mutexes) { | 
|  | ASSERT_EQ(0, pthread_mutex_init(&m, &attr)); | 
|  | } | 
|  | pthread_mutex_t m; | 
|  | ASSERT_EQ(ENOMEM, pthread_mutex_init(&m, &attr)); | 
|  | for (auto& m : mutexes) { | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&m)); | 
|  | } | 
|  | for (auto& m : mutexes) { | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m)); | 
|  | } | 
|  | for (auto& m : mutexes) { | 
|  | ASSERT_EQ(0, pthread_mutex_destroy(&m)); | 
|  | } | 
|  | } | 
|  | ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test does nothing as pi mutex count isn't limited.\n"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_init_same_as_static_initializers) { | 
|  | pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER; | 
|  | PthreadMutex m1(PTHREAD_MUTEX_NORMAL); | 
|  | ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t))); | 
|  | pthread_mutex_destroy(&lock_normal); | 
|  |  | 
|  | pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP; | 
|  | PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK); | 
|  | ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t))); | 
|  | pthread_mutex_destroy(&lock_errorcheck); | 
|  |  | 
|  | pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; | 
|  | PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE); | 
|  | ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t))); | 
|  | ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive)); | 
|  | } | 
|  |  | 
|  | class MutexWakeupHelper { | 
|  | private: | 
|  | PthreadMutex m; | 
|  | enum Progress { | 
|  | LOCK_INITIALIZED, | 
|  | LOCK_WAITING, | 
|  | LOCK_RELEASED, | 
|  | LOCK_ACCESSED | 
|  | }; | 
|  | std::atomic<Progress> progress; | 
|  | std::atomic<pid_t> tid; | 
|  |  | 
|  | static void thread_fn(MutexWakeupHelper* helper) { | 
|  | helper->tid = gettid(); | 
|  | ASSERT_EQ(LOCK_INITIALIZED, helper->progress); | 
|  | helper->progress = LOCK_WAITING; | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock)); | 
|  | ASSERT_EQ(LOCK_RELEASED, helper->progress); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock)); | 
|  |  | 
|  | helper->progress = LOCK_ACCESSED; | 
|  | } | 
|  |  | 
|  | public: | 
|  | explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) { | 
|  | } | 
|  |  | 
|  | void test() { | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); | 
|  | progress = LOCK_INITIALIZED; | 
|  | tid = 0; | 
|  |  | 
|  | pthread_t thread; | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this)); | 
|  |  | 
|  | WaitUntilThreadSleep(tid); | 
|  | ASSERT_EQ(LOCK_WAITING, progress); | 
|  |  | 
|  | progress = LOCK_RELEASED; | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_join(thread, nullptr)); | 
|  | ASSERT_EQ(LOCK_ACCESSED, progress); | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(pthread, pthread_mutex_NORMAL_wakeup) { | 
|  | MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL); | 
|  | helper.test(); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) { | 
|  | MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK); | 
|  | helper.test(); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_RECURSIVE_wakeup) { | 
|  | MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE); | 
|  | helper.test(); | 
|  | } | 
|  |  | 
|  | static int GetThreadPriority(pid_t tid) { | 
|  | // sched_getparam() returns the static priority of a thread, which can't reflect a thread's | 
|  | // priority after priority inheritance. So read /proc/<pid>/stat to get the dynamic priority. | 
|  | std::string filename = android::base::StringPrintf("/proc/%d/stat", tid); | 
|  | std::string content; | 
|  | int result = INT_MAX; | 
|  | if (!android::base::ReadFileToString(filename, &content)) { | 
|  | return result; | 
|  | } | 
|  | std::vector<std::string> strs = android::base::Split(content, " "); | 
|  | if (strs.size() < 18) { | 
|  | return result; | 
|  | } | 
|  | if (!android::base::ParseInt(strs[17], &result)) { | 
|  | return INT_MAX; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | class PIMutexWakeupHelper { | 
|  | private: | 
|  | PthreadMutex m; | 
|  | int protocol; | 
|  | enum Progress { | 
|  | LOCK_INITIALIZED, | 
|  | LOCK_CHILD_READY, | 
|  | LOCK_WAITING, | 
|  | LOCK_RELEASED, | 
|  | }; | 
|  | std::atomic<Progress> progress; | 
|  | std::atomic<pid_t> main_tid; | 
|  | std::atomic<pid_t> child_tid; | 
|  | PthreadMutex start_thread_m; | 
|  |  | 
|  | static void thread_fn(PIMutexWakeupHelper* helper) { | 
|  | helper->child_tid = gettid(); | 
|  | ASSERT_EQ(LOCK_INITIALIZED, helper->progress); | 
|  | ASSERT_EQ(0, setpriority(PRIO_PROCESS, gettid(), 1)); | 
|  | ASSERT_EQ(21, GetThreadPriority(gettid())); | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock)); | 
|  | helper->progress = LOCK_CHILD_READY; | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&helper->start_thread_m.lock)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&helper->start_thread_m.lock)); | 
|  | WaitUntilThreadSleep(helper->main_tid); | 
|  | ASSERT_EQ(LOCK_WAITING, helper->progress); | 
|  |  | 
|  | if (helper->protocol == PTHREAD_PRIO_INHERIT) { | 
|  | ASSERT_EQ(20, GetThreadPriority(gettid())); | 
|  | } else { | 
|  | ASSERT_EQ(21, GetThreadPriority(gettid())); | 
|  | } | 
|  | helper->progress = LOCK_RELEASED; | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock)); | 
|  | } | 
|  |  | 
|  | public: | 
|  | explicit PIMutexWakeupHelper(int mutex_type, int protocol) | 
|  | : m(mutex_type, protocol), protocol(protocol), start_thread_m(PTHREAD_MUTEX_NORMAL) { | 
|  | } | 
|  |  | 
|  | void test() { | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&start_thread_m.lock)); | 
|  | main_tid = gettid(); | 
|  | ASSERT_EQ(20, GetThreadPriority(main_tid)); | 
|  | progress = LOCK_INITIALIZED; | 
|  | child_tid = 0; | 
|  |  | 
|  | pthread_t thread; | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(PIMutexWakeupHelper::thread_fn), this)); | 
|  |  | 
|  | WaitUntilThreadSleep(child_tid); | 
|  | ASSERT_EQ(LOCK_CHILD_READY, progress); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&start_thread_m.lock)); | 
|  | progress = LOCK_WAITING; | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); | 
|  |  | 
|  | ASSERT_EQ(LOCK_RELEASED, progress); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | ASSERT_EQ(0, pthread_join(thread, nullptr)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(pthread, pthread_mutex_pi_wakeup) { | 
|  | for (int type : {PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK}) { | 
|  | for (int protocol : {PTHREAD_PRIO_INHERIT}) { | 
|  | PIMutexWakeupHelper helper(type, protocol); | 
|  | helper.test(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_owner_tid_limit) { | 
|  | #if defined(__BIONIC__) && !defined(__LP64__) | 
|  | FILE* fp = fopen("/proc/sys/kernel/pid_max", "r"); | 
|  | ASSERT_TRUE(fp != nullptr); | 
|  | long pid_max; | 
|  | ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max)); | 
|  | fclose(fp); | 
|  | // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid. | 
|  | ASSERT_LE(pid_max, 65536); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void pthread_mutex_timedlock_helper(clockid_t clock, | 
|  | int (*lock_function)(pthread_mutex_t* __mutex, | 
|  | const timespec* __timeout)) { | 
|  | pthread_mutex_t m; | 
|  | ASSERT_EQ(0, pthread_mutex_init(&m, nullptr)); | 
|  |  | 
|  | // If the mutex is already locked, pthread_mutex_timedlock should time out. | 
|  | ASSERT_EQ(0, pthread_mutex_lock(&m)); | 
|  |  | 
|  | timespec ts; | 
|  | ASSERT_EQ(0, clock_gettime(clock, &ts)); | 
|  | ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts)); | 
|  | ts.tv_nsec = -1; | 
|  | ASSERT_EQ(EINVAL, lock_function(&m, &ts)); | 
|  | ts.tv_nsec = NS_PER_S; | 
|  | ASSERT_EQ(EINVAL, lock_function(&m, &ts)); | 
|  | ts.tv_nsec = NS_PER_S - 1; | 
|  | ts.tv_sec = -1; | 
|  | ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts)); | 
|  |  | 
|  | // If the mutex is unlocked, pthread_mutex_timedlock should succeed. | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m)); | 
|  |  | 
|  | ASSERT_EQ(0, clock_gettime(clock, &ts)); | 
|  | ts.tv_sec += 1; | 
|  | ASSERT_EQ(0, lock_function(&m, &ts)); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m)); | 
|  | ASSERT_EQ(0, pthread_mutex_destroy(&m)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_timedlock) { | 
|  | pthread_mutex_timedlock_helper(CLOCK_REALTIME, pthread_mutex_timedlock); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_timedlock_monotonic_np) { | 
|  | #if defined(__BIONIC__) | 
|  | pthread_mutex_timedlock_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np); | 
|  | #else   // __BIONIC__ | 
|  | GTEST_LOG_(INFO) << "This test does nothing since pthread_mutex_timedlock_monotonic_np is only " | 
|  | "supported on bionic"; | 
|  | #endif  // __BIONIC__ | 
|  | } | 
|  |  | 
|  | static void pthread_mutex_timedlock_pi_helper(clockid_t clock, | 
|  | int (*lock_function)(pthread_mutex_t* __mutex, | 
|  | const timespec* __timeout)) { | 
|  | PthreadMutex m(PTHREAD_MUTEX_NORMAL, PTHREAD_PRIO_INHERIT); | 
|  |  | 
|  | timespec ts; | 
|  | clock_gettime(clock, &ts); | 
|  | ts.tv_sec += 1; | 
|  | ASSERT_EQ(0, lock_function(&m.lock, &ts)); | 
|  |  | 
|  | struct ThreadArgs { | 
|  | clockid_t clock; | 
|  | int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout); | 
|  | PthreadMutex& m; | 
|  | }; | 
|  |  | 
|  | ThreadArgs thread_args = { | 
|  | .clock = clock, | 
|  | .lock_function = lock_function, | 
|  | .m = m, | 
|  | }; | 
|  |  | 
|  | auto ThreadFn = [](void* arg) -> void* { | 
|  | auto args = static_cast<ThreadArgs*>(arg); | 
|  | timespec ts; | 
|  | clock_gettime(args->clock, &ts); | 
|  | ts.tv_sec += 1; | 
|  | intptr_t result = args->lock_function(&args->m.lock, &ts); | 
|  | return reinterpret_cast<void*>(result); | 
|  | }; | 
|  |  | 
|  | pthread_t thread; | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, ThreadFn, &thread_args)); | 
|  | void* result; | 
|  | ASSERT_EQ(0, pthread_join(thread, &result)); | 
|  | ASSERT_EQ(ETIMEDOUT, reinterpret_cast<intptr_t>(result)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_timedlock_pi) { | 
|  | pthread_mutex_timedlock_pi_helper(CLOCK_REALTIME, pthread_mutex_timedlock); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_timedlock_monotonic_np_pi) { | 
|  | #if defined(__BIONIC__) | 
|  | pthread_mutex_timedlock_pi_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np); | 
|  | #else   // __BIONIC__ | 
|  | GTEST_LOG_(INFO) << "This test does nothing since pthread_mutex_timedlock_monotonic_np is only " | 
|  | "supported on bionic"; | 
|  | #endif  // __BIONIC__ | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_using_destroyed_mutex) { | 
|  | #if defined(__BIONIC__) | 
|  | pthread_mutex_t m; | 
|  | ASSERT_EQ(0, pthread_mutex_init(&m, nullptr)); | 
|  | ASSERT_EQ(0, pthread_mutex_destroy(&m)); | 
|  | ASSERT_EXIT(pthread_mutex_lock(&m), ::testing::KilledBySignal(SIGABRT), | 
|  | "pthread_mutex_lock called on a destroyed mutex"); | 
|  | ASSERT_EXIT(pthread_mutex_unlock(&m), ::testing::KilledBySignal(SIGABRT), | 
|  | "pthread_mutex_unlock called on a destroyed mutex"); | 
|  | ASSERT_EXIT(pthread_mutex_trylock(&m), ::testing::KilledBySignal(SIGABRT), | 
|  | "pthread_mutex_trylock called on a destroyed mutex"); | 
|  | timespec ts; | 
|  | ASSERT_EXIT(pthread_mutex_timedlock(&m, &ts), ::testing::KilledBySignal(SIGABRT), | 
|  | "pthread_mutex_timedlock called on a destroyed mutex"); | 
|  | ASSERT_EXIT(pthread_mutex_timedlock_monotonic_np(&m, &ts), ::testing::KilledBySignal(SIGABRT), | 
|  | "pthread_mutex_timedlock_monotonic_np called on a destroyed mutex"); | 
|  | ASSERT_EXIT(pthread_mutex_destroy(&m), ::testing::KilledBySignal(SIGABRT), | 
|  | "pthread_mutex_destroy called on a destroyed mutex"); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test tests bionic pthread mutex implementation details."; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | class StrictAlignmentAllocator { | 
|  | public: | 
|  | void* allocate(size_t size, size_t alignment) { | 
|  | char* p = new char[size + alignment * 2]; | 
|  | allocated_array.push_back(p); | 
|  | while (!is_strict_aligned(p, alignment)) { | 
|  | ++p; | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | ~StrictAlignmentAllocator() { | 
|  | for (const auto& p : allocated_array) { | 
|  | delete[] p; | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool is_strict_aligned(char* p, size_t alignment) { | 
|  | return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment; | 
|  | } | 
|  |  | 
|  | std::vector<char*> allocated_array; | 
|  | }; | 
|  |  | 
|  | TEST(pthread, pthread_types_allow_four_bytes_alignment) { | 
|  | #if defined(__BIONIC__) | 
|  | // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types. | 
|  | StrictAlignmentAllocator allocator; | 
|  | pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>( | 
|  | allocator.allocate(sizeof(pthread_mutex_t), 4)); | 
|  | ASSERT_EQ(0, pthread_mutex_init(mutex, nullptr)); | 
|  | ASSERT_EQ(0, pthread_mutex_lock(mutex)); | 
|  | ASSERT_EQ(0, pthread_mutex_unlock(mutex)); | 
|  | ASSERT_EQ(0, pthread_mutex_destroy(mutex)); | 
|  |  | 
|  | pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>( | 
|  | allocator.allocate(sizeof(pthread_cond_t), 4)); | 
|  | ASSERT_EQ(0, pthread_cond_init(cond, nullptr)); | 
|  | ASSERT_EQ(0, pthread_cond_signal(cond)); | 
|  | ASSERT_EQ(0, pthread_cond_broadcast(cond)); | 
|  | ASSERT_EQ(0, pthread_cond_destroy(cond)); | 
|  |  | 
|  | pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>( | 
|  | allocator.allocate(sizeof(pthread_rwlock_t), 4)); | 
|  | ASSERT_EQ(0, pthread_rwlock_init(rwlock, nullptr)); | 
|  | ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); | 
|  | ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock)); | 
|  | ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); | 
|  | ASSERT_EQ(0, pthread_rwlock_destroy(rwlock)); | 
|  |  | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test tests bionic implementation details."; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_lock_null_32) { | 
|  | #if defined(__BIONIC__) && !defined(__LP64__) | 
|  | // For LP32, the pthread lock/unlock functions allow a NULL mutex and return | 
|  | // EINVAL in that case: http://b/19995172. | 
|  | // | 
|  | // We decorate the public defintion with _Nonnull so that people recompiling | 
|  | // their code with get a warning and might fix their bug, but need to pass | 
|  | // NULL here to test that we remain compatible. | 
|  | pthread_mutex_t* null_value = nullptr; | 
|  | ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value)); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices."; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_mutex_unlock_null_32) { | 
|  | #if defined(__BIONIC__) && !defined(__LP64__) | 
|  | // For LP32, the pthread lock/unlock functions allow a NULL mutex and return | 
|  | // EINVAL in that case: http://b/19995172. | 
|  | // | 
|  | // We decorate the public defintion with _Nonnull so that people recompiling | 
|  | // their code with get a warning and might fix their bug, but need to pass | 
|  | // NULL here to test that we remain compatible. | 
|  | pthread_mutex_t* null_value = nullptr; | 
|  | ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value)); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices."; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) { | 
|  | #if defined(__BIONIC__) && defined(__LP64__) | 
|  | pthread_mutex_t* null_value = nullptr; | 
|  | ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), ""); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices."; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) { | 
|  | #if defined(__BIONIC__) && defined(__LP64__) | 
|  | pthread_mutex_t* null_value = nullptr; | 
|  | ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), ""); | 
|  | #else | 
|  | GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices."; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg); | 
|  |  | 
|  | static volatile bool signal_handler_on_altstack_done; | 
|  |  | 
|  | __attribute__((__noinline__)) | 
|  | static void signal_handler_backtrace() { | 
|  | // Check if we have enough stack space for unwinding. | 
|  | int count = 0; | 
|  | _Unwind_Backtrace(FrameCounter, &count); | 
|  | ASSERT_GT(count, 0); | 
|  | } | 
|  |  | 
|  | __attribute__((__noinline__)) | 
|  | static void signal_handler_logging() { | 
|  | // Check if we have enough stack space for logging. | 
|  | std::string s(2048, '*'); | 
|  | GTEST_LOG_(INFO) << s; | 
|  | signal_handler_on_altstack_done = true; | 
|  | } | 
|  |  | 
|  | __attribute__((__noinline__)) | 
|  | static void signal_handler_snprintf() { | 
|  | // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra. | 
|  | char buf[PATH_MAX + 2048]; | 
|  | ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0); | 
|  | } | 
|  |  | 
|  | static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) { | 
|  | ASSERT_EQ(SIGUSR1, signo); | 
|  | signal_handler_backtrace(); | 
|  | signal_handler_logging(); | 
|  | signal_handler_snprintf(); | 
|  | } | 
|  |  | 
|  | TEST(pthread, big_enough_signal_stack) { | 
|  | signal_handler_on_altstack_done = false; | 
|  | ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK); | 
|  | kill(getpid(), SIGUSR1); | 
|  | ASSERT_TRUE(signal_handler_on_altstack_done); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_barrierattr_smoke) { | 
|  | pthread_barrierattr_t attr; | 
|  | ASSERT_EQ(0, pthread_barrierattr_init(&attr)); | 
|  | int pshared; | 
|  | ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared)); | 
|  | ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); | 
|  | ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); | 
|  | ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared)); | 
|  | ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); | 
|  | ASSERT_EQ(0, pthread_barrierattr_destroy(&attr)); | 
|  | } | 
|  |  | 
|  | struct BarrierTestHelperData { | 
|  | size_t thread_count; | 
|  | pthread_barrier_t barrier; | 
|  | std::atomic<int> finished_mask; | 
|  | std::atomic<int> serial_thread_count; | 
|  | size_t iteration_count; | 
|  | std::atomic<size_t> finished_iteration_count; | 
|  |  | 
|  | BarrierTestHelperData(size_t thread_count, size_t iteration_count) | 
|  | : thread_count(thread_count), finished_mask(0), serial_thread_count(0), | 
|  | iteration_count(iteration_count), finished_iteration_count(0) { | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct BarrierTestHelperArg { | 
|  | int id; | 
|  | BarrierTestHelperData* data; | 
|  | }; | 
|  |  | 
|  | static void BarrierTestHelper(BarrierTestHelperArg* arg) { | 
|  | for (size_t i = 0; i < arg->data->iteration_count; ++i) { | 
|  | int result = pthread_barrier_wait(&arg->data->barrier); | 
|  | if (result == PTHREAD_BARRIER_SERIAL_THREAD) { | 
|  | arg->data->serial_thread_count++; | 
|  | } else { | 
|  | ASSERT_EQ(0, result); | 
|  | } | 
|  | int mask = arg->data->finished_mask.fetch_or(1 << arg->id); | 
|  | mask |= 1 << arg->id; | 
|  | if (mask == ((1 << arg->data->thread_count) - 1)) { | 
|  | ASSERT_EQ(1, arg->data->serial_thread_count); | 
|  | arg->data->finished_iteration_count++; | 
|  | arg->data->finished_mask = 0; | 
|  | arg->data->serial_thread_count = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_barrier_smoke) { | 
|  | const size_t BARRIER_ITERATION_COUNT = 10; | 
|  | const size_t BARRIER_THREAD_COUNT = 10; | 
|  | BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT); | 
|  | ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count)); | 
|  | std::vector<pthread_t> threads(data.thread_count); | 
|  | std::vector<BarrierTestHelperArg> args(threads.size()); | 
|  | for (size_t i = 0; i < threads.size(); ++i) { | 
|  | args[i].id = i; | 
|  | args[i].data = &data; | 
|  | ASSERT_EQ(0, pthread_create(&threads[i], nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i])); | 
|  | } | 
|  | for (size_t i = 0; i < threads.size(); ++i) { | 
|  | ASSERT_EQ(0, pthread_join(threads[i], nullptr)); | 
|  | } | 
|  | ASSERT_EQ(data.iteration_count, data.finished_iteration_count); | 
|  | ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier)); | 
|  | } | 
|  |  | 
|  | struct BarrierDestroyTestArg { | 
|  | std::atomic<int> tid; | 
|  | pthread_barrier_t* barrier; | 
|  | }; | 
|  |  | 
|  | static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) { | 
|  | arg->tid = gettid(); | 
|  | ASSERT_EQ(0, pthread_barrier_wait(arg->barrier)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_barrier_destroy) { | 
|  | pthread_barrier_t barrier; | 
|  | ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2)); | 
|  | pthread_t thread; | 
|  | BarrierDestroyTestArg arg; | 
|  | arg.tid = 0; | 
|  | arg.barrier = &barrier; | 
|  | ASSERT_EQ(0, pthread_create(&thread, nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg)); | 
|  | WaitUntilThreadSleep(arg.tid); | 
|  | ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier)); | 
|  | ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier)); | 
|  | // Verify if the barrier can be destroyed directly after pthread_barrier_wait(). | 
|  | ASSERT_EQ(0, pthread_barrier_destroy(&barrier)); | 
|  | ASSERT_EQ(0, pthread_join(thread, nullptr)); | 
|  | #if defined(__BIONIC__) | 
|  | ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct BarrierOrderingTestHelperArg { | 
|  | pthread_barrier_t* barrier; | 
|  | size_t* array; | 
|  | size_t array_length; | 
|  | size_t id; | 
|  | }; | 
|  |  | 
|  | void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) { | 
|  | const size_t ITERATION_COUNT = 10000; | 
|  | for (size_t i = 1; i <= ITERATION_COUNT; ++i) { | 
|  | arg->array[arg->id] = i; | 
|  | int result = pthread_barrier_wait(arg->barrier); | 
|  | ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD); | 
|  | for (size_t j = 0; j < arg->array_length; ++j) { | 
|  | ASSERT_EQ(i, arg->array[j]); | 
|  | } | 
|  | result = pthread_barrier_wait(arg->barrier); | 
|  | ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_barrier_check_ordering) { | 
|  | const size_t THREAD_COUNT = 4; | 
|  | pthread_barrier_t barrier; | 
|  | ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT)); | 
|  | size_t array[THREAD_COUNT]; | 
|  | std::vector<pthread_t> threads(THREAD_COUNT); | 
|  | std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT); | 
|  | for (size_t i = 0; i < THREAD_COUNT; ++i) { | 
|  | args[i].barrier = &barrier; | 
|  | args[i].array = array; | 
|  | args[i].array_length = THREAD_COUNT; | 
|  | args[i].id = i; | 
|  | ASSERT_EQ(0, pthread_create(&threads[i], nullptr, | 
|  | reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper), | 
|  | &args[i])); | 
|  | } | 
|  | for (size_t i = 0; i < THREAD_COUNT; ++i) { | 
|  | ASSERT_EQ(0, pthread_join(threads[i], nullptr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_barrier_init_zero_count) { | 
|  | pthread_barrier_t barrier; | 
|  | ASSERT_EQ(EINVAL, pthread_barrier_init(&barrier, nullptr, 0)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_spinlock_smoke) { | 
|  | pthread_spinlock_t lock; | 
|  | ASSERT_EQ(0, pthread_spin_init(&lock, 0)); | 
|  | ASSERT_EQ(0, pthread_spin_trylock(&lock)); | 
|  | ASSERT_EQ(0, pthread_spin_unlock(&lock)); | 
|  | ASSERT_EQ(0, pthread_spin_lock(&lock)); | 
|  | ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock)); | 
|  | ASSERT_EQ(0, pthread_spin_unlock(&lock)); | 
|  | ASSERT_EQ(0, pthread_spin_destroy(&lock)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_getdetachstate__pthread_attr_setdetachstate) { | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attr)); | 
|  |  | 
|  | int state; | 
|  | ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); | 
|  | ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state)); | 
|  | ASSERT_EQ(PTHREAD_CREATE_DETACHED, state); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)); | 
|  | ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state)); | 
|  | ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state); | 
|  |  | 
|  | ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123)); | 
|  | ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state)); | 
|  | ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_create__mmap_failures) { | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attr)); | 
|  | ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); | 
|  |  | 
|  | const auto kPageSize = sysconf(_SC_PAGE_SIZE); | 
|  |  | 
|  | // Use up all the VMAs. By default this is 64Ki (though some will already be in use). | 
|  | std::vector<void*> pages; | 
|  | pages.reserve(64 * 1024); | 
|  | int prot = PROT_NONE; | 
|  | while (true) { | 
|  | void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0); | 
|  | if (page == MAP_FAILED) break; | 
|  | pages.push_back(page); | 
|  | prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE; | 
|  | } | 
|  |  | 
|  | // Try creating threads, freeing up a page each time we fail. | 
|  | size_t EAGAIN_count = 0; | 
|  | size_t i = 0; | 
|  | for (; i < pages.size(); ++i) { | 
|  | pthread_t t; | 
|  | int status = pthread_create(&t, &attr, IdFn, nullptr); | 
|  | if (status != EAGAIN) break; | 
|  | ++EAGAIN_count; | 
|  | ASSERT_EQ(0, munmap(pages[i], kPageSize)); | 
|  | } | 
|  |  | 
|  | // Creating a thread uses at least six VMAs: the stack, the TLS, and a guard each side of both. | 
|  | // So we should have seen at least six failures. | 
|  | ASSERT_GE(EAGAIN_count, 6U); | 
|  |  | 
|  | for (; i < pages.size(); ++i) { | 
|  | ASSERT_EQ(0, munmap(pages[i], kPageSize)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_setschedparam) { | 
|  | sched_param p = { .sched_priority = INT_MIN }; | 
|  | ASSERT_EQ(EINVAL, pthread_setschedparam(pthread_self(), INT_MIN, &p)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_setschedprio) { | 
|  | ASSERT_EQ(EINVAL, pthread_setschedprio(pthread_self(), INT_MIN)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_getinheritsched__pthread_attr_setinheritsched) { | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attr)); | 
|  |  | 
|  | int state; | 
|  | ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); | 
|  | ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state)); | 
|  | ASSERT_EQ(PTHREAD_INHERIT_SCHED, state); | 
|  |  | 
|  | ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED)); | 
|  | ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state)); | 
|  | ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state); | 
|  |  | 
|  | ASSERT_EQ(EINVAL, pthread_attr_setinheritsched(&attr, 123)); | 
|  | ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state)); | 
|  | ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED) { | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attr)); | 
|  |  | 
|  | // If we set invalid scheduling attributes but choose to inherit, everything's fine... | 
|  | sched_param param = { .sched_priority = sched_get_priority_max(SCHED_FIFO) + 1 }; | 
|  | ASSERT_EQ(0, pthread_attr_setschedparam(&attr, ¶m)); | 
|  | ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_FIFO)); | 
|  | ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); | 
|  |  | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, nullptr)); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  |  | 
|  | #if defined(__LP64__) | 
|  | // If we ask to use them, though, we'll see a failure... | 
|  | ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED)); | 
|  | ASSERT_EQ(EINVAL, pthread_create(&t, &attr, IdFn, nullptr)); | 
|  | #else | 
|  | // For backwards compatibility with broken apps, we just ignore failures | 
|  | // to set scheduler attributes on LP32. | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect) { | 
|  | sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) }; | 
|  | int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m); | 
|  | if (rc == EPERM) { | 
|  | GTEST_LOG_(INFO) << "pthread_setschedparam failed with EPERM, skipping test\n"; | 
|  | return; | 
|  | } | 
|  | ASSERT_EQ(0, rc); | 
|  |  | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attr)); | 
|  | ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); | 
|  |  | 
|  | SpinFunctionHelper spin_helper; | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr)); | 
|  | int actual_policy; | 
|  | sched_param actual_param; | 
|  | ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param)); | 
|  | ASSERT_EQ(SCHED_FIFO, actual_policy); | 
|  | spin_helper.UnSpin(); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect) { | 
|  | sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) }; | 
|  | int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m); | 
|  | if (rc == EPERM) { | 
|  | GTEST_LOG_(INFO) << "pthread_setschedparam failed with EPERM, skipping test\n"; | 
|  | return; | 
|  | } | 
|  | ASSERT_EQ(0, rc); | 
|  |  | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attr)); | 
|  | ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED)); | 
|  | ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_OTHER)); | 
|  |  | 
|  | SpinFunctionHelper spin_helper; | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr)); | 
|  | int actual_policy; | 
|  | sched_param actual_param; | 
|  | ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param)); | 
|  | ASSERT_EQ(SCHED_OTHER, actual_policy); | 
|  | spin_helper.UnSpin(); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(pthread, pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK) { | 
|  | sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) }; | 
|  | int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m); | 
|  | if (rc == EPERM) { | 
|  | GTEST_LOG_(INFO) << "pthread_setschedparam failed with EPERM, skipping test\n"; | 
|  | return; | 
|  | } | 
|  | ASSERT_EQ(0, rc); | 
|  |  | 
|  | pthread_attr_t attr; | 
|  | ASSERT_EQ(0, pthread_attr_init(&attr)); | 
|  | ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); | 
|  |  | 
|  | SpinFunctionHelper spin_helper; | 
|  | pthread_t t; | 
|  | ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr)); | 
|  | int actual_policy; | 
|  | sched_param actual_param; | 
|  | ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param)); | 
|  | ASSERT_EQ(SCHED_FIFO  | SCHED_RESET_ON_FORK, actual_policy); | 
|  | spin_helper.UnSpin(); | 
|  | ASSERT_EQ(0, pthread_join(t, nullptr)); | 
|  | } |