| /* | 
 |  * Copyright (C) 2013 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <gtest/gtest.h> | 
 |  | 
 | #include <errno.h> | 
 | #include <sched.h> | 
 | #include <sys/types.h> | 
 | #include <sys/wait.h> | 
 |  | 
 | static int child_fn(void* i_ptr) { | 
 |   *reinterpret_cast<int*>(i_ptr) = 42; | 
 |   return 123; | 
 | } | 
 |  | 
 | #if defined(__BIONIC__) | 
 | TEST(sched, clone) { | 
 |   void* child_stack[1024]; | 
 |  | 
 |   int i = 0; | 
 |   pid_t tid = clone(child_fn, &child_stack[1024], CLONE_VM, &i); | 
 |  | 
 |   int status; | 
 |   ASSERT_EQ(tid, TEMP_FAILURE_RETRY(waitpid(tid, &status, __WCLONE))); | 
 |  | 
 |   ASSERT_EQ(42, i); | 
 |  | 
 |   ASSERT_TRUE(WIFEXITED(status)); | 
 |   ASSERT_EQ(123, WEXITSTATUS(status)); | 
 | } | 
 | #else | 
 | // For glibc, any call to clone with CLONE_VM set will cause later pthread | 
 | // calls in the same process to misbehave. | 
 | // See https://sourceware.org/bugzilla/show_bug.cgi?id=10311 for more details. | 
 | TEST(sched, clone) { | 
 |   // In order to enumerate all possible tests for CTS, create an empty test. | 
 |   GTEST_LOG_(INFO) << "This test does nothing.\n"; | 
 | } | 
 | #endif | 
 |  | 
 | TEST(sched, clone_errno) { | 
 |   // Check that our hand-written clone assembler sets errno correctly on failure. | 
 |   uintptr_t fake_child_stack[16]; | 
 |   errno = 0; | 
 |   // If CLONE_THREAD is set, CLONE_SIGHAND must be set too. | 
 |   ASSERT_EQ(-1, clone(child_fn, &fake_child_stack[16], CLONE_THREAD, nullptr)); | 
 |   ASSERT_EQ(EINVAL, errno); | 
 | } | 
 |  | 
 | TEST(sched, clone_null_child_stack) { | 
 |   int i = 0; | 
 |   errno = 0; | 
 |   ASSERT_EQ(-1, clone(child_fn, nullptr, CLONE_VM, &i)); | 
 |   ASSERT_EQ(EINVAL, errno); | 
 | } | 
 |  | 
 | TEST(sched, cpu_set) { | 
 |   cpu_set_t set; | 
 |  | 
 |   CPU_ZERO(&set); | 
 |   CPU_SET(0, &set); | 
 |   CPU_SET(17, &set); | 
 |   for (int i = 0; i < CPU_SETSIZE; i++) { | 
 |     ASSERT_EQ(i == 0 || i == 17, CPU_ISSET(i, &set)); | 
 |   } | 
 |  | 
 |   // We should fail silently if we try to set/test outside the range. | 
 |   CPU_SET(CPU_SETSIZE, &set); | 
 |   ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set)); | 
 | } | 
 |  | 
 | TEST(sched, cpu_count) { | 
 |   cpu_set_t set; | 
 |  | 
 |   CPU_ZERO(&set); | 
 |   ASSERT_EQ(0, CPU_COUNT(&set)); | 
 |   CPU_SET(2, &set); | 
 |   CPU_SET(10, &set); | 
 |   ASSERT_EQ(2, CPU_COUNT(&set)); | 
 |   CPU_CLR(10, &set); | 
 |   ASSERT_EQ(1, CPU_COUNT(&set)); | 
 | } | 
 |  | 
 | TEST(sched, cpu_zero) { | 
 |   cpu_set_t set; | 
 |  | 
 |   CPU_ZERO(&set); | 
 |   ASSERT_EQ(0, CPU_COUNT(&set)); | 
 |   for (int i = 0; i < CPU_SETSIZE; i++) { | 
 |     ASSERT_FALSE(CPU_ISSET(i, &set)); | 
 |   } | 
 | } | 
 |  | 
 | TEST(sched, cpu_clr) { | 
 |   cpu_set_t set; | 
 |  | 
 |   CPU_ZERO(&set); | 
 |   CPU_SET(0, &set); | 
 |   CPU_SET(1, &set); | 
 |   for (int i = 0; i < CPU_SETSIZE; i++) { | 
 |     ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set)); | 
 |   } | 
 |   CPU_CLR(1, &set); | 
 |   for (int i = 0; i < CPU_SETSIZE; i++) { | 
 |     ASSERT_EQ(i == 0, CPU_ISSET(i, &set)); | 
 |   } | 
 |  | 
 |   // We should fail silently if we try to clear/test outside the range. | 
 |   CPU_CLR(CPU_SETSIZE, &set); | 
 |   ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set)); | 
 | } | 
 |  | 
 | TEST(sched, cpu_equal) { | 
 |   cpu_set_t set1; | 
 |   cpu_set_t set2; | 
 |  | 
 |   CPU_ZERO(&set1); | 
 |   CPU_ZERO(&set2); | 
 |   CPU_SET(1, &set1); | 
 |   ASSERT_FALSE(CPU_EQUAL(&set1, &set2)); | 
 |   CPU_SET(1, &set2); | 
 |   ASSERT_TRUE(CPU_EQUAL(&set1, &set2)); | 
 | } | 
 |  | 
 | TEST(sched, cpu_op) { | 
 |   cpu_set_t set1; | 
 |   cpu_set_t set2; | 
 |   cpu_set_t set3; | 
 |  | 
 |   CPU_ZERO(&set1); | 
 |   CPU_ZERO(&set2); | 
 |   CPU_ZERO(&set3); | 
 |   CPU_SET(0, &set1); | 
 |   CPU_SET(0, &set2); | 
 |   CPU_SET(1, &set2); | 
 |  | 
 |   CPU_AND(&set3, &set1, &set2); | 
 |   for (int i = 0; i < CPU_SETSIZE; i++) { | 
 |     ASSERT_EQ(i == 0, CPU_ISSET(i, &set3)); | 
 |   } | 
 |  | 
 |   CPU_XOR(&set3, &set1, &set2); | 
 |   for (int i = 0; i < CPU_SETSIZE; i++) { | 
 |     ASSERT_EQ(i == 1, CPU_ISSET(i, &set3)); | 
 |   } | 
 |  | 
 |   CPU_OR(&set3, &set1, &set2); | 
 |   for (int i = 0; i < CPU_SETSIZE; i++) { | 
 |     ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set3)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | TEST(sched, cpu_alloc_small) { | 
 |   cpu_set_t* set = CPU_ALLOC(17); | 
 |   size_t size = CPU_ALLOC_SIZE(17); | 
 |  | 
 |   CPU_ZERO_S(size, set); | 
 |   ASSERT_EQ(0, CPU_COUNT_S(size, set)); | 
 |   CPU_SET_S(16, size, set); | 
 |   ASSERT_TRUE(CPU_ISSET_S(16, size, set)); | 
 |  | 
 |   CPU_FREE(set); | 
 | } | 
 |  | 
 | TEST(sched, cpu_alloc_big) { | 
 |   cpu_set_t* set = CPU_ALLOC(10 * CPU_SETSIZE); | 
 |   size_t size = CPU_ALLOC_SIZE(10 * CPU_SETSIZE); | 
 |  | 
 |   CPU_ZERO_S(size, set); | 
 |   ASSERT_EQ(0, CPU_COUNT_S(size, set)); | 
 |   CPU_SET_S(CPU_SETSIZE, size, set); | 
 |   ASSERT_TRUE(CPU_ISSET_S(CPU_SETSIZE, size, set)); | 
 |  | 
 |   CPU_FREE(set); | 
 | } | 
 |  | 
 | TEST(sched, cpu_s_macros) { | 
 |   int set_size = 64; | 
 |   size_t size = CPU_ALLOC_SIZE(set_size); | 
 |   cpu_set_t* set = CPU_ALLOC(set_size); | 
 |  | 
 |   CPU_ZERO_S(size, set); | 
 |   for (int i = 0; i < set_size; i++) { | 
 |     ASSERT_FALSE(CPU_ISSET_S(i, size, set)); | 
 |     CPU_SET_S(i, size, set); | 
 |     ASSERT_TRUE(CPU_ISSET_S(i, size, set)); | 
 |     ASSERT_EQ(i + 1, CPU_COUNT_S(size, set)); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < set_size; i++) { | 
 |     CPU_CLR_S(i, size, set); | 
 |     ASSERT_FALSE(CPU_ISSET_S(i, size, set)); | 
 |     ASSERT_EQ(set_size - i - 1, CPU_COUNT_S(size, set)); | 
 |   } | 
 |  | 
 |   CPU_FREE(set); | 
 | } | 
 |  | 
 | TEST(sched, cpu_op_s_macros) { | 
 |   int set_size1 = 64; | 
 |   int set_size2 = set_size1 * 2; | 
 |   int set_size3 = set_size1 * 3; | 
 |   size_t size1 = CPU_ALLOC_SIZE(set_size1); | 
 |   size_t size2 = CPU_ALLOC_SIZE(set_size2); | 
 |   size_t size3 = CPU_ALLOC_SIZE(set_size3); | 
 |  | 
 |   cpu_set_t* set1 = CPU_ALLOC(set_size1); | 
 |   cpu_set_t* set2 = CPU_ALLOC(set_size2); | 
 |   cpu_set_t* set3 = CPU_ALLOC(set_size3); | 
 |   CPU_ZERO_S(size1, set1); | 
 |   CPU_ZERO_S(size2, set2); | 
 |   CPU_ZERO_S(size3, set3); | 
 |  | 
 |   CPU_SET_S(0, size1, set1); | 
 |   CPU_SET_S(0, size2, set2); | 
 |   CPU_SET_S(1, size3, set2); | 
 |  | 
 |   CPU_AND_S(size1, set3, set1, set2); | 
 |   for (int i = 0; i < set_size3; i++) { | 
 |     ASSERT_EQ(i == 0, CPU_ISSET_S(i, size3, set3)); | 
 |   } | 
 |  | 
 |   CPU_OR_S(size1, set3, set1, set2); | 
 |   for (int i = 0; i < set_size3; i++) { | 
 |     ASSERT_EQ(i == 0 || i == 1, CPU_ISSET_S(i, size3, set3)); | 
 |   } | 
 |  | 
 |   CPU_XOR_S(size1, set3, set1, set2); | 
 |   for (int i = 0; i < set_size3; i++) { | 
 |     ASSERT_EQ(i == 1, CPU_ISSET_S(i, size3, set3)); | 
 |   } | 
 |  | 
 |   CPU_FREE(set1); | 
 |   CPU_FREE(set2); | 
 |   CPU_FREE(set3); | 
 | } | 
 |  | 
 | TEST(sched, cpu_equal_s) { | 
 |   int set_size1 = 64; | 
 |   int set_size2 = set_size1 * 2; | 
 |   size_t size1 = CPU_ALLOC_SIZE(set_size1); | 
 |   size_t size2 = CPU_ALLOC_SIZE(set_size2); | 
 |  | 
 |   cpu_set_t* set1 = CPU_ALLOC(set_size1); | 
 |   cpu_set_t* set2 = CPU_ALLOC(set_size2); | 
 |  | 
 |   CPU_ZERO_S(size1, set1); | 
 |   CPU_ZERO_S(size2, set2); | 
 |  | 
 |   CPU_SET_S(0, size1, set1); | 
 |   ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set1)); | 
 |   ASSERT_FALSE(CPU_EQUAL_S(size1, set1, set2)); | 
 |   CPU_SET_S(0, size2, set2); | 
 |   ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set2)); | 
 |  | 
 |   CPU_FREE(set1); | 
 |   CPU_FREE(set2); | 
 | } | 
 |  | 
 | TEST(sched, sched_get_priority_min_sched_get_priority_max) { | 
 |   EXPECT_LE(sched_get_priority_min(SCHED_BATCH), sched_get_priority_max(SCHED_BATCH)); | 
 |   EXPECT_LE(sched_get_priority_min(SCHED_FIFO), sched_get_priority_max(SCHED_FIFO)); | 
 |   EXPECT_LE(sched_get_priority_min(SCHED_IDLE), sched_get_priority_max(SCHED_IDLE)); | 
 |   EXPECT_LE(sched_get_priority_min(SCHED_OTHER), sched_get_priority_max(SCHED_OTHER)); | 
 |   EXPECT_LE(sched_get_priority_min(SCHED_RR), sched_get_priority_max(SCHED_RR)); | 
 | } | 
 |  | 
 | TEST(sched, sched_getscheduler_sched_setscheduler) { | 
 |   // POSIX: "If pid is zero, the scheduling policy shall be returned for the | 
 |   // calling process". | 
 |   ASSERT_EQ(sched_getscheduler(getpid()), sched_getscheduler(0)); | 
 |  | 
 |   const int original_policy = sched_getscheduler(getpid()); | 
 |   sched_param p = {}; | 
 |   p.sched_priority = sched_get_priority_min(original_policy); | 
 |   errno = 0; | 
 |   ASSERT_EQ(-1, sched_setscheduler(getpid(), INT_MAX, &p)); | 
 |   ASSERT_EQ(EINVAL, errno); | 
 |  | 
 |   ASSERT_EQ(0, sched_getparam(getpid(), &p)); | 
 |   ASSERT_EQ(original_policy, sched_setscheduler(getpid(), SCHED_BATCH, &p)); | 
 |   // POSIX says this should return the previous policy (here SCHED_BATCH), | 
 |   // but the Linux system call doesn't, and the glibc wrapper doesn't correct | 
 |   // this (the "returns 0" behavior is even documented on the man page in | 
 |   // the BUGS section). This was our historical behavior too, so in the | 
 |   // absence of reasons to break compatibility with ourselves and glibc, we | 
 |   // don't behave as POSIX specifies. http://b/26203902. | 
 |   ASSERT_EQ(0, sched_setscheduler(getpid(), original_policy, &p)); | 
 | } |