| /* | 
 |  * Copyright (C) 2008 The Android Open Source Project | 
 |  * All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  *  * Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  *  * Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
 |  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
 |  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
 |  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
 |  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
 |  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
 |  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
 |  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
 |  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  */ | 
 | #include <ctype.h> | 
 | #include <errno.h> | 
 | #include <fcntl.h> | 
 | #include <poll.h> | 
 | #include <stdatomic.h> | 
 | #include <stdbool.h> | 
 | #include <stddef.h> | 
 | #include <stdint.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <unistd.h> | 
 | #include <new> | 
 |  | 
 | #include <linux/xattr.h> | 
 | #include <netinet/in.h> | 
 | #include <sys/mman.h> | 
 | #include <sys/select.h> | 
 | #include <sys/socket.h> | 
 | #include <sys/stat.h> | 
 | #include <sys/types.h> | 
 | #include <sys/un.h> | 
 | #include <sys/xattr.h> | 
 |  | 
 | #define _REALLY_INCLUDE_SYS__SYSTEM_PROPERTIES_H_ | 
 | #include <sys/_system_properties.h> | 
 | #include <sys/system_properties.h> | 
 |  | 
 | #include "private/bionic_futex.h" | 
 | #include "private/bionic_lock.h" | 
 | #include "private/bionic_macros.h" | 
 | #include "private/libc_logging.h" | 
 |  | 
 | static const char property_service_socket[] = "/dev/socket/" PROP_SERVICE_NAME; | 
 |  | 
 |  | 
 | /* | 
 |  * Properties are stored in a hybrid trie/binary tree structure. | 
 |  * Each property's name is delimited at '.' characters, and the tokens are put | 
 |  * into a trie structure.  Siblings at each level of the trie are stored in a | 
 |  * binary tree.  For instance, "ro.secure"="1" could be stored as follows: | 
 |  * | 
 |  * +-----+   children    +----+   children    +--------+ | 
 |  * |     |-------------->| ro |-------------->| secure | | 
 |  * +-----+               +----+               +--------+ | 
 |  *                       /    \                /   | | 
 |  *                 left /      \ right   left /    |  prop   +===========+ | 
 |  *                     v        v            v     +-------->| ro.secure | | 
 |  *                  +-----+   +-----+     +-----+            +-----------+ | 
 |  *                  | net |   | sys |     | com |            |     1     | | 
 |  *                  +-----+   +-----+     +-----+            +===========+ | 
 |  */ | 
 |  | 
 | // Represents a node in the trie. | 
 | struct prop_bt { | 
 |     uint8_t namelen; | 
 |     uint8_t reserved[3]; | 
 |  | 
 |     // The property trie is updated only by the init process (single threaded) which provides | 
 |     // property service. And it can be read by multiple threads at the same time. | 
 |     // As the property trie is not protected by locks, we use atomic_uint_least32_t types for the | 
 |     // left, right, children "pointers" in the trie node. To make sure readers who see the | 
 |     // change of "pointers" can also notice the change of prop_bt structure contents pointed by | 
 |     // the "pointers", we always use release-consume ordering pair when accessing these "pointers". | 
 |  | 
 |     // prop "points" to prop_info structure if there is a propery associated with the trie node. | 
 |     // Its situation is similar to the left, right, children "pointers". So we use | 
 |     // atomic_uint_least32_t and release-consume ordering to protect it as well. | 
 |  | 
 |     // We should also avoid rereading these fields redundantly, since not | 
 |     // all processor implementations ensure that multiple loads from the | 
 |     // same field are carried out in the right order. | 
 |     atomic_uint_least32_t prop; | 
 |  | 
 |     atomic_uint_least32_t left; | 
 |     atomic_uint_least32_t right; | 
 |  | 
 |     atomic_uint_least32_t children; | 
 |  | 
 |     char name[0]; | 
 |  | 
 |     prop_bt(const char *name, const uint8_t name_length) { | 
 |         this->namelen = name_length; | 
 |         memcpy(this->name, name, name_length); | 
 |         this->name[name_length] = '\0'; | 
 |     } | 
 |  | 
 | private: | 
 |     DISALLOW_COPY_AND_ASSIGN(prop_bt); | 
 | }; | 
 |  | 
 | class prop_area { | 
 | public: | 
 |  | 
 |     prop_area(const uint32_t magic, const uint32_t version) : | 
 |         magic_(magic), version_(version) { | 
 |         atomic_init(&serial_, 0); | 
 |         memset(reserved_, 0, sizeof(reserved_)); | 
 |         // Allocate enough space for the root node. | 
 |         bytes_used_ = sizeof(prop_bt); | 
 |     } | 
 |  | 
 |     const prop_info *find(const char *name); | 
 |     bool add(const char *name, unsigned int namelen, | 
 |              const char *value, unsigned int valuelen); | 
 |  | 
 |     bool foreach(void (*propfn)(const prop_info *pi, void *cookie), void *cookie); | 
 |  | 
 |     atomic_uint_least32_t *serial() { return &serial_; } | 
 |     uint32_t magic() const { return magic_; } | 
 |     uint32_t version() const { return version_; } | 
 |  | 
 | private: | 
 |     void *allocate_obj(const size_t size, uint_least32_t *const off); | 
 |     prop_bt *new_prop_bt(const char *name, uint8_t namelen, uint_least32_t *const off); | 
 |     prop_info *new_prop_info(const char *name, uint8_t namelen, | 
 |                              const char *value, uint8_t valuelen, | 
 |                              uint_least32_t *const off); | 
 |     void *to_prop_obj(uint_least32_t off); | 
 |     prop_bt *to_prop_bt(atomic_uint_least32_t *off_p); | 
 |     prop_info *to_prop_info(atomic_uint_least32_t *off_p); | 
 |  | 
 |     prop_bt *root_node(); | 
 |  | 
 |     prop_bt *find_prop_bt(prop_bt *const bt, const char *name, | 
 |                           uint8_t namelen, bool alloc_if_needed); | 
 |  | 
 |     const prop_info *find_property(prop_bt *const trie, const char *name, | 
 |                                    uint8_t namelen, const char *value, | 
 |                                    uint8_t valuelen, bool alloc_if_needed); | 
 |  | 
 |     bool foreach_property(prop_bt *const trie, | 
 |                           void (*propfn)(const prop_info *pi, void *cookie), | 
 |                           void *cookie); | 
 |  | 
 |     uint32_t bytes_used_; | 
 |     atomic_uint_least32_t serial_; | 
 |     uint32_t magic_; | 
 |     uint32_t version_; | 
 |     uint32_t reserved_[28]; | 
 |     char data_[0]; | 
 |  | 
 |     DISALLOW_COPY_AND_ASSIGN(prop_area); | 
 | }; | 
 |  | 
 | struct prop_info { | 
 |     atomic_uint_least32_t serial; | 
 |     char value[PROP_VALUE_MAX]; | 
 |     char name[0]; | 
 |  | 
 |     prop_info(const char *name, const uint8_t namelen, const char *value, | 
 |               const uint8_t valuelen) { | 
 |         memcpy(this->name, name, namelen); | 
 |         this->name[namelen] = '\0'; | 
 |         atomic_init(&this->serial, valuelen << 24); | 
 |         memcpy(this->value, value, valuelen); | 
 |         this->value[valuelen] = '\0'; | 
 |     } | 
 | private: | 
 |     DISALLOW_COPY_AND_ASSIGN(prop_info); | 
 | }; | 
 |  | 
 | struct find_nth_cookie { | 
 |     uint32_t count; | 
 |     const uint32_t n; | 
 |     const prop_info *pi; | 
 |  | 
 |     explicit find_nth_cookie(uint32_t n) : count(0), n(n), pi(NULL) { | 
 |     } | 
 | }; | 
 |  | 
 | static char property_filename[PROP_FILENAME_MAX] = PROP_FILENAME; | 
 | static bool compat_mode = false; | 
 | static size_t pa_data_size; | 
 | static size_t pa_size; | 
 | static bool initialized = false; | 
 |  | 
 | // NOTE: This isn't static because system_properties_compat.c | 
 | // requires it. | 
 | prop_area *__system_property_area__ = NULL; | 
 |  | 
 | static int get_fd_from_env(void) | 
 | { | 
 |     // This environment variable consistes of two decimal integer | 
 |     // values separated by a ",". The first value is a file descriptor | 
 |     // and the second is the size of the system properties area. The | 
 |     // size is currently unused. | 
 |     char *env = getenv("ANDROID_PROPERTY_WORKSPACE"); | 
 |  | 
 |     if (!env) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     return atoi(env); | 
 | } | 
 |  | 
 | static prop_area* map_prop_area_rw(const char* filename, const char* context, | 
 |                                    bool* fsetxattr_failed) { | 
 |     /* dev is a tmpfs that we can use to carve a shared workspace | 
 |      * out of, so let's do that... | 
 |      */ | 
 |     const int fd = open(filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC | O_EXCL, 0444); | 
 |  | 
 |     if (fd < 0) { | 
 |         if (errno == EACCES) { | 
 |             /* for consistency with the case where the process has already | 
 |              * mapped the page in and segfaults when trying to write to it | 
 |              */ | 
 |             abort(); | 
 |         } | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     if (context) { | 
 |         if (fsetxattr(fd, XATTR_NAME_SELINUX, context, strlen(context) + 1, 0) != 0) { | 
 |             __libc_format_log(ANDROID_LOG_ERROR, "libc", | 
 |                               "fsetxattr failed to set context (%s) for \"%s\"", context, filename); | 
 |             /* | 
 |              * fsetxattr() will fail during system properties tests due to selinux policy. | 
 |              * We do not want to create a custom policy for the tester, so we will continue in | 
 |              * this function but set a flag that an error has occurred. | 
 |              * Init, which is the only daemon that should ever call this function will abort | 
 |              * when this error occurs. | 
 |              * Otherwise, the tester will ignore it and continue, albeit without any selinux | 
 |              * property separation. | 
 |              */ | 
 |             if (fsetxattr_failed) { | 
 |                 *fsetxattr_failed = true; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (ftruncate(fd, PA_SIZE) < 0) { | 
 |         close(fd); | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     pa_size = PA_SIZE; | 
 |     pa_data_size = pa_size - sizeof(prop_area); | 
 |     compat_mode = false; | 
 |  | 
 |     void *const memory_area = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); | 
 |     if (memory_area == MAP_FAILED) { | 
 |         close(fd); | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     prop_area *pa = new(memory_area) prop_area(PROP_AREA_MAGIC, PROP_AREA_VERSION); | 
 |  | 
 |     close(fd); | 
 |     return pa; | 
 | } | 
 |  | 
 | static prop_area* map_fd_ro(const int fd) { | 
 |     struct stat fd_stat; | 
 |     if (fstat(fd, &fd_stat) < 0) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     if ((fd_stat.st_uid != 0) | 
 |             || (fd_stat.st_gid != 0) | 
 |             || ((fd_stat.st_mode & (S_IWGRP | S_IWOTH)) != 0) | 
 |             || (fd_stat.st_size < static_cast<off_t>(sizeof(prop_area))) ) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     pa_size = fd_stat.st_size; | 
 |     pa_data_size = pa_size - sizeof(prop_area); | 
 |  | 
 |     void* const map_result = mmap(NULL, pa_size, PROT_READ, MAP_SHARED, fd, 0); | 
 |     if (map_result == MAP_FAILED) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     prop_area* pa = reinterpret_cast<prop_area*>(map_result); | 
 |     if ((pa->magic() != PROP_AREA_MAGIC) || | 
 |         (pa->version() != PROP_AREA_VERSION && | 
 |          pa->version() != PROP_AREA_VERSION_COMPAT)) { | 
 |         munmap(pa, pa_size); | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     if (pa->version() == PROP_AREA_VERSION_COMPAT) { | 
 |         compat_mode = true; | 
 |     } | 
 |  | 
 |     return pa; | 
 | } | 
 |  | 
 | static prop_area* map_prop_area(const char* filename, bool is_legacy) { | 
 |     int fd = open(filename, O_CLOEXEC | O_NOFOLLOW | O_RDONLY); | 
 |     bool close_fd = true; | 
 |     if (fd == -1 && errno == ENOENT && is_legacy) { | 
 |         /* | 
 |          * For backwards compatibility, if the file doesn't | 
 |          * exist, we use the environment to get the file descriptor. | 
 |          * For security reasons, we only use this backup if the kernel | 
 |          * returns ENOENT. We don't want to use the backup if the kernel | 
 |          * returns other errors such as ENOMEM or ENFILE, since it | 
 |          * might be possible for an external program to trigger this | 
 |          * condition. | 
 |          * Only do this for the legacy prop file, secured prop files | 
 |          * do not have a backup | 
 |          */ | 
 |         fd = get_fd_from_env(); | 
 |         close_fd = false; | 
 |     } | 
 |  | 
 |     if (fd < 0) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     prop_area* map_result = map_fd_ro(fd); | 
 |     if (close_fd) { | 
 |         close(fd); | 
 |     } | 
 |  | 
 |     return map_result; | 
 | } | 
 |  | 
 | void *prop_area::allocate_obj(const size_t size, uint_least32_t *const off) | 
 | { | 
 |     const size_t aligned = BIONIC_ALIGN(size, sizeof(uint_least32_t)); | 
 |     if (bytes_used_ + aligned > pa_data_size) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     *off = bytes_used_; | 
 |     bytes_used_ += aligned; | 
 |     return data_ + *off; | 
 | } | 
 |  | 
 | prop_bt *prop_area::new_prop_bt(const char *name, uint8_t namelen, uint_least32_t *const off) | 
 | { | 
 |     uint_least32_t new_offset; | 
 |     void *const p = allocate_obj(sizeof(prop_bt) + namelen + 1, &new_offset); | 
 |     if (p != NULL) { | 
 |         prop_bt* bt = new(p) prop_bt(name, namelen); | 
 |         *off = new_offset; | 
 |         return bt; | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | prop_info *prop_area::new_prop_info(const char *name, uint8_t namelen, | 
 |         const char *value, uint8_t valuelen, uint_least32_t *const off) | 
 | { | 
 |     uint_least32_t new_offset; | 
 |     void* const p = allocate_obj(sizeof(prop_info) + namelen + 1, &new_offset); | 
 |     if (p != NULL) { | 
 |         prop_info* info = new(p) prop_info(name, namelen, value, valuelen); | 
 |         *off = new_offset; | 
 |         return info; | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | void *prop_area::to_prop_obj(uint_least32_t off) | 
 | { | 
 |     if (off > pa_data_size) | 
 |         return NULL; | 
 |  | 
 |     return (data_ + off); | 
 | } | 
 |  | 
 | inline prop_bt *prop_area::to_prop_bt(atomic_uint_least32_t* off_p) { | 
 |   uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume); | 
 |   return reinterpret_cast<prop_bt*>(to_prop_obj(off)); | 
 | } | 
 |  | 
 | inline prop_info *prop_area::to_prop_info(atomic_uint_least32_t* off_p) { | 
 |   uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume); | 
 |   return reinterpret_cast<prop_info*>(to_prop_obj(off)); | 
 | } | 
 |  | 
 | inline prop_bt *prop_area::root_node() | 
 | { | 
 |     return reinterpret_cast<prop_bt*>(to_prop_obj(0)); | 
 | } | 
 |  | 
 | static int cmp_prop_name(const char *one, uint8_t one_len, const char *two, | 
 |         uint8_t two_len) | 
 | { | 
 |     if (one_len < two_len) | 
 |         return -1; | 
 |     else if (one_len > two_len) | 
 |         return 1; | 
 |     else | 
 |         return strncmp(one, two, one_len); | 
 | } | 
 |  | 
 | prop_bt *prop_area::find_prop_bt(prop_bt *const bt, const char *name, | 
 |                                  uint8_t namelen, bool alloc_if_needed) | 
 | { | 
 |  | 
 |     prop_bt* current = bt; | 
 |     while (true) { | 
 |         if (!current) { | 
 |             return NULL; | 
 |         } | 
 |  | 
 |         const int ret = cmp_prop_name(name, namelen, current->name, current->namelen); | 
 |         if (ret == 0) { | 
 |             return current; | 
 |         } | 
 |  | 
 |         if (ret < 0) { | 
 |             uint_least32_t left_offset = atomic_load_explicit(¤t->left, memory_order_relaxed); | 
 |             if (left_offset != 0) { | 
 |                 current = to_prop_bt(¤t->left); | 
 |             } else { | 
 |                 if (!alloc_if_needed) { | 
 |                    return NULL; | 
 |                 } | 
 |  | 
 |                 uint_least32_t new_offset; | 
 |                 prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset); | 
 |                 if (new_bt) { | 
 |                     atomic_store_explicit(¤t->left, new_offset, memory_order_release); | 
 |                 } | 
 |                 return new_bt; | 
 |             } | 
 |         } else { | 
 |             uint_least32_t right_offset = atomic_load_explicit(¤t->right, memory_order_relaxed); | 
 |             if (right_offset != 0) { | 
 |                 current = to_prop_bt(¤t->right); | 
 |             } else { | 
 |                 if (!alloc_if_needed) { | 
 |                    return NULL; | 
 |                 } | 
 |  | 
 |                 uint_least32_t new_offset; | 
 |                 prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset); | 
 |                 if (new_bt) { | 
 |                     atomic_store_explicit(¤t->right, new_offset, memory_order_release); | 
 |                 } | 
 |                 return new_bt; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | const prop_info *prop_area::find_property(prop_bt *const trie, const char *name, | 
 |         uint8_t namelen, const char *value, uint8_t valuelen, | 
 |         bool alloc_if_needed) | 
 | { | 
 |     if (!trie) return NULL; | 
 |  | 
 |     const char *remaining_name = name; | 
 |     prop_bt* current = trie; | 
 |     while (true) { | 
 |         const char *sep = strchr(remaining_name, '.'); | 
 |         const bool want_subtree = (sep != NULL); | 
 |         const uint8_t substr_size = (want_subtree) ? | 
 |             sep - remaining_name : strlen(remaining_name); | 
 |  | 
 |         if (!substr_size) { | 
 |             return NULL; | 
 |         } | 
 |  | 
 |         prop_bt* root = NULL; | 
 |         uint_least32_t children_offset = atomic_load_explicit(¤t->children, memory_order_relaxed); | 
 |         if (children_offset != 0) { | 
 |             root = to_prop_bt(¤t->children); | 
 |         } else if (alloc_if_needed) { | 
 |             uint_least32_t new_offset; | 
 |             root = new_prop_bt(remaining_name, substr_size, &new_offset); | 
 |             if (root) { | 
 |                 atomic_store_explicit(¤t->children, new_offset, memory_order_release); | 
 |             } | 
 |         } | 
 |  | 
 |         if (!root) { | 
 |             return NULL; | 
 |         } | 
 |  | 
 |         current = find_prop_bt(root, remaining_name, substr_size, alloc_if_needed); | 
 |         if (!current) { | 
 |             return NULL; | 
 |         } | 
 |  | 
 |         if (!want_subtree) | 
 |             break; | 
 |  | 
 |         remaining_name = sep + 1; | 
 |     } | 
 |  | 
 |     uint_least32_t prop_offset = atomic_load_explicit(¤t->prop, memory_order_relaxed); | 
 |     if (prop_offset != 0) { | 
 |         return to_prop_info(¤t->prop); | 
 |     } else if (alloc_if_needed) { | 
 |         uint_least32_t new_offset; | 
 |         prop_info* new_info = new_prop_info(name, namelen, value, valuelen, &new_offset); | 
 |         if (new_info) { | 
 |             atomic_store_explicit(¤t->prop, new_offset, memory_order_release); | 
 |         } | 
 |  | 
 |         return new_info; | 
 |     } else { | 
 |         return NULL; | 
 |     } | 
 | } | 
 |  | 
 | static int send_prop_msg(const prop_msg *msg) | 
 | { | 
 |     const int fd = socket(AF_LOCAL, SOCK_STREAM | SOCK_CLOEXEC, 0); | 
 |     if (fd == -1) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     const size_t namelen = strlen(property_service_socket); | 
 |  | 
 |     sockaddr_un addr; | 
 |     memset(&addr, 0, sizeof(addr)); | 
 |     strlcpy(addr.sun_path, property_service_socket, sizeof(addr.sun_path)); | 
 |     addr.sun_family = AF_LOCAL; | 
 |     socklen_t alen = namelen + offsetof(sockaddr_un, sun_path) + 1; | 
 |     if (TEMP_FAILURE_RETRY(connect(fd, reinterpret_cast<sockaddr*>(&addr), alen)) < 0) { | 
 |         close(fd); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     const int num_bytes = TEMP_FAILURE_RETRY(send(fd, msg, sizeof(prop_msg), 0)); | 
 |  | 
 |     int result = -1; | 
 |     if (num_bytes == sizeof(prop_msg)) { | 
 |         // We successfully wrote to the property server but now we | 
 |         // wait for the property server to finish its work.  It | 
 |         // acknowledges its completion by closing the socket so we | 
 |         // poll here (on nothing), waiting for the socket to close. | 
 |         // If you 'adb shell setprop foo bar' you'll see the POLLHUP | 
 |         // once the socket closes.  Out of paranoia we cap our poll | 
 |         // at 250 ms. | 
 |         pollfd pollfds[1]; | 
 |         pollfds[0].fd = fd; | 
 |         pollfds[0].events = 0; | 
 |         const int poll_result = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */)); | 
 |         if (poll_result == 1 && (pollfds[0].revents & POLLHUP) != 0) { | 
 |             result = 0; | 
 |         } else { | 
 |             // Ignore the timeout and treat it like a success anyway. | 
 |             // The init process is single-threaded and its property | 
 |             // service is sometimes slow to respond (perhaps it's off | 
 |             // starting a child process or something) and thus this | 
 |             // times out and the caller thinks it failed, even though | 
 |             // it's still getting around to it.  So we fake it here, | 
 |             // mostly for ctl.* properties, but we do try and wait 250 | 
 |             // ms so callers who do read-after-write can reliably see | 
 |             // what they've written.  Most of the time. | 
 |             // TODO: fix the system properties design. | 
 |             result = 0; | 
 |         } | 
 |     } | 
 |  | 
 |     close(fd); | 
 |     return result; | 
 | } | 
 |  | 
 | static void find_nth_fn(const prop_info *pi, void *ptr) | 
 | { | 
 |     find_nth_cookie *cookie = reinterpret_cast<find_nth_cookie*>(ptr); | 
 |  | 
 |     if (cookie->n == cookie->count) | 
 |         cookie->pi = pi; | 
 |  | 
 |     cookie->count++; | 
 | } | 
 |  | 
 | bool prop_area::foreach_property(prop_bt *const trie, | 
 |         void (*propfn)(const prop_info *pi, void *cookie), void *cookie) | 
 | { | 
 |     if (!trie) | 
 |         return false; | 
 |  | 
 |     uint_least32_t left_offset = atomic_load_explicit(&trie->left, memory_order_relaxed); | 
 |     if (left_offset != 0) { | 
 |         const int err = foreach_property(to_prop_bt(&trie->left), propfn, cookie); | 
 |         if (err < 0) | 
 |             return false; | 
 |     } | 
 |     uint_least32_t prop_offset = atomic_load_explicit(&trie->prop, memory_order_relaxed); | 
 |     if (prop_offset != 0) { | 
 |         prop_info *info = to_prop_info(&trie->prop); | 
 |         if (!info) | 
 |             return false; | 
 |         propfn(info, cookie); | 
 |     } | 
 |     uint_least32_t children_offset = atomic_load_explicit(&trie->children, memory_order_relaxed); | 
 |     if (children_offset != 0) { | 
 |         const int err = foreach_property(to_prop_bt(&trie->children), propfn, cookie); | 
 |         if (err < 0) | 
 |             return false; | 
 |     } | 
 |     uint_least32_t right_offset = atomic_load_explicit(&trie->right, memory_order_relaxed); | 
 |     if (right_offset != 0) { | 
 |         const int err = foreach_property(to_prop_bt(&trie->right), propfn, cookie); | 
 |         if (err < 0) | 
 |             return false; | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | const prop_info *prop_area::find(const char *name) { | 
 |     return find_property(root_node(), name, strlen(name), nullptr, 0, false); | 
 | } | 
 |  | 
 | bool prop_area::add(const char *name, unsigned int namelen, | 
 |                     const char *value, unsigned int valuelen) { | 
 |     return find_property(root_node(), name, namelen, value, valuelen, true); | 
 | } | 
 |  | 
 | bool prop_area::foreach(void (*propfn)(const prop_info* pi, void* cookie), void* cookie) { | 
 |     return foreach_property(root_node(), propfn, cookie); | 
 | } | 
 |  | 
 | class context_node { | 
 | public: | 
 |     context_node(context_node* next, const char* context, prop_area* pa) | 
 |         : next(next), context_(strdup(context)), pa_(pa), no_access_(false) { | 
 |         lock_.init(false); | 
 |     } | 
 |     ~context_node() { | 
 |         unmap(); | 
 |         free(context_); | 
 |     } | 
 |     bool open(bool access_rw, bool* fsetxattr_failed); | 
 |     bool check_access_and_open(); | 
 |     void reset_access(); | 
 |  | 
 |     const char* context() const { return context_; } | 
 |     prop_area* pa() { return pa_; } | 
 |  | 
 |     context_node* next; | 
 |  | 
 | private: | 
 |     bool check_access(); | 
 |     void unmap(); | 
 |  | 
 |     Lock lock_; | 
 |     char* context_; | 
 |     prop_area* pa_; | 
 |     bool no_access_; | 
 | }; | 
 |  | 
 | struct prefix_node { | 
 |     prefix_node(struct prefix_node* next, const char* prefix, context_node* context) | 
 |         : prefix(strdup(prefix)), prefix_len(strlen(prefix)), context(context), next(next) { | 
 |     } | 
 |     ~prefix_node() { | 
 |         free(prefix); | 
 |     } | 
 |     char* prefix; | 
 |     const size_t prefix_len; | 
 |     context_node* context; | 
 |     struct prefix_node* next; | 
 | }; | 
 |  | 
 | template <typename List, typename... Args> | 
 | static inline void list_add(List** list, Args... args) { | 
 |     *list = new List(*list, args...); | 
 | } | 
 |  | 
 | static void list_add_after_len(prefix_node** list, const char* prefix, context_node* context) { | 
 |     size_t prefix_len = strlen(prefix); | 
 |  | 
 |     auto next_list = list; | 
 |  | 
 |     while (*next_list) { | 
 |         if ((*next_list)->prefix_len < prefix_len || (*next_list)->prefix[0] == '*') { | 
 |             list_add(next_list, prefix, context); | 
 |             return; | 
 |         } | 
 |         next_list = &(*next_list)->next; | 
 |     } | 
 |     list_add(next_list, prefix, context); | 
 | } | 
 |  | 
 | template <typename List, typename Func> | 
 | static void list_foreach(List* list, Func func) { | 
 |     while (list) { | 
 |         func(list); | 
 |         list = list->next; | 
 |     } | 
 | } | 
 |  | 
 | template <typename List, typename Func> | 
 | static List* list_find(List* list, Func func) { | 
 |     while (list) { | 
 |         if (func(list)) { | 
 |             return list; | 
 |         } | 
 |         list = list->next; | 
 |     } | 
 |     return nullptr; | 
 | } | 
 |  | 
 | template <typename List> | 
 | static void list_free(List** list) { | 
 |     while (*list) { | 
 |         auto old_list = *list; | 
 |         *list = old_list->next; | 
 |         delete old_list; | 
 |     } | 
 | } | 
 |  | 
 | static prefix_node* prefixes = nullptr; | 
 | static context_node* contexts = nullptr; | 
 |  | 
 | /* | 
 |  * pthread_mutex_lock() calls into system_properties in the case of contention. | 
 |  * This creates a risk of dead lock if any system_properties functions | 
 |  * use pthread locks after system_property initialization. | 
 |  * | 
 |  * For this reason, the below three functions use a bionic Lock and static | 
 |  * allocation of memory for each filename. | 
 |  */ | 
 |  | 
 | bool context_node::open(bool access_rw, bool* fsetxattr_failed) { | 
 |     lock_.lock(); | 
 |     if (pa_) { | 
 |         lock_.unlock(); | 
 |         return true; | 
 |     } | 
 |  | 
 |     char filename[PROP_FILENAME_MAX]; | 
 |     int len = __libc_format_buffer(filename, sizeof(filename), "%s/%s", | 
 |                                    property_filename, context_); | 
 |     if (len < 0 || len > PROP_FILENAME_MAX) { | 
 |         lock_.unlock(); | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (access_rw) { | 
 |         pa_ = map_prop_area_rw(filename, context_, fsetxattr_failed); | 
 |     } else { | 
 |         pa_ = map_prop_area(filename, false); | 
 |     } | 
 |     lock_.unlock(); | 
 |     return pa_; | 
 | } | 
 |  | 
 | bool context_node::check_access_and_open() { | 
 |     if (!pa_ && !no_access_) { | 
 |         if (!check_access() || !open(false, nullptr)) { | 
 |             no_access_ = true; | 
 |         } | 
 |     } | 
 |     return pa_; | 
 | } | 
 |  | 
 | void context_node::reset_access() { | 
 |     if (!check_access()) { | 
 |         unmap(); | 
 |         no_access_ = true; | 
 |     } else { | 
 |         no_access_ = false; | 
 |     } | 
 | } | 
 |  | 
 | bool context_node::check_access() { | 
 |     char filename[PROP_FILENAME_MAX]; | 
 |     int len = __libc_format_buffer(filename, sizeof(filename), "%s/%s", | 
 |                                    property_filename, context_); | 
 |     if (len < 0 || len > PROP_FILENAME_MAX) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     return access(filename, R_OK) == 0; | 
 | } | 
 |  | 
 | void context_node::unmap() { | 
 |     if (!pa_) { | 
 |         return; | 
 |     } | 
 |  | 
 |     munmap(pa_, pa_size); | 
 |     if (pa_ == __system_property_area__) { | 
 |         __system_property_area__ = nullptr; | 
 |     } | 
 |     pa_ = nullptr; | 
 | } | 
 |  | 
 | static bool map_system_property_area(bool access_rw, bool* fsetxattr_failed) { | 
 |     char filename[PROP_FILENAME_MAX]; | 
 |     int len = __libc_format_buffer(filename, sizeof(filename), | 
 |                                    "%s/properties_serial", property_filename); | 
 |     if (len < 0 || len > PROP_FILENAME_MAX) { | 
 |         __system_property_area__ = nullptr; | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (access_rw) { | 
 |         __system_property_area__ = | 
 |             map_prop_area_rw(filename, "u:object_r:properties_serial:s0", fsetxattr_failed); | 
 |     } else { | 
 |         __system_property_area__ = map_prop_area(filename, false); | 
 |     } | 
 |     return __system_property_area__; | 
 | } | 
 |  | 
 | static prop_area* get_prop_area_for_name(const char* name) { | 
 |     auto entry = list_find(prefixes, [name](prefix_node* l) { | 
 |         return l->prefix[0] == '*' || !strncmp(l->prefix, name, l->prefix_len); | 
 |     }); | 
 |     if (!entry) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     auto cnode = entry->context; | 
 |     if (!cnode->pa()) { | 
 |         /* | 
 |          * We explicitly do not check no_access_ in this case because unlike the | 
 |          * case of foreach(), we want to generate an selinux audit for each | 
 |          * non-permitted property access in this function. | 
 |          */ | 
 |         cnode->open(false, nullptr); | 
 |     } | 
 |     return cnode->pa(); | 
 | } | 
 |  | 
 | /* | 
 |  * The below two functions are duplicated from label_support.c in libselinux. | 
 |  * TODO: Find a location suitable for these functions such that both libc and | 
 |  * libselinux can share a common source file. | 
 |  */ | 
 |  | 
 | /* | 
 |  * The read_spec_entries and read_spec_entry functions may be used to | 
 |  * replace sscanf to read entries from spec files. The file and | 
 |  * property services now use these. | 
 |  */ | 
 |  | 
 | /* Read an entry from a spec file (e.g. file_contexts) */ | 
 | static inline int read_spec_entry(char **entry, char **ptr, int *len) | 
 | { | 
 |     *entry = NULL; | 
 |     char *tmp_buf = NULL; | 
 |  | 
 |     while (isspace(**ptr) && **ptr != '\0') | 
 |         (*ptr)++; | 
 |  | 
 |     tmp_buf = *ptr; | 
 |     *len = 0; | 
 |  | 
 |     while (!isspace(**ptr) && **ptr != '\0') { | 
 |         (*ptr)++; | 
 |         (*len)++; | 
 |     } | 
 |  | 
 |     if (*len) { | 
 |         *entry = strndup(tmp_buf, *len); | 
 |         if (!*entry) | 
 |             return -1; | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * line_buf - Buffer containing the spec entries . | 
 |  * num_args - The number of spec parameter entries to process. | 
 |  * ...      - A 'char **spec_entry' for each parameter. | 
 |  * returns  - The number of items processed. | 
 |  * | 
 |  * This function calls read_spec_entry() to do the actual string processing. | 
 |  */ | 
 | static int read_spec_entries(char *line_buf, int num_args, ...) | 
 | { | 
 |     char **spec_entry, *buf_p; | 
 |     int len, rc, items, entry_len = 0; | 
 |     va_list ap; | 
 |  | 
 |     len = strlen(line_buf); | 
 |     if (line_buf[len - 1] == '\n') | 
 |         line_buf[len - 1] = '\0'; | 
 |     else | 
 |         /* Handle case if line not \n terminated by bumping | 
 |          * the len for the check below (as the line is NUL | 
 |          * terminated by getline(3)) */ | 
 |         len++; | 
 |  | 
 |     buf_p = line_buf; | 
 |     while (isspace(*buf_p)) | 
 |         buf_p++; | 
 |  | 
 |     /* Skip comment lines and empty lines. */ | 
 |     if (*buf_p == '#' || *buf_p == '\0') | 
 |         return 0; | 
 |  | 
 |     /* Process the spec file entries */ | 
 |     va_start(ap, num_args); | 
 |  | 
 |     items = 0; | 
 |     while (items < num_args) { | 
 |         spec_entry = va_arg(ap, char **); | 
 |  | 
 |         if (len - 1 == buf_p - line_buf) { | 
 |             va_end(ap); | 
 |             return items; | 
 |         } | 
 |  | 
 |         rc = read_spec_entry(spec_entry, &buf_p, &entry_len); | 
 |         if (rc < 0) { | 
 |             va_end(ap); | 
 |             return rc; | 
 |         } | 
 |         if (entry_len) | 
 |             items++; | 
 |     } | 
 |     va_end(ap); | 
 |     return items; | 
 | } | 
 |  | 
 | static bool initialize_properties() { | 
 |     FILE* file = fopen("/property_contexts", "re"); | 
 |  | 
 |     if (!file) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     char* buffer = nullptr; | 
 |     size_t line_len; | 
 |     char* prop_prefix = nullptr; | 
 |     char* context = nullptr; | 
 |  | 
 |     while (getline(&buffer, &line_len, file) > 0) { | 
 |         int items = read_spec_entries(buffer, 2, &prop_prefix, &context); | 
 |         if (items <= 0) { | 
 |             continue; | 
 |         } | 
 |         if (items == 1) { | 
 |             free(prop_prefix); | 
 |             continue; | 
 |         } | 
 |         /* | 
 |          * init uses ctl.* properties as an IPC mechanism and does not write them | 
 |          * to a property file, therefore we do not need to create property files | 
 |          * to store them. | 
 |          */ | 
 |         if (!strncmp(prop_prefix, "ctl.", 4)) { | 
 |             free(prop_prefix); | 
 |             free(context); | 
 |             continue; | 
 |         } | 
 |  | 
 |         auto old_context = list_find( | 
 |             contexts, [context](context_node* l) { return !strcmp(l->context(), context); }); | 
 |         if (old_context) { | 
 |             list_add_after_len(&prefixes, prop_prefix, old_context); | 
 |         } else { | 
 |             list_add(&contexts, context, nullptr); | 
 |             list_add_after_len(&prefixes, prop_prefix, contexts); | 
 |         } | 
 |         free(prop_prefix); | 
 |         free(context); | 
 |     } | 
 |  | 
 |     free(buffer); | 
 |     fclose(file); | 
 |     return true; | 
 | } | 
 |  | 
 | static bool is_dir(const char* pathname) { | 
 |     struct stat info; | 
 |     if (stat(pathname, &info) == -1) { | 
 |         return false; | 
 |     } | 
 |     return S_ISDIR(info.st_mode); | 
 | } | 
 |  | 
 | static void free_and_unmap_contexts() { | 
 |     list_free(&prefixes); | 
 |     list_free(&contexts); | 
 |     if (__system_property_area__) { | 
 |         munmap(__system_property_area__, pa_size); | 
 |         __system_property_area__ = nullptr; | 
 |     } | 
 | } | 
 |  | 
 | int __system_properties_init() | 
 | { | 
 |     if (initialized) { | 
 |         list_foreach(contexts, [](context_node* l) { l->reset_access(); }); | 
 |         return 0; | 
 |     } | 
 |     if (is_dir(property_filename)) { | 
 |         if (!initialize_properties()) { | 
 |             return -1; | 
 |         } | 
 |         if (!map_system_property_area(false, nullptr)) { | 
 |             free_and_unmap_contexts(); | 
 |             return -1; | 
 |         } | 
 |     } else { | 
 |         __system_property_area__ = map_prop_area(property_filename, true); | 
 |         if (!__system_property_area__) { | 
 |             return -1; | 
 |         } | 
 |         list_add(&contexts, "legacy_system_prop_area", __system_property_area__); | 
 |         list_add_after_len(&prefixes, "*", contexts); | 
 |     } | 
 |     initialized = true; | 
 |     return 0; | 
 | } | 
 |  | 
 | int __system_property_set_filename(const char *filename) | 
 | { | 
 |     size_t len = strlen(filename); | 
 |     if (len >= sizeof(property_filename)) | 
 |         return -1; | 
 |  | 
 |     strcpy(property_filename, filename); | 
 |     return 0; | 
 | } | 
 |  | 
 | int __system_property_area_init() | 
 | { | 
 |     free_and_unmap_contexts(); | 
 |     mkdir(property_filename, S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH); | 
 |     if (!initialize_properties()) { | 
 |         return -1; | 
 |     } | 
 |     bool open_failed = false; | 
 |     bool fsetxattr_failed = false; | 
 |     list_foreach(contexts, [&fsetxattr_failed, &open_failed](context_node* l) { | 
 |         if (!l->open(true, &fsetxattr_failed)) { | 
 |             open_failed = true; | 
 |         } | 
 |     }); | 
 |     if (open_failed || !map_system_property_area(true, &fsetxattr_failed)) { | 
 |         free_and_unmap_contexts(); | 
 |         return -1; | 
 |     } | 
 |     initialized = true; | 
 |     return fsetxattr_failed ? -2 : 0; | 
 | } | 
 |  | 
 | unsigned int __system_property_area_serial() | 
 | { | 
 |     prop_area *pa = __system_property_area__; | 
 |     if (!pa) { | 
 |         return -1; | 
 |     } | 
 |     // Make sure this read fulfilled before __system_property_serial | 
 |     return atomic_load_explicit(pa->serial(), memory_order_acquire); | 
 | } | 
 |  | 
 | const prop_info *__system_property_find(const char *name) | 
 | { | 
 |     if (!__system_property_area__) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     if (__predict_false(compat_mode)) { | 
 |         return __system_property_find_compat(name); | 
 |     } | 
 |  | 
 |     prop_area* pa = get_prop_area_for_name(name); | 
 |     if (!pa) { | 
 |         __libc_format_log(ANDROID_LOG_ERROR, "libc", "Access denied finding property \"%s\"", name); | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     return pa->find(name); | 
 | } | 
 |  | 
 | // The C11 standard doesn't allow atomic loads from const fields, | 
 | // though C++11 does.  Fudge it until standards get straightened out. | 
 | static inline uint_least32_t load_const_atomic(const atomic_uint_least32_t* s, | 
 |                                                memory_order mo) { | 
 |     atomic_uint_least32_t* non_const_s = const_cast<atomic_uint_least32_t*>(s); | 
 |     return atomic_load_explicit(non_const_s, mo); | 
 | } | 
 |  | 
 | int __system_property_read(const prop_info *pi, char *name, char *value) | 
 | { | 
 |     if (__predict_false(compat_mode)) { | 
 |         return __system_property_read_compat(pi, name, value); | 
 |     } | 
 |  | 
 |     while (true) { | 
 |         uint32_t serial = __system_property_serial(pi); // acquire semantics | 
 |         size_t len = SERIAL_VALUE_LEN(serial); | 
 |         memcpy(value, pi->value, len + 1); | 
 |         // TODO: Fix the synchronization scheme here. | 
 |         // There is no fully supported way to implement this kind | 
 |         // of synchronization in C++11, since the memcpy races with | 
 |         // updates to pi, and the data being accessed is not atomic. | 
 |         // The following fence is unintuitive, but would be the | 
 |         // correct one if memcpy used memory_order_relaxed atomic accesses. | 
 |         // In practice it seems unlikely that the generated code would | 
 |         // would be any different, so this should be OK. | 
 |         atomic_thread_fence(memory_order_acquire); | 
 |         if (serial == | 
 |                 load_const_atomic(&(pi->serial), memory_order_relaxed)) { | 
 |             if (name != 0) { | 
 |                 strcpy(name, pi->name); | 
 |             } | 
 |             return len; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | int __system_property_get(const char *name, char *value) | 
 | { | 
 |     const prop_info *pi = __system_property_find(name); | 
 |  | 
 |     if (pi != 0) { | 
 |         return __system_property_read(pi, 0, value); | 
 |     } else { | 
 |         value[0] = 0; | 
 |         return 0; | 
 |     } | 
 | } | 
 |  | 
 | int __system_property_set(const char *key, const char *value) | 
 | { | 
 |     if (key == 0) return -1; | 
 |     if (value == 0) value = ""; | 
 |     if (strlen(key) >= PROP_NAME_MAX) return -1; | 
 |     if (strlen(value) >= PROP_VALUE_MAX) return -1; | 
 |  | 
 |     prop_msg msg; | 
 |     memset(&msg, 0, sizeof msg); | 
 |     msg.cmd = PROP_MSG_SETPROP; | 
 |     strlcpy(msg.name, key, sizeof msg.name); | 
 |     strlcpy(msg.value, value, sizeof msg.value); | 
 |  | 
 |     const int err = send_prop_msg(&msg); | 
 |     if (err < 0) { | 
 |         return err; | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int __system_property_update(prop_info *pi, const char *value, unsigned int len) | 
 | { | 
 |     if (len >= PROP_VALUE_MAX) | 
 |         return -1; | 
 |  | 
 |     prop_area* pa = __system_property_area__; | 
 |  | 
 |     if (!pa) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     uint32_t serial = atomic_load_explicit(&pi->serial, memory_order_relaxed); | 
 |     serial |= 1; | 
 |     atomic_store_explicit(&pi->serial, serial, memory_order_relaxed); | 
 |     // The memcpy call here also races.  Again pretend it | 
 |     // used memory_order_relaxed atomics, and use the analogous | 
 |     // counterintuitive fence. | 
 |     atomic_thread_fence(memory_order_release); | 
 |     memcpy(pi->value, value, len + 1); | 
 |     atomic_store_explicit( | 
 |         &pi->serial, | 
 |         (len << 24) | ((serial + 1) & 0xffffff), | 
 |         memory_order_release); | 
 |     __futex_wake(&pi->serial, INT32_MAX); | 
 |  | 
 |     atomic_store_explicit( | 
 |         pa->serial(), | 
 |         atomic_load_explicit(pa->serial(), memory_order_relaxed) + 1, | 
 |         memory_order_release); | 
 |     __futex_wake(pa->serial(), INT32_MAX); | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int __system_property_add(const char *name, unsigned int namelen, | 
 |             const char *value, unsigned int valuelen) | 
 | { | 
 |     if (namelen >= PROP_NAME_MAX) | 
 |         return -1; | 
 |     if (valuelen >= PROP_VALUE_MAX) | 
 |         return -1; | 
 |     if (namelen < 1) | 
 |         return -1; | 
 |  | 
 |     if (!__system_property_area__) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     prop_area* pa = get_prop_area_for_name(name); | 
 |  | 
 |     if (!pa) { | 
 |         __libc_format_log(ANDROID_LOG_ERROR, "libc", "Access denied adding property \"%s\"", name); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     bool ret = pa->add(name, namelen, value, valuelen); | 
 |     if (!ret) | 
 |         return -1; | 
 |  | 
 |     // There is only a single mutator, but we want to make sure that | 
 |     // updates are visible to a reader waiting for the update. | 
 |     atomic_store_explicit( | 
 |         __system_property_area__->serial(), | 
 |         atomic_load_explicit(__system_property_area__->serial(), memory_order_relaxed) + 1, | 
 |         memory_order_release); | 
 |     __futex_wake(__system_property_area__->serial(), INT32_MAX); | 
 |     return 0; | 
 | } | 
 |  | 
 | // Wait for non-locked serial, and retrieve it with acquire semantics. | 
 | unsigned int __system_property_serial(const prop_info *pi) | 
 | { | 
 |     uint32_t serial = load_const_atomic(&pi->serial, memory_order_acquire); | 
 |     while (SERIAL_DIRTY(serial)) { | 
 |         __futex_wait(const_cast<volatile void *>( | 
 |                         reinterpret_cast<const void *>(&pi->serial)), | 
 |                      serial, NULL); | 
 |         serial = load_const_atomic(&pi->serial, memory_order_acquire); | 
 |     } | 
 |     return serial; | 
 | } | 
 |  | 
 | unsigned int __system_property_wait_any(unsigned int serial) | 
 | { | 
 |     prop_area *pa = __system_property_area__; | 
 |     uint32_t my_serial; | 
 |  | 
 |     if (!pa) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     do { | 
 |         __futex_wait(pa->serial(), serial, NULL); | 
 |         my_serial = atomic_load_explicit(pa->serial(), memory_order_acquire); | 
 |     } while (my_serial == serial); | 
 |  | 
 |     return my_serial; | 
 | } | 
 |  | 
 | const prop_info *__system_property_find_nth(unsigned n) | 
 | { | 
 |     find_nth_cookie cookie(n); | 
 |  | 
 |     const int err = __system_property_foreach(find_nth_fn, &cookie); | 
 |     if (err < 0) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     return cookie.pi; | 
 | } | 
 |  | 
 | int __system_property_foreach(void (*propfn)(const prop_info *pi, void *cookie), | 
 |         void *cookie) | 
 | { | 
 |     if (!__system_property_area__) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (__predict_false(compat_mode)) { | 
 |         return __system_property_foreach_compat(propfn, cookie); | 
 |     } | 
 |  | 
 |     list_foreach(contexts, [propfn, cookie](context_node* l) { | 
 |         if (l->check_access_and_open()) { | 
 |             l->pa()->foreach(propfn, cookie); | 
 |         } | 
 |     }); | 
 |     return 0; | 
 | } |