Rajesh Nyamagoud | 4d48337 | 2022-02-09 01:38:23 +0000 | [diff] [blame] | 1 | #include "ffi_test_utils.hpp" |
| 2 | |
| 3 | #include <iostream> |
| 4 | |
| 5 | #include <KeyMintAidlTestBase.h> |
| 6 | #include <aidl/android/hardware/security/keymint/ErrorCode.h> |
Rajesh Nyamagoud | c946cc4 | 2022-04-12 22:49:11 +0000 | [diff] [blame] | 7 | #include <keymaster/UniquePtr.h> |
Rajesh Nyamagoud | 4d48337 | 2022-02-09 01:38:23 +0000 | [diff] [blame] | 8 | |
Rajesh Nyamagoud | c946cc4 | 2022-04-12 22:49:11 +0000 | [diff] [blame] | 9 | #include <memory> |
Rajesh Nyamagoud | 4d48337 | 2022-02-09 01:38:23 +0000 | [diff] [blame] | 10 | #include <vector> |
| 11 | |
Rajesh Nyamagoud | c946cc4 | 2022-04-12 22:49:11 +0000 | [diff] [blame] | 12 | #include <hardware/keymaster_defs.h> |
| 13 | #include <keymaster/android_keymaster_utils.h> |
| 14 | #include <keymaster/keymaster_tags.h> |
| 15 | |
| 16 | #include <keymaster/km_openssl/attestation_record.h> |
| 17 | #include <keymaster/km_openssl/openssl_err.h> |
| 18 | #include <keymaster/km_openssl/openssl_utils.h> |
| 19 | #include <openssl/asn1t.h> |
| 20 | |
Rajesh Nyamagoud | 4d48337 | 2022-02-09 01:38:23 +0000 | [diff] [blame] | 21 | using aidl::android::hardware::security::keymint::ErrorCode; |
| 22 | |
| 23 | #define TAG_SEQUENCE 0x30 |
| 24 | #define LENGTH_MASK 0x80 |
| 25 | #define LENGTH_VALUE_MASK 0x7F |
| 26 | |
Rajesh Nyamagoud | c946cc4 | 2022-04-12 22:49:11 +0000 | [diff] [blame] | 27 | /** |
| 28 | * ASN.1 structure for `KeyDescription` Schema. |
| 29 | * See `IKeyMintDevice.aidl` for documentation of the `KeyDescription` schema. |
| 30 | * KeyDescription ::= SEQUENCE( |
| 31 | * keyFormat INTEGER, # Values from KeyFormat enum. |
| 32 | * keyParams AuthorizationList, |
| 33 | * ) |
| 34 | */ |
| 35 | typedef struct key_description { |
| 36 | ASN1_INTEGER* key_format; |
| 37 | keymaster::KM_AUTH_LIST* key_params; |
| 38 | } TEST_KEY_DESCRIPTION; |
| 39 | |
| 40 | ASN1_SEQUENCE(TEST_KEY_DESCRIPTION) = { |
| 41 | ASN1_SIMPLE(TEST_KEY_DESCRIPTION, key_format, ASN1_INTEGER), |
| 42 | ASN1_SIMPLE(TEST_KEY_DESCRIPTION, key_params, keymaster::KM_AUTH_LIST), |
| 43 | } ASN1_SEQUENCE_END(TEST_KEY_DESCRIPTION); |
| 44 | DECLARE_ASN1_FUNCTIONS(TEST_KEY_DESCRIPTION); |
| 45 | |
| 46 | /** |
| 47 | * ASN.1 structure for `SecureKeyWrapper` Schema. |
| 48 | * See `IKeyMintDevice.aidl` for documentation of the `SecureKeyWrapper` schema. |
| 49 | * SecureKeyWrapper ::= SEQUENCE( |
| 50 | * version INTEGER, # Contains value 0 |
| 51 | * encryptedTransportKey OCTET_STRING, |
| 52 | * initializationVector OCTET_STRING, |
| 53 | * keyDescription KeyDescription, |
| 54 | * encryptedKey OCTET_STRING, |
| 55 | * tag OCTET_STRING |
| 56 | * ) |
| 57 | */ |
| 58 | typedef struct secure_key_wrapper { |
| 59 | ASN1_INTEGER* version; |
| 60 | ASN1_OCTET_STRING* encrypted_transport_key; |
| 61 | ASN1_OCTET_STRING* initialization_vector; |
| 62 | TEST_KEY_DESCRIPTION* key_desc; |
| 63 | ASN1_OCTET_STRING* encrypted_key; |
| 64 | ASN1_OCTET_STRING* tag; |
| 65 | } TEST_SECURE_KEY_WRAPPER; |
| 66 | |
| 67 | ASN1_SEQUENCE(TEST_SECURE_KEY_WRAPPER) = { |
| 68 | ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, version, ASN1_INTEGER), |
| 69 | ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, encrypted_transport_key, ASN1_OCTET_STRING), |
| 70 | ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, initialization_vector, ASN1_OCTET_STRING), |
| 71 | ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, key_desc, TEST_KEY_DESCRIPTION), |
| 72 | ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, encrypted_key, ASN1_OCTET_STRING), |
| 73 | ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, tag, ASN1_OCTET_STRING), |
| 74 | } ASN1_SEQUENCE_END(TEST_SECURE_KEY_WRAPPER); |
| 75 | DECLARE_ASN1_FUNCTIONS(TEST_SECURE_KEY_WRAPPER); |
| 76 | |
| 77 | IMPLEMENT_ASN1_FUNCTIONS(TEST_SECURE_KEY_WRAPPER); |
| 78 | IMPLEMENT_ASN1_FUNCTIONS(TEST_KEY_DESCRIPTION); |
| 79 | |
| 80 | struct TEST_KEY_DESCRIPTION_Delete { |
| 81 | void operator()(TEST_KEY_DESCRIPTION* p) { TEST_KEY_DESCRIPTION_free(p); } |
| 82 | }; |
| 83 | struct TEST_SECURE_KEY_WRAPPER_Delete { |
| 84 | void operator()(TEST_SECURE_KEY_WRAPPER* p) { TEST_SECURE_KEY_WRAPPER_free(p); } |
| 85 | }; |
| 86 | |
Rajesh Nyamagoud | 4d48337 | 2022-02-09 01:38:23 +0000 | [diff] [blame] | 87 | /* This function extracts a certificate from the certs_chain_buffer at the given |
| 88 | * offset. Each DER encoded certificate starts with TAG_SEQUENCE followed by the |
| 89 | * total length of the certificate. The length of the certificate is determined |
| 90 | * as per ASN.1 encoding rules for the length octets. |
| 91 | * |
| 92 | * @param certs_chain_buffer: buffer containing DER encoded X.509 certificates |
| 93 | * arranged sequentially. |
| 94 | * @data_size: Length of the DER encoded X.509 certificates buffer. |
| 95 | * @index: DER encoded X.509 certificates buffer offset. |
| 96 | * @cert: Encoded certificate to be extracted from buffer as outcome. |
| 97 | * @return: ErrorCode::OK on success, otherwise ErrorCode::UNKNOWN_ERROR. |
| 98 | */ |
| 99 | ErrorCode |
| 100 | extractCertFromCertChainBuffer(uint8_t* certs_chain_buffer, int certs_chain_buffer_size, int& index, |
| 101 | aidl::android::hardware::security::keymint::Certificate& cert) { |
| 102 | if (index >= certs_chain_buffer_size) { |
| 103 | return ErrorCode::UNKNOWN_ERROR; |
| 104 | } |
| 105 | |
| 106 | uint32_t length = 0; |
| 107 | std::vector<uint8_t> cert_bytes; |
| 108 | if (certs_chain_buffer[index] == TAG_SEQUENCE) { |
| 109 | // Short form. One octet. Bit 8 has value "0" and bits 7-1 give the length. |
| 110 | if (0 == (certs_chain_buffer[index + 1] & LENGTH_MASK)) { |
| 111 | length = (uint32_t)certs_chain_buffer[index]; |
| 112 | // Add SEQ and Length fields |
| 113 | length += 2; |
| 114 | } else { |
| 115 | // Long form. Two to 127 octets. Bit 8 of first octet has value "1" and |
| 116 | // bits 7-1 give the number of additional length octets. Second and following |
| 117 | // octets give the actual length. |
| 118 | int additionalBytes = certs_chain_buffer[index + 1] & LENGTH_VALUE_MASK; |
| 119 | if (additionalBytes == 0x01) { |
| 120 | length = certs_chain_buffer[index + 2]; |
| 121 | // Add SEQ and Length fields |
| 122 | length += 3; |
| 123 | } else if (additionalBytes == 0x02) { |
| 124 | length = (certs_chain_buffer[index + 2] << 8 | certs_chain_buffer[index + 3]); |
| 125 | // Add SEQ and Length fields |
| 126 | length += 4; |
| 127 | } else if (additionalBytes == 0x04) { |
| 128 | length = certs_chain_buffer[index + 2] << 24; |
| 129 | length |= certs_chain_buffer[index + 3] << 16; |
| 130 | length |= certs_chain_buffer[index + 4] << 8; |
| 131 | length |= certs_chain_buffer[index + 5]; |
| 132 | // Add SEQ and Length fields |
| 133 | length += 6; |
| 134 | } else { |
| 135 | // Length is larger than uint32_t max limit. |
| 136 | return ErrorCode::UNKNOWN_ERROR; |
| 137 | } |
| 138 | } |
| 139 | cert_bytes.insert(cert_bytes.end(), (certs_chain_buffer + index), |
| 140 | (certs_chain_buffer + index + length)); |
| 141 | index += length; |
| 142 | |
| 143 | for (int i = 0; i < cert_bytes.size(); i++) { |
| 144 | cert.encodedCertificate = std::move(cert_bytes); |
| 145 | } |
| 146 | } else { |
| 147 | // SEQUENCE TAG MISSING. |
| 148 | return ErrorCode::UNKNOWN_ERROR; |
| 149 | } |
| 150 | |
| 151 | return ErrorCode::OK; |
| 152 | } |
| 153 | |
| 154 | ErrorCode getCertificateChain( |
| 155 | rust::Vec<rust::u8>& chainBuffer, |
| 156 | std::vector<aidl::android::hardware::security::keymint::Certificate>& certChain) { |
| 157 | uint8_t* data = chainBuffer.data(); |
| 158 | int index = 0; |
| 159 | int data_size = chainBuffer.size(); |
| 160 | |
| 161 | while (index < data_size) { |
| 162 | aidl::android::hardware::security::keymint::Certificate cert = |
| 163 | aidl::android::hardware::security::keymint::Certificate(); |
| 164 | if (extractCertFromCertChainBuffer(data, data_size, index, cert) != ErrorCode::OK) { |
| 165 | return ErrorCode::UNKNOWN_ERROR; |
| 166 | } |
| 167 | certChain.push_back(std::move(cert)); |
| 168 | } |
| 169 | return ErrorCode::OK; |
| 170 | } |
| 171 | |
| 172 | bool validateCertChain(rust::Vec<rust::u8> cert_buf, uint32_t cert_len, bool strict_issuer_check) { |
| 173 | std::vector<aidl::android::hardware::security::keymint::Certificate> cert_chain = |
| 174 | std::vector<aidl::android::hardware::security::keymint::Certificate>(); |
| 175 | if (cert_len <= 0) { |
| 176 | return false; |
| 177 | } |
| 178 | if (getCertificateChain(cert_buf, cert_chain) != ErrorCode::OK) { |
| 179 | return false; |
| 180 | } |
| 181 | |
| 182 | for (int i = 0; i < cert_chain.size(); i++) { |
| 183 | std::cout << cert_chain[i].toString() << "\n"; |
| 184 | } |
| 185 | auto result = aidl::android::hardware::security::keymint::test::ChainSignaturesAreValid( |
| 186 | cert_chain, strict_issuer_check); |
| 187 | |
| 188 | if (result == testing::AssertionSuccess()) return true; |
| 189 | |
| 190 | return false; |
| 191 | } |
Rajesh Nyamagoud | c946cc4 | 2022-04-12 22:49:11 +0000 | [diff] [blame] | 192 | |
| 193 | /** |
| 194 | * Below mentioned key parameters are used to create authorization list of |
| 195 | * secure key. |
| 196 | * Algorithm: AES-256 |
| 197 | * Padding: PKCS7 |
| 198 | * Blockmode: ECB |
| 199 | * Purpose: Encrypt, Decrypt |
| 200 | */ |
| 201 | keymaster::AuthorizationSet build_wrapped_key_auth_list() { |
| 202 | return keymaster::AuthorizationSet(keymaster::AuthorizationSetBuilder() |
| 203 | .AesEncryptionKey(256) |
| 204 | .Authorization(keymaster::TAG_BLOCK_MODE, KM_MODE_ECB) |
| 205 | .Authorization(keymaster::TAG_PADDING, KM_PAD_PKCS7) |
| 206 | .Authorization(keymaster::TAG_NO_AUTH_REQUIRED)); |
| 207 | } |
| 208 | |
| 209 | /** |
| 210 | * Creates ASN.1 DER-encoded data corresponding to `KeyDescription` schema as |
| 211 | * AAD. See `IKeyMintDevice.aidl` for documentation of the `KeyDescription` schema. |
| 212 | */ |
| 213 | CxxResult buildAsn1DerEncodedWrappedKeyDescription() { |
| 214 | CxxResult cxx_result{}; |
| 215 | keymaster_error_t error; |
| 216 | cxx_result.error = KM_ERROR_OK; |
| 217 | |
| 218 | keymaster::UniquePtr<TEST_KEY_DESCRIPTION, TEST_KEY_DESCRIPTION_Delete> key_description( |
| 219 | TEST_KEY_DESCRIPTION_new()); |
| 220 | if (!key_description.get()) { |
| 221 | cxx_result.error = KM_ERROR_MEMORY_ALLOCATION_FAILED; |
| 222 | return cxx_result; |
| 223 | } |
| 224 | |
| 225 | // Fill secure key authorizations. |
| 226 | keymaster::AuthorizationSet auth_list = build_wrapped_key_auth_list(); |
| 227 | error = build_auth_list(auth_list, key_description->key_params); |
| 228 | if (error != KM_ERROR_OK) { |
| 229 | cxx_result.error = error; |
| 230 | return cxx_result; |
| 231 | } |
| 232 | |
| 233 | // Fill secure key format. |
| 234 | if (!ASN1_INTEGER_set(key_description->key_format, KM_KEY_FORMAT_RAW)) { |
| 235 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 236 | return cxx_result; |
| 237 | } |
| 238 | |
| 239 | // Perform ASN.1 DER encoding of KeyDescription. |
| 240 | size_t asn1_data_len = i2d_TEST_KEY_DESCRIPTION(key_description.get(), nullptr); |
| 241 | if (asn1_data_len < 0) { |
| 242 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 243 | return cxx_result; |
| 244 | } |
| 245 | std::vector<uint8_t> asn1_data(asn1_data_len, 0); |
| 246 | |
| 247 | if (!asn1_data.data()) { |
| 248 | cxx_result.error = KM_ERROR_MEMORY_ALLOCATION_FAILED; |
| 249 | return cxx_result; |
| 250 | } |
| 251 | |
| 252 | uint8_t* p = asn1_data.data(); |
| 253 | asn1_data_len = i2d_TEST_KEY_DESCRIPTION(key_description.get(), &p); |
| 254 | if (asn1_data_len < 0) { |
| 255 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 256 | return cxx_result; |
| 257 | } |
| 258 | |
| 259 | std::move(asn1_data.begin(), asn1_data.end(), std::back_inserter(cxx_result.data)); |
| 260 | |
| 261 | return cxx_result; |
| 262 | } |
| 263 | |
| 264 | /** |
| 265 | * Creates wrapped key material to import in ASN.1 DER-encoded data corresponding to |
| 266 | * `SecureKeyWrapper` schema. See `IKeyMintDevice.aidl` for documentation of the `SecureKeyWrapper` |
| 267 | * schema. |
| 268 | */ |
| 269 | CxxResult createWrappedKey(rust::Vec<rust::u8> encrypted_secure_key, |
| 270 | rust::Vec<rust::u8> encrypted_transport_key, rust::Vec<rust::u8> iv, |
| 271 | rust::Vec<rust::u8> tag) { |
| 272 | CxxResult cxx_result{}; |
| 273 | keymaster_error_t error; |
| 274 | cxx_result.error = KM_ERROR_OK; |
| 275 | |
| 276 | uint8_t* enc_secure_key_data = encrypted_secure_key.data(); |
| 277 | int enc_secure_key_size = encrypted_secure_key.size(); |
| 278 | |
| 279 | uint8_t* iv_data = iv.data(); |
| 280 | int iv_size = iv.size(); |
| 281 | |
| 282 | uint8_t* tag_data = tag.data(); |
| 283 | int tag_size = tag.size(); |
| 284 | |
| 285 | uint8_t* enc_transport_key_data = encrypted_transport_key.data(); |
| 286 | int enc_transport_key_size = encrypted_transport_key.size(); |
| 287 | |
| 288 | keymaster::UniquePtr<TEST_SECURE_KEY_WRAPPER, TEST_SECURE_KEY_WRAPPER_Delete> sec_key_wrapper( |
| 289 | TEST_SECURE_KEY_WRAPPER_new()); |
| 290 | if (!sec_key_wrapper.get()) { |
| 291 | cxx_result.error = KM_ERROR_MEMORY_ALLOCATION_FAILED; |
| 292 | return cxx_result; |
| 293 | } |
| 294 | |
| 295 | // Fill version = 0 |
| 296 | if (!ASN1_INTEGER_set(sec_key_wrapper->version, 0)) { |
| 297 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 298 | return cxx_result; |
| 299 | } |
| 300 | |
| 301 | // Fill encrypted transport key. |
| 302 | if (enc_transport_key_size && |
| 303 | !ASN1_OCTET_STRING_set(sec_key_wrapper->encrypted_transport_key, enc_transport_key_data, |
| 304 | enc_transport_key_size)) { |
| 305 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 306 | return cxx_result; |
| 307 | } |
| 308 | |
| 309 | // Fill encrypted secure key. |
| 310 | if (enc_secure_key_size && !ASN1_OCTET_STRING_set(sec_key_wrapper->encrypted_key, |
| 311 | enc_secure_key_data, enc_secure_key_size)) { |
| 312 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 313 | return cxx_result; |
| 314 | } |
| 315 | |
| 316 | // Fill secure key authorization list. |
| 317 | keymaster::AuthorizationSet auth_list = build_wrapped_key_auth_list(); |
| 318 | error = build_auth_list(auth_list, sec_key_wrapper->key_desc->key_params); |
| 319 | if (error != KM_ERROR_OK) { |
| 320 | cxx_result.error = error; |
| 321 | return cxx_result; |
| 322 | } |
| 323 | |
| 324 | // Fill secure key format. |
| 325 | if (!ASN1_INTEGER_set(sec_key_wrapper->key_desc->key_format, KM_KEY_FORMAT_RAW)) { |
| 326 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 327 | return cxx_result; |
| 328 | } |
| 329 | |
| 330 | // Fill initialization vector used for encrypting secure key. |
| 331 | if (iv_size && |
| 332 | !ASN1_OCTET_STRING_set(sec_key_wrapper->initialization_vector, iv_data, iv_size)) { |
| 333 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 334 | return cxx_result; |
| 335 | } |
| 336 | |
| 337 | // Fill GCM-tag, extracted during secure key encryption. |
| 338 | if (tag_size && !ASN1_OCTET_STRING_set(sec_key_wrapper->tag, tag_data, tag_size)) { |
| 339 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 340 | return cxx_result; |
| 341 | } |
| 342 | |
| 343 | // ASN.1 DER-encoding of secure key wrapper. |
| 344 | size_t asn1_data_len = i2d_TEST_SECURE_KEY_WRAPPER(sec_key_wrapper.get(), nullptr); |
| 345 | if (asn1_data_len < 0) { |
| 346 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 347 | return cxx_result; |
| 348 | } |
| 349 | std::vector<uint8_t> asn1_data(asn1_data_len, 0); |
| 350 | |
| 351 | if (!asn1_data.data()) { |
| 352 | cxx_result.error = KM_ERROR_MEMORY_ALLOCATION_FAILED; |
| 353 | return cxx_result; |
| 354 | } |
| 355 | |
| 356 | uint8_t* p = asn1_data.data(); |
| 357 | asn1_data_len = i2d_TEST_SECURE_KEY_WRAPPER(sec_key_wrapper.get(), &p); |
| 358 | if (asn1_data_len < 0) { |
| 359 | cxx_result.error = keymaster::TranslateLastOpenSslError(); |
| 360 | return cxx_result; |
| 361 | } |
| 362 | |
| 363 | std::move(asn1_data.begin(), asn1_data.end(), std::back_inserter(cxx_result.data)); |
| 364 | |
| 365 | return cxx_result; |
| 366 | } |