| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <gtest/gtest.h> |
| |
| #include <elf.h> |
| #include <limits.h> |
| #include <malloc.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <unistd.h> |
| |
| #include <atomic> |
| #include <tinyxml2.h> |
| |
| #include <android-base/file.h> |
| |
| #include "platform/bionic/malloc.h" |
| #include "private/bionic_config.h" |
| #include "utils.h" |
| |
| #if defined(__BIONIC__) |
| #define HAVE_REALLOCARRAY 1 |
| #else |
| #define HAVE_REALLOCARRAY __GLIBC_PREREQ(2, 26) |
| #endif |
| |
| TEST(malloc, malloc_std) { |
| // Simple malloc test. |
| void *ptr = malloc(100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(100U, malloc_usable_size(ptr)); |
| free(ptr); |
| } |
| |
| TEST(malloc, malloc_overflow) { |
| SKIP_WITH_HWASAN; |
| errno = 0; |
| ASSERT_EQ(nullptr, malloc(SIZE_MAX)); |
| ASSERT_EQ(ENOMEM, errno); |
| } |
| |
| TEST(malloc, calloc_std) { |
| // Simple calloc test. |
| size_t alloc_len = 100; |
| char *ptr = (char *)calloc(1, alloc_len); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(alloc_len, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < alloc_len; i++) { |
| ASSERT_EQ(0, ptr[i]); |
| } |
| free(ptr); |
| } |
| |
| TEST(malloc, calloc_illegal) { |
| SKIP_WITH_HWASAN; |
| errno = 0; |
| ASSERT_EQ(nullptr, calloc(-1, 100)); |
| ASSERT_EQ(ENOMEM, errno); |
| } |
| |
| TEST(malloc, calloc_overflow) { |
| SKIP_WITH_HWASAN; |
| errno = 0; |
| ASSERT_EQ(nullptr, calloc(1, SIZE_MAX)); |
| ASSERT_EQ(ENOMEM, errno); |
| errno = 0; |
| ASSERT_EQ(nullptr, calloc(SIZE_MAX, SIZE_MAX)); |
| ASSERT_EQ(ENOMEM, errno); |
| errno = 0; |
| ASSERT_EQ(nullptr, calloc(2, SIZE_MAX)); |
| ASSERT_EQ(ENOMEM, errno); |
| errno = 0; |
| ASSERT_EQ(nullptr, calloc(SIZE_MAX, 2)); |
| ASSERT_EQ(ENOMEM, errno); |
| } |
| |
| TEST(malloc, memalign_multiple) { |
| SKIP_WITH_HWASAN << "hwasan requires power of 2 alignment"; |
| // Memalign test where the alignment is any value. |
| for (size_t i = 0; i <= 12; i++) { |
| for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) { |
| char *ptr = reinterpret_cast<char*>(memalign(alignment, 100)); |
| ASSERT_TRUE(ptr != nullptr) << "Failed at alignment " << alignment; |
| ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment; |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % ((1U << i))) |
| << "Failed at alignment " << alignment; |
| free(ptr); |
| } |
| } |
| } |
| |
| TEST(malloc, memalign_overflow) { |
| SKIP_WITH_HWASAN; |
| ASSERT_EQ(nullptr, memalign(4096, SIZE_MAX)); |
| } |
| |
| TEST(malloc, memalign_non_power2) { |
| SKIP_WITH_HWASAN; |
| void* ptr; |
| for (size_t align = 0; align <= 256; align++) { |
| ptr = memalign(align, 1024); |
| ASSERT_TRUE(ptr != nullptr) << "Failed at align " << align; |
| free(ptr); |
| } |
| } |
| |
| TEST(malloc, memalign_realloc) { |
| // Memalign and then realloc the pointer a couple of times. |
| for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) { |
| char *ptr = (char*)memalign(alignment, 100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(100U, malloc_usable_size(ptr)); |
| ASSERT_EQ(0U, (intptr_t)ptr % alignment); |
| memset(ptr, 0x23, 100); |
| |
| ptr = (char*)realloc(ptr, 200); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(200U, malloc_usable_size(ptr)); |
| ASSERT_TRUE(ptr != nullptr); |
| for (size_t i = 0; i < 100; i++) { |
| ASSERT_EQ(0x23, ptr[i]); |
| } |
| memset(ptr, 0x45, 200); |
| |
| ptr = (char*)realloc(ptr, 300); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(300U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 200; i++) { |
| ASSERT_EQ(0x45, ptr[i]); |
| } |
| memset(ptr, 0x67, 300); |
| |
| ptr = (char*)realloc(ptr, 250); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(250U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 250; i++) { |
| ASSERT_EQ(0x67, ptr[i]); |
| } |
| free(ptr); |
| } |
| } |
| |
| TEST(malloc, malloc_realloc_larger) { |
| // Realloc to a larger size, malloc is used for the original allocation. |
| char *ptr = (char *)malloc(100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(100U, malloc_usable_size(ptr)); |
| memset(ptr, 67, 100); |
| |
| ptr = (char *)realloc(ptr, 200); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(200U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 100; i++) { |
| ASSERT_EQ(67, ptr[i]); |
| } |
| free(ptr); |
| } |
| |
| TEST(malloc, malloc_realloc_smaller) { |
| // Realloc to a smaller size, malloc is used for the original allocation. |
| char *ptr = (char *)malloc(200); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(200U, malloc_usable_size(ptr)); |
| memset(ptr, 67, 200); |
| |
| ptr = (char *)realloc(ptr, 100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(100U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 100; i++) { |
| ASSERT_EQ(67, ptr[i]); |
| } |
| free(ptr); |
| } |
| |
| TEST(malloc, malloc_multiple_realloc) { |
| // Multiple reallocs, malloc is used for the original allocation. |
| char *ptr = (char *)malloc(200); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(200U, malloc_usable_size(ptr)); |
| memset(ptr, 0x23, 200); |
| |
| ptr = (char *)realloc(ptr, 100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(100U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 100; i++) { |
| ASSERT_EQ(0x23, ptr[i]); |
| } |
| |
| ptr = (char*)realloc(ptr, 50); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(50U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 50; i++) { |
| ASSERT_EQ(0x23, ptr[i]); |
| } |
| |
| ptr = (char*)realloc(ptr, 150); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(150U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 50; i++) { |
| ASSERT_EQ(0x23, ptr[i]); |
| } |
| memset(ptr, 0x23, 150); |
| |
| ptr = (char*)realloc(ptr, 425); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(425U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 150; i++) { |
| ASSERT_EQ(0x23, ptr[i]); |
| } |
| free(ptr); |
| } |
| |
| TEST(malloc, calloc_realloc_larger) { |
| // Realloc to a larger size, calloc is used for the original allocation. |
| char *ptr = (char *)calloc(1, 100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(100U, malloc_usable_size(ptr)); |
| |
| ptr = (char *)realloc(ptr, 200); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(200U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 100; i++) { |
| ASSERT_EQ(0, ptr[i]); |
| } |
| free(ptr); |
| } |
| |
| TEST(malloc, calloc_realloc_smaller) { |
| // Realloc to a smaller size, calloc is used for the original allocation. |
| char *ptr = (char *)calloc(1, 200); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(200U, malloc_usable_size(ptr)); |
| |
| ptr = (char *)realloc(ptr, 100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(100U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 100; i++) { |
| ASSERT_EQ(0, ptr[i]); |
| } |
| free(ptr); |
| } |
| |
| TEST(malloc, calloc_multiple_realloc) { |
| // Multiple reallocs, calloc is used for the original allocation. |
| char *ptr = (char *)calloc(1, 200); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(200U, malloc_usable_size(ptr)); |
| |
| ptr = (char *)realloc(ptr, 100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(100U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 100; i++) { |
| ASSERT_EQ(0, ptr[i]); |
| } |
| |
| ptr = (char*)realloc(ptr, 50); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(50U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 50; i++) { |
| ASSERT_EQ(0, ptr[i]); |
| } |
| |
| ptr = (char*)realloc(ptr, 150); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(150U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 50; i++) { |
| ASSERT_EQ(0, ptr[i]); |
| } |
| memset(ptr, 0, 150); |
| |
| ptr = (char*)realloc(ptr, 425); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_LE(425U, malloc_usable_size(ptr)); |
| for (size_t i = 0; i < 150; i++) { |
| ASSERT_EQ(0, ptr[i]); |
| } |
| free(ptr); |
| } |
| |
| TEST(malloc, realloc_overflow) { |
| SKIP_WITH_HWASAN; |
| errno = 0; |
| ASSERT_EQ(nullptr, realloc(nullptr, SIZE_MAX)); |
| ASSERT_EQ(ENOMEM, errno); |
| void* ptr = malloc(100); |
| ASSERT_TRUE(ptr != nullptr); |
| errno = 0; |
| ASSERT_EQ(nullptr, realloc(ptr, SIZE_MAX)); |
| ASSERT_EQ(ENOMEM, errno); |
| free(ptr); |
| } |
| |
| #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) |
| extern "C" void* pvalloc(size_t); |
| extern "C" void* valloc(size_t); |
| #endif |
| |
| TEST(malloc, pvalloc_std) { |
| #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) |
| size_t pagesize = sysconf(_SC_PAGESIZE); |
| void* ptr = pvalloc(100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0); |
| ASSERT_LE(pagesize, malloc_usable_size(ptr)); |
| free(ptr); |
| #else |
| GTEST_SKIP() << "pvalloc not supported."; |
| #endif |
| } |
| |
| TEST(malloc, pvalloc_overflow) { |
| #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) |
| ASSERT_EQ(nullptr, pvalloc(SIZE_MAX)); |
| #else |
| GTEST_SKIP() << "pvalloc not supported."; |
| #endif |
| } |
| |
| TEST(malloc, valloc_std) { |
| #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) |
| size_t pagesize = sysconf(_SC_PAGESIZE); |
| void* ptr = valloc(100); |
| ASSERT_TRUE(ptr != nullptr); |
| ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0); |
| free(ptr); |
| #else |
| GTEST_SKIP() << "valloc not supported."; |
| #endif |
| } |
| |
| TEST(malloc, valloc_overflow) { |
| #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) |
| ASSERT_EQ(nullptr, valloc(SIZE_MAX)); |
| #else |
| GTEST_SKIP() << "valloc not supported."; |
| #endif |
| } |
| |
| TEST(malloc, malloc_info) { |
| #ifdef __BIONIC__ |
| SKIP_WITH_HWASAN; // hwasan does not implement malloc_info |
| |
| TemporaryFile tf; |
| ASSERT_TRUE(tf.fd != -1); |
| FILE* fp = fdopen(tf.fd, "w+"); |
| tf.release(); |
| ASSERT_TRUE(fp != nullptr); |
| ASSERT_EQ(0, malloc_info(0, fp)); |
| ASSERT_EQ(0, fclose(fp)); |
| |
| std::string contents; |
| ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents)); |
| |
| tinyxml2::XMLDocument doc; |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str())); |
| |
| auto root = doc.FirstChildElement(); |
| ASSERT_NE(nullptr, root); |
| ASSERT_STREQ("malloc", root->Name()); |
| std::string version(root->Attribute("version")); |
| if (version == "jemalloc-1") { |
| // Verify jemalloc version of this data. |
| ASSERT_STREQ("jemalloc-1", root->Attribute("version")); |
| |
| auto arena = root->FirstChildElement(); |
| for (; arena != nullptr; arena = arena->NextSiblingElement()) { |
| int val; |
| |
| ASSERT_STREQ("heap", arena->Name()); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val)); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| arena->FirstChildElement("allocated-large")->QueryIntText(&val)); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| arena->FirstChildElement("allocated-huge")->QueryIntText(&val)); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| arena->FirstChildElement("allocated-bins")->QueryIntText(&val)); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| arena->FirstChildElement("bins-total")->QueryIntText(&val)); |
| |
| auto bin = arena->FirstChildElement("bin"); |
| for (; bin != nullptr; bin = bin ->NextSiblingElement()) { |
| if (strcmp(bin->Name(), "bin") == 0) { |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val)); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| bin->FirstChildElement("allocated")->QueryIntText(&val)); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| bin->FirstChildElement("nmalloc")->QueryIntText(&val)); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| bin->FirstChildElement("ndalloc")->QueryIntText(&val)); |
| } |
| } |
| } |
| } else { |
| // Do not verify output for scudo or debug malloc. |
| ASSERT_TRUE(version == "scudo-1" || version == "debug-malloc-1") |
| << "Unknown version: " << version; |
| } |
| #endif |
| } |
| |
| TEST(malloc, malloc_info_matches_mallinfo) { |
| #ifdef __BIONIC__ |
| SKIP_WITH_HWASAN; // hwasan does not implement malloc_info |
| |
| TemporaryFile tf; |
| ASSERT_TRUE(tf.fd != -1); |
| FILE* fp = fdopen(tf.fd, "w+"); |
| tf.release(); |
| ASSERT_TRUE(fp != nullptr); |
| size_t mallinfo_before_allocated_bytes = mallinfo().uordblks; |
| ASSERT_EQ(0, malloc_info(0, fp)); |
| size_t mallinfo_after_allocated_bytes = mallinfo().uordblks; |
| ASSERT_EQ(0, fclose(fp)); |
| |
| std::string contents; |
| ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents)); |
| |
| tinyxml2::XMLDocument doc; |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str())); |
| |
| size_t total_allocated_bytes = 0; |
| auto root = doc.FirstChildElement(); |
| ASSERT_NE(nullptr, root); |
| ASSERT_STREQ("malloc", root->Name()); |
| std::string version(root->Attribute("version")); |
| if (version == "jemalloc-1") { |
| // Verify jemalloc version of this data. |
| ASSERT_STREQ("jemalloc-1", root->Attribute("version")); |
| |
| auto arena = root->FirstChildElement(); |
| for (; arena != nullptr; arena = arena->NextSiblingElement()) { |
| int val; |
| |
| ASSERT_STREQ("heap", arena->Name()); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val)); |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| arena->FirstChildElement("allocated-large")->QueryIntText(&val)); |
| total_allocated_bytes += val; |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| arena->FirstChildElement("allocated-huge")->QueryIntText(&val)); |
| total_allocated_bytes += val; |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| arena->FirstChildElement("allocated-bins")->QueryIntText(&val)); |
| total_allocated_bytes += val; |
| ASSERT_EQ(tinyxml2::XML_SUCCESS, |
| arena->FirstChildElement("bins-total")->QueryIntText(&val)); |
| } |
| // The total needs to be between the mallinfo call before and after |
| // since malloc_info allocates some memory. |
| EXPECT_LE(mallinfo_before_allocated_bytes, total_allocated_bytes); |
| EXPECT_GE(mallinfo_after_allocated_bytes, total_allocated_bytes); |
| } else { |
| // Do not verify output for scudo or debug malloc. |
| ASSERT_TRUE(version == "scudo-1" || version == "debug-malloc-1") |
| << "Unknown version: " << version; |
| } |
| #endif |
| } |
| |
| TEST(malloc, calloc_usable_size) { |
| for (size_t size = 1; size <= 2048; size++) { |
| void* pointer = malloc(size); |
| ASSERT_TRUE(pointer != nullptr); |
| memset(pointer, 0xeb, malloc_usable_size(pointer)); |
| free(pointer); |
| |
| // We should get a previous pointer that has been set to non-zero. |
| // If calloc does not zero out all of the data, this will fail. |
| uint8_t* zero_mem = reinterpret_cast<uint8_t*>(calloc(1, size)); |
| ASSERT_TRUE(pointer != nullptr); |
| size_t usable_size = malloc_usable_size(zero_mem); |
| for (size_t i = 0; i < usable_size; i++) { |
| ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i; |
| } |
| free(zero_mem); |
| } |
| } |
| |
| TEST(malloc, malloc_0) { |
| void* p = malloc(0); |
| ASSERT_TRUE(p != nullptr); |
| free(p); |
| } |
| |
| TEST(malloc, calloc_0_0) { |
| void* p = calloc(0, 0); |
| ASSERT_TRUE(p != nullptr); |
| free(p); |
| } |
| |
| TEST(malloc, calloc_0_1) { |
| void* p = calloc(0, 1); |
| ASSERT_TRUE(p != nullptr); |
| free(p); |
| } |
| |
| TEST(malloc, calloc_1_0) { |
| void* p = calloc(1, 0); |
| ASSERT_TRUE(p != nullptr); |
| free(p); |
| } |
| |
| TEST(malloc, realloc_nullptr_0) { |
| // realloc(nullptr, size) is actually malloc(size). |
| void* p = realloc(nullptr, 0); |
| ASSERT_TRUE(p != nullptr); |
| free(p); |
| } |
| |
| TEST(malloc, realloc_0) { |
| void* p = malloc(1024); |
| ASSERT_TRUE(p != nullptr); |
| // realloc(p, 0) is actually free(p). |
| void* p2 = realloc(p, 0); |
| ASSERT_TRUE(p2 == nullptr); |
| } |
| |
| constexpr size_t MAX_LOOPS = 200; |
| |
| // Make sure that memory returned by malloc is aligned to allow these data types. |
| TEST(malloc, verify_alignment) { |
| uint32_t** values_32 = new uint32_t*[MAX_LOOPS]; |
| uint64_t** values_64 = new uint64_t*[MAX_LOOPS]; |
| long double** values_ldouble = new long double*[MAX_LOOPS]; |
| // Use filler to attempt to force the allocator to get potentially bad alignments. |
| void** filler = new void*[MAX_LOOPS]; |
| |
| for (size_t i = 0; i < MAX_LOOPS; i++) { |
| // Check uint32_t pointers. |
| filler[i] = malloc(1); |
| ASSERT_TRUE(filler[i] != nullptr); |
| |
| values_32[i] = reinterpret_cast<uint32_t*>(malloc(sizeof(uint32_t))); |
| ASSERT_TRUE(values_32[i] != nullptr); |
| *values_32[i] = i; |
| ASSERT_EQ(*values_32[i], i); |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_32[i]) & (sizeof(uint32_t) - 1)); |
| |
| free(filler[i]); |
| } |
| |
| for (size_t i = 0; i < MAX_LOOPS; i++) { |
| // Check uint64_t pointers. |
| filler[i] = malloc(1); |
| ASSERT_TRUE(filler[i] != nullptr); |
| |
| values_64[i] = reinterpret_cast<uint64_t*>(malloc(sizeof(uint64_t))); |
| ASSERT_TRUE(values_64[i] != nullptr); |
| *values_64[i] = 0x1000 + i; |
| ASSERT_EQ(*values_64[i], 0x1000 + i); |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_64[i]) & (sizeof(uint64_t) - 1)); |
| |
| free(filler[i]); |
| } |
| |
| for (size_t i = 0; i < MAX_LOOPS; i++) { |
| // Check long double pointers. |
| filler[i] = malloc(1); |
| ASSERT_TRUE(filler[i] != nullptr); |
| |
| values_ldouble[i] = reinterpret_cast<long double*>(malloc(sizeof(long double))); |
| ASSERT_TRUE(values_ldouble[i] != nullptr); |
| *values_ldouble[i] = 5.5 + i; |
| ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i); |
| // 32 bit glibc has a long double size of 12 bytes, so hardcode the |
| // required alignment to 0x7. |
| #if !defined(__BIONIC__) && !defined(__LP64__) |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & 0x7); |
| #else |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & (sizeof(long double) - 1)); |
| #endif |
| |
| free(filler[i]); |
| } |
| |
| for (size_t i = 0; i < MAX_LOOPS; i++) { |
| free(values_32[i]); |
| free(values_64[i]); |
| free(values_ldouble[i]); |
| } |
| |
| delete[] filler; |
| delete[] values_32; |
| delete[] values_64; |
| delete[] values_ldouble; |
| } |
| |
| TEST(malloc, mallopt_smoke) { |
| errno = 0; |
| ASSERT_EQ(0, mallopt(-1000, 1)); |
| // mallopt doesn't set errno. |
| ASSERT_EQ(0, errno); |
| } |
| |
| TEST(malloc, mallopt_decay) { |
| #if defined(__BIONIC__) |
| SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; |
| errno = 0; |
| ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1)); |
| ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0)); |
| ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1)); |
| ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0)); |
| #else |
| GTEST_SKIP() << "bionic-only test"; |
| #endif |
| } |
| |
| TEST(malloc, mallopt_purge) { |
| #if defined(__BIONIC__) |
| SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; |
| errno = 0; |
| ASSERT_EQ(1, mallopt(M_PURGE, 0)); |
| #else |
| GTEST_SKIP() << "bionic-only test"; |
| #endif |
| } |
| |
| TEST(malloc, reallocarray_overflow) { |
| #if HAVE_REALLOCARRAY |
| // Values that cause overflow to a result small enough (8 on LP64) that malloc would "succeed". |
| size_t a = static_cast<size_t>(INTPTR_MIN + 4); |
| size_t b = 2; |
| |
| errno = 0; |
| ASSERT_TRUE(reallocarray(nullptr, a, b) == nullptr); |
| ASSERT_EQ(ENOMEM, errno); |
| |
| errno = 0; |
| ASSERT_TRUE(reallocarray(nullptr, b, a) == nullptr); |
| ASSERT_EQ(ENOMEM, errno); |
| #else |
| GTEST_SKIP() << "reallocarray not available"; |
| #endif |
| } |
| |
| TEST(malloc, reallocarray) { |
| #if HAVE_REALLOCARRAY |
| void* p = reallocarray(nullptr, 2, 32); |
| ASSERT_TRUE(p != nullptr); |
| ASSERT_GE(malloc_usable_size(p), 64U); |
| #else |
| GTEST_SKIP() << "reallocarray not available"; |
| #endif |
| } |
| |
| TEST(malloc, mallinfo) { |
| #if defined(__BIONIC__) |
| SKIP_WITH_HWASAN << "hwasan does not implement mallinfo"; |
| static size_t sizes[] = { |
| 8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000 |
| }; |
| |
| constexpr static size_t kMaxAllocs = 50; |
| |
| for (size_t size : sizes) { |
| // If some of these allocations are stuck in a thread cache, then keep |
| // looping until we make an allocation that changes the total size of the |
| // memory allocated. |
| // jemalloc implementations counts the thread cache allocations against |
| // total memory allocated. |
| void* ptrs[kMaxAllocs] = {}; |
| bool pass = false; |
| for (size_t i = 0; i < kMaxAllocs; i++) { |
| size_t allocated = mallinfo().uordblks; |
| ptrs[i] = malloc(size); |
| ASSERT_TRUE(ptrs[i] != nullptr); |
| size_t new_allocated = mallinfo().uordblks; |
| if (allocated != new_allocated) { |
| size_t usable_size = malloc_usable_size(ptrs[i]); |
| // Only check if the total got bigger by at least allocation size. |
| // Sometimes the mallinfo numbers can go backwards due to compaction |
| // and/or freeing of cached data. |
| if (new_allocated >= allocated + usable_size) { |
| pass = true; |
| break; |
| } |
| } |
| } |
| for (void* ptr : ptrs) { |
| free(ptr); |
| } |
| ASSERT_TRUE(pass) |
| << "For size " << size << " allocated bytes did not increase after " |
| << kMaxAllocs << " allocations."; |
| } |
| #else |
| GTEST_SKIP() << "glibc is broken"; |
| #endif |
| } |
| |
| TEST(android_mallopt, error_on_unexpected_option) { |
| #if defined(__BIONIC__) |
| const int unrecognized_option = -1; |
| errno = 0; |
| EXPECT_EQ(false, android_mallopt(unrecognized_option, nullptr, 0)); |
| EXPECT_EQ(ENOTSUP, errno); |
| #else |
| GTEST_SKIP() << "bionic-only test"; |
| #endif |
| } |
| |
| bool IsDynamic() { |
| #if defined(__LP64__) |
| Elf64_Ehdr ehdr; |
| #else |
| Elf32_Ehdr ehdr; |
| #endif |
| std::string path(android::base::GetExecutablePath()); |
| |
| int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC); |
| if (fd == -1) { |
| // Assume dynamic on error. |
| return true; |
| } |
| bool read_completed = android::base::ReadFully(fd, &ehdr, sizeof(ehdr)); |
| close(fd); |
| // Assume dynamic in error cases. |
| return !read_completed || ehdr.e_type == ET_DYN; |
| } |
| |
| TEST(android_mallopt, init_zygote_child_profiling) { |
| #if defined(__BIONIC__) |
| // Successful call. |
| errno = 0; |
| if (IsDynamic()) { |
| EXPECT_EQ(true, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0)); |
| EXPECT_EQ(0, errno); |
| } else { |
| // Not supported in static executables. |
| EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0)); |
| EXPECT_EQ(ENOTSUP, errno); |
| } |
| |
| // Unexpected arguments rejected. |
| errno = 0; |
| char unexpected = 0; |
| EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, &unexpected, 1)); |
| if (IsDynamic()) { |
| EXPECT_EQ(EINVAL, errno); |
| } else { |
| EXPECT_EQ(ENOTSUP, errno); |
| } |
| #else |
| GTEST_SKIP() << "bionic-only test"; |
| #endif |
| } |
| |
| #if defined(__BIONIC__) |
| template <typename FuncType> |
| void CheckAllocationFunction(FuncType func) { |
| // Assumes that no more than 108MB of memory is allocated before this. |
| size_t limit = 128 * 1024 * 1024; |
| ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); |
| if (!func(20 * 1024 * 1024)) |
| exit(1); |
| if (func(128 * 1024 * 1024)) |
| exit(1); |
| exit(0); |
| } |
| #endif |
| |
| TEST(android_mallopt, set_allocation_limit) { |
| #if defined(__BIONIC__) |
| EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(bytes, 1) != nullptr; }), |
| testing::ExitedWithCode(0), ""); |
| EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(1, bytes) != nullptr; }), |
| testing::ExitedWithCode(0), ""); |
| EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return malloc(bytes) != nullptr; }), |
| testing::ExitedWithCode(0), ""); |
| EXPECT_EXIT(CheckAllocationFunction( |
| [](size_t bytes) { return memalign(sizeof(void*), bytes) != nullptr; }), |
| testing::ExitedWithCode(0), ""); |
| EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { |
| void* ptr; |
| return posix_memalign(&ptr, sizeof(void *), bytes) == 0; |
| }), |
| testing::ExitedWithCode(0), ""); |
| EXPECT_EXIT(CheckAllocationFunction( |
| [](size_t bytes) { return aligned_alloc(sizeof(void*), bytes) != nullptr; }), |
| testing::ExitedWithCode(0), ""); |
| EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { |
| void* p = malloc(1024 * 1024); |
| return realloc(p, bytes) != nullptr; |
| }), |
| testing::ExitedWithCode(0), ""); |
| #if !defined(__LP64__) |
| EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return pvalloc(bytes) != nullptr; }), |
| testing::ExitedWithCode(0), ""); |
| EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return valloc(bytes) != nullptr; }), |
| testing::ExitedWithCode(0), ""); |
| #endif |
| #else |
| GTEST_SKIP() << "bionic extension"; |
| #endif |
| } |
| |
| TEST(android_mallopt, set_allocation_limit_multiple) { |
| #if defined(__BIONIC__) |
| // Only the first set should work. |
| size_t limit = 256 * 1024 * 1024; |
| ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); |
| limit = 32 * 1024 * 1024; |
| ASSERT_FALSE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); |
| #else |
| GTEST_SKIP() << "bionic extension"; |
| #endif |
| } |
| |
| #if defined(__BIONIC__) |
| static constexpr size_t kAllocationSize = 8 * 1024 * 1024; |
| |
| static size_t GetMaxAllocations() { |
| size_t max_pointers = 0; |
| void* ptrs[20]; |
| for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) { |
| ptrs[i] = malloc(kAllocationSize); |
| if (ptrs[i] == nullptr) { |
| max_pointers = i; |
| break; |
| } |
| } |
| for (size_t i = 0; i < max_pointers; i++) { |
| free(ptrs[i]); |
| } |
| return max_pointers; |
| } |
| |
| static void VerifyMaxPointers(size_t max_pointers) { |
| // Now verify that we can allocate the same number as before. |
| void* ptrs[20]; |
| for (size_t i = 0; i < max_pointers; i++) { |
| ptrs[i] = malloc(kAllocationSize); |
| ASSERT_TRUE(ptrs[i] != nullptr) << "Failed to allocate on iteration " << i; |
| } |
| |
| // Make sure the next allocation still fails. |
| ASSERT_TRUE(malloc(kAllocationSize) == nullptr); |
| for (size_t i = 0; i < max_pointers; i++) { |
| free(ptrs[i]); |
| } |
| } |
| #endif |
| |
| TEST(android_mallopt, set_allocation_limit_realloc_increase) { |
| #if defined(__BIONIC__) |
| size_t limit = 128 * 1024 * 1024; |
| ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); |
| |
| size_t max_pointers = GetMaxAllocations(); |
| ASSERT_TRUE(max_pointers != 0) << "Limit never reached."; |
| |
| void* memory = malloc(10 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| |
| // Increase size. |
| memory = realloc(memory, 20 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| memory = realloc(memory, 40 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| memory = realloc(memory, 60 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| memory = realloc(memory, 80 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| // Now push past limit. |
| memory = realloc(memory, 130 * 1024 * 1024); |
| ASSERT_TRUE(memory == nullptr); |
| |
| VerifyMaxPointers(max_pointers); |
| #else |
| GTEST_SKIP() << "bionic extension"; |
| #endif |
| } |
| |
| TEST(android_mallopt, set_allocation_limit_realloc_decrease) { |
| #if defined(__BIONIC__) |
| size_t limit = 100 * 1024 * 1024; |
| ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); |
| |
| size_t max_pointers = GetMaxAllocations(); |
| ASSERT_TRUE(max_pointers != 0) << "Limit never reached."; |
| |
| void* memory = malloc(80 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| |
| // Decrease size. |
| memory = realloc(memory, 60 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| memory = realloc(memory, 40 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| memory = realloc(memory, 20 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| memory = realloc(memory, 10 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| free(memory); |
| |
| VerifyMaxPointers(max_pointers); |
| #else |
| GTEST_SKIP() << "bionic extension"; |
| #endif |
| } |
| |
| TEST(android_mallopt, set_allocation_limit_realloc_free) { |
| #if defined(__BIONIC__) |
| size_t limit = 100 * 1024 * 1024; |
| ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); |
| |
| size_t max_pointers = GetMaxAllocations(); |
| ASSERT_TRUE(max_pointers != 0) << "Limit never reached."; |
| |
| void* memory = malloc(60 * 1024 * 1024); |
| ASSERT_TRUE(memory != nullptr); |
| |
| memory = realloc(memory, 0); |
| ASSERT_TRUE(memory == nullptr); |
| |
| VerifyMaxPointers(max_pointers); |
| #else |
| GTEST_SKIP() << "bionic extension"; |
| #endif |
| } |
| |
| #if defined(__BIONIC__) |
| static void* SetAllocationLimit(void* data) { |
| std::atomic_bool* go = reinterpret_cast<std::atomic_bool*>(data); |
| while (!go->load()) { |
| } |
| size_t limit = 500 * 1024 * 1024; |
| if (android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))) { |
| return reinterpret_cast<void*>(-1); |
| } |
| return nullptr; |
| } |
| |
| static void SetAllocationLimitMultipleThreads() { |
| std::atomic_bool go; |
| go = false; |
| |
| static constexpr size_t kNumThreads = 4; |
| pthread_t threads[kNumThreads]; |
| for (size_t i = 0; i < kNumThreads; i++) { |
| ASSERT_EQ(0, pthread_create(&threads[i], nullptr, SetAllocationLimit, &go)); |
| } |
| |
| // Let them go all at once. |
| go = true; |
| // Send hardcoded signal (BIONIC_SIGNAL_PROFILER with value 0) to trigger |
| // heapprofd handler. |
| union sigval signal_value; |
| signal_value.sival_int = 0; |
| ASSERT_EQ(0, sigqueue(getpid(), __SIGRTMIN + 4, signal_value)); |
| |
| size_t num_successful = 0; |
| for (size_t i = 0; i < kNumThreads; i++) { |
| void* result; |
| ASSERT_EQ(0, pthread_join(threads[i], &result)); |
| if (result != nullptr) { |
| num_successful++; |
| } |
| } |
| ASSERT_EQ(1U, num_successful); |
| exit(0); |
| } |
| #endif |
| |
| TEST(android_mallopt, set_allocation_limit_multiple_threads) { |
| #if defined(__BIONIC__) |
| if (IsDynamic()) { |
| ASSERT_TRUE(android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0)); |
| } |
| |
| // Run this a number of times as a stress test. |
| for (size_t i = 0; i < 100; i++) { |
| // Not using ASSERT_EXIT because errors messages are not displayed. |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ASSERT_NO_FATAL_FAILURE(SetAllocationLimitMultipleThreads()); |
| } |
| ASSERT_NE(-1, pid); |
| int status; |
| ASSERT_EQ(pid, wait(&status)); |
| ASSERT_EQ(0, WEXITSTATUS(status)); |
| } |
| #else |
| GTEST_SKIP() << "bionic extension"; |
| #endif |
| } |