Move keystore from frameworks/base

Move keystore from frameworks/base at commit
57ff581bd9b16a192a567f84d0e0a5c82d866343

Change-Id: I1e62488d63810f14e40ffb3d192925ff4eeb8906
diff --git a/keystore/keystore.cpp b/keystore/keystore.cpp
new file mode 100644
index 0000000..2c9cb35
--- /dev/null
+++ b/keystore/keystore.cpp
@@ -0,0 +1,810 @@
+/*
+ * Copyright (C) 2009 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <stdio.h>
+#include <stdint.h>
+#include <string.h>
+#include <unistd.h>
+#include <signal.h>
+#include <errno.h>
+#include <dirent.h>
+#include <fcntl.h>
+#include <limits.h>
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <sys/stat.h>
+#include <sys/time.h>
+#include <arpa/inet.h>
+
+#include <openssl/aes.h>
+#include <openssl/evp.h>
+#include <openssl/md5.h>
+
+#define LOG_TAG "keystore"
+#include <cutils/log.h>
+#include <cutils/sockets.h>
+#include <private/android_filesystem_config.h>
+
+#include "keystore.h"
+
+/* KeyStore is a secured storage for key-value pairs. In this implementation,
+ * each file stores one key-value pair. Keys are encoded in file names, and
+ * values are encrypted with checksums. The encryption key is protected by a
+ * user-defined password. To keep things simple, buffers are always larger than
+ * the maximum space we needed, so boundary checks on buffers are omitted. */
+
+#define KEY_SIZE        ((NAME_MAX - 15) / 2)
+#define VALUE_SIZE      32768
+#define PASSWORD_SIZE   VALUE_SIZE
+
+struct Value {
+    int length;
+    uint8_t value[VALUE_SIZE];
+};
+
+/* Here is the encoding of keys. This is necessary in order to allow arbitrary
+ * characters in keys. Characters in [0-~] are not encoded. Others are encoded
+ * into two bytes. The first byte is one of [+-.] which represents the first
+ * two bits of the character. The second byte encodes the rest of the bits into
+ * [0-o]. Therefore in the worst case the length of a key gets doubled. Note
+ * that Base64 cannot be used here due to the need of prefix match on keys. */
+
+static int encode_key(char* out, uid_t uid, const Value* key) {
+    int n = snprintf(out, NAME_MAX, "%u_", uid);
+    out += n;
+    const uint8_t* in = key->value;
+    int length = key->length;
+    for (int i = length; i > 0; --i, ++in, ++out) {
+        if (*in >= '0' && *in <= '~') {
+            *out = *in;
+        } else {
+            *out = '+' + (*in >> 6);
+            *++out = '0' + (*in & 0x3F);
+            ++length;
+        }
+    }
+    *out = '\0';
+    return n + length;
+}
+
+static int decode_key(uint8_t* out, char* in, int length) {
+    for (int i = 0; i < length; ++i, ++in, ++out) {
+        if (*in >= '0' && *in <= '~') {
+            *out = *in;
+        } else {
+            *out = (*in - '+') << 6;
+            *out |= (*++in - '0') & 0x3F;
+            --length;
+        }
+    }
+    *out = '\0';
+    return length;
+}
+
+static size_t readFully(int fd, uint8_t* data, size_t size) {
+    size_t remaining = size;
+    while (remaining > 0) {
+        ssize_t n = TEMP_FAILURE_RETRY(read(fd, data, size));
+        if (n == -1 || n == 0) {
+            return size-remaining;
+        }
+        data += n;
+        remaining -= n;
+    }
+    return size;
+}
+
+static size_t writeFully(int fd, uint8_t* data, size_t size) {
+    size_t remaining = size;
+    while (remaining > 0) {
+        ssize_t n = TEMP_FAILURE_RETRY(write(fd, data, size));
+        if (n == -1 || n == 0) {
+            return size-remaining;
+        }
+        data += n;
+        remaining -= n;
+    }
+    return size;
+}
+
+class Entropy {
+public:
+    Entropy() : mRandom(-1) {}
+    ~Entropy() {
+        if (mRandom != -1) {
+            close(mRandom);
+        }
+    }
+
+    bool open() {
+        const char* randomDevice = "/dev/urandom";
+        mRandom = ::open(randomDevice, O_RDONLY);
+        if (mRandom == -1) {
+            ALOGE("open: %s: %s", randomDevice, strerror(errno));
+            return false;
+        }
+        return true;
+    }
+
+    bool generate_random_data(uint8_t* data, size_t size) {
+        return (readFully(mRandom, data, size) == size);
+    }
+
+private:
+    int mRandom;
+};
+
+/* Here is the file format. There are two parts in blob.value, the secret and
+ * the description. The secret is stored in ciphertext, and its original size
+ * can be found in blob.length. The description is stored after the secret in
+ * plaintext, and its size is specified in blob.info. The total size of the two
+ * parts must be no more than VALUE_SIZE bytes. The first three bytes of the
+ * file are reserved for future use and are always set to zero. Fields other
+ * than blob.info, blob.length, and blob.value are modified by encryptBlob()
+ * and decryptBlob(). Thus they should not be accessed from outside. */
+
+struct __attribute__((packed)) blob {
+    uint8_t reserved[3];
+    uint8_t info;
+    uint8_t vector[AES_BLOCK_SIZE];
+    uint8_t encrypted[0];
+    uint8_t digest[MD5_DIGEST_LENGTH];
+    uint8_t digested[0];
+    int32_t length; // in network byte order when encrypted
+    uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE];
+};
+
+class Blob {
+public:
+    Blob(uint8_t* value, int32_t valueLength, uint8_t* info, uint8_t infoLength) {
+        mBlob.length = valueLength;
+        memcpy(mBlob.value, value, valueLength);
+
+        mBlob.info = infoLength;
+        memcpy(mBlob.value + valueLength, info, infoLength);
+    }
+
+    Blob(blob b) {
+        mBlob = b;
+    }
+
+    Blob() {}
+
+    uint8_t* getValue() {
+        return mBlob.value;
+    }
+
+    int32_t getLength() {
+        return mBlob.length;
+    }
+
+    uint8_t getInfo() {
+        return mBlob.info;
+    }
+
+    ResponseCode encryptBlob(const char* filename, AES_KEY *aes_key, Entropy* entropy) {
+        if (!entropy->generate_random_data(mBlob.vector, AES_BLOCK_SIZE)) {
+            return SYSTEM_ERROR;
+        }
+
+        // data includes the value and the value's length
+        size_t dataLength = mBlob.length + sizeof(mBlob.length);
+        // pad data to the AES_BLOCK_SIZE
+        size_t digestedLength = ((dataLength + AES_BLOCK_SIZE - 1)
+                                 / AES_BLOCK_SIZE * AES_BLOCK_SIZE);
+        // encrypted data includes the digest value
+        size_t encryptedLength = digestedLength + MD5_DIGEST_LENGTH;
+        // move info after space for padding
+        memmove(&mBlob.encrypted[encryptedLength], &mBlob.value[mBlob.length], mBlob.info);
+        // zero padding area
+        memset(mBlob.value + mBlob.length, 0, digestedLength - dataLength);
+
+        mBlob.length = htonl(mBlob.length);
+        MD5(mBlob.digested, digestedLength, mBlob.digest);
+
+        uint8_t vector[AES_BLOCK_SIZE];
+        memcpy(vector, mBlob.vector, AES_BLOCK_SIZE);
+        AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength,
+                        aes_key, vector, AES_ENCRYPT);
+
+        memset(mBlob.reserved, 0, sizeof(mBlob.reserved));
+        size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
+        size_t fileLength = encryptedLength + headerLength + mBlob.info;
+
+        const char* tmpFileName = ".tmp";
+        int out = open(tmpFileName, O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR);
+        if (out == -1) {
+            return SYSTEM_ERROR;
+        }
+        size_t writtenBytes = writeFully(out, (uint8_t*) &mBlob, fileLength);
+        if (close(out) != 0) {
+            return SYSTEM_ERROR;
+        }
+        if (writtenBytes != fileLength) {
+            unlink(tmpFileName);
+            return SYSTEM_ERROR;
+        }
+        return (rename(tmpFileName, filename) == 0) ? NO_ERROR : SYSTEM_ERROR;
+    }
+
+    ResponseCode decryptBlob(const char* filename, AES_KEY *aes_key) {
+        int in = open(filename, O_RDONLY);
+        if (in == -1) {
+            return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR;
+        }
+        // fileLength may be less than sizeof(mBlob) since the in
+        // memory version has extra padding to tolerate rounding up to
+        // the AES_BLOCK_SIZE
+        size_t fileLength = readFully(in, (uint8_t*) &mBlob, sizeof(mBlob));
+        if (close(in) != 0) {
+            return SYSTEM_ERROR;
+        }
+        size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
+        if (fileLength < headerLength) {
+            return VALUE_CORRUPTED;
+        }
+
+        ssize_t encryptedLength = fileLength - (headerLength + mBlob.info);
+        if (encryptedLength < 0 || encryptedLength % AES_BLOCK_SIZE != 0) {
+            return VALUE_CORRUPTED;
+        }
+        AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, aes_key,
+                        mBlob.vector, AES_DECRYPT);
+        size_t digestedLength = encryptedLength - MD5_DIGEST_LENGTH;
+        uint8_t computedDigest[MD5_DIGEST_LENGTH];
+        MD5(mBlob.digested, digestedLength, computedDigest);
+        if (memcmp(mBlob.digest, computedDigest, MD5_DIGEST_LENGTH) != 0) {
+            return VALUE_CORRUPTED;
+        }
+
+        ssize_t maxValueLength = digestedLength - sizeof(mBlob.length);
+        mBlob.length = ntohl(mBlob.length);
+        if (mBlob.length < 0 || mBlob.length > maxValueLength) {
+            return VALUE_CORRUPTED;
+        }
+        if (mBlob.info != 0) {
+            // move info from after padding to after data
+            memmove(&mBlob.value[mBlob.length], &mBlob.value[maxValueLength], mBlob.info);
+        }
+        return NO_ERROR;
+    }
+
+private:
+    struct blob mBlob;
+};
+
+class KeyStore {
+public:
+    KeyStore(Entropy* entropy) : mEntropy(entropy), mRetry(MAX_RETRY) {
+        if (access(MASTER_KEY_FILE, R_OK) == 0) {
+            setState(STATE_LOCKED);
+        } else {
+            setState(STATE_UNINITIALIZED);
+        }
+    }
+
+    State getState() {
+        return mState;
+    }
+
+    int8_t getRetry() {
+        return mRetry;
+    }
+
+    ResponseCode initialize(Value* pw) {
+        if (!generateMasterKey()) {
+            return SYSTEM_ERROR;
+        }
+        ResponseCode response = writeMasterKey(pw);
+        if (response != NO_ERROR) {
+            return response;
+        }
+        setupMasterKeys();
+        return NO_ERROR;
+    }
+
+    ResponseCode writeMasterKey(Value* pw) {
+        uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
+        generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, mSalt);
+        AES_KEY passwordAesKey;
+        AES_set_encrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
+        Blob masterKeyBlob(mMasterKey, sizeof(mMasterKey), mSalt, sizeof(mSalt));
+        return masterKeyBlob.encryptBlob(MASTER_KEY_FILE, &passwordAesKey, mEntropy);
+    }
+
+    ResponseCode readMasterKey(Value* pw) {
+        int in = open(MASTER_KEY_FILE, O_RDONLY);
+        if (in == -1) {
+            return SYSTEM_ERROR;
+        }
+
+        // we read the raw blob to just to get the salt to generate
+        // the AES key, then we create the Blob to use with decryptBlob
+        blob rawBlob;
+        size_t length = readFully(in, (uint8_t*) &rawBlob, sizeof(rawBlob));
+        if (close(in) != 0) {
+            return SYSTEM_ERROR;
+        }
+        // find salt at EOF if present, otherwise we have an old file
+        uint8_t* salt;
+        if (length > SALT_SIZE && rawBlob.info == SALT_SIZE) {
+            salt = (uint8_t*) &rawBlob + length - SALT_SIZE;
+        } else {
+            salt = NULL;
+        }
+        uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
+        generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, salt);
+        AES_KEY passwordAesKey;
+        AES_set_decrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
+        Blob masterKeyBlob(rawBlob);
+        ResponseCode response = masterKeyBlob.decryptBlob(MASTER_KEY_FILE, &passwordAesKey);
+        if (response == SYSTEM_ERROR) {
+            return SYSTEM_ERROR;
+        }
+        if (response == NO_ERROR && masterKeyBlob.getLength() == MASTER_KEY_SIZE_BYTES) {
+            // if salt was missing, generate one and write a new master key file with the salt.
+            if (salt == NULL) {
+                if (!generateSalt()) {
+                    return SYSTEM_ERROR;
+                }
+                response = writeMasterKey(pw);
+            }
+            if (response == NO_ERROR) {
+                memcpy(mMasterKey, masterKeyBlob.getValue(), MASTER_KEY_SIZE_BYTES);
+                setupMasterKeys();
+            }
+            return response;
+        }
+        if (mRetry <= 0) {
+            reset();
+            return UNINITIALIZED;
+        }
+        --mRetry;
+        switch (mRetry) {
+            case 0: return WRONG_PASSWORD_0;
+            case 1: return WRONG_PASSWORD_1;
+            case 2: return WRONG_PASSWORD_2;
+            case 3: return WRONG_PASSWORD_3;
+            default: return WRONG_PASSWORD_3;
+        }
+    }
+
+    bool reset() {
+        clearMasterKeys();
+        setState(STATE_UNINITIALIZED);
+
+        DIR* dir = opendir(".");
+        struct dirent* file;
+
+        if (!dir) {
+            return false;
+        }
+        while ((file = readdir(dir)) != NULL) {
+            unlink(file->d_name);
+        }
+        closedir(dir);
+        return true;
+    }
+
+    bool isEmpty() {
+        DIR* dir = opendir(".");
+        struct dirent* file;
+        if (!dir) {
+            return true;
+        }
+        bool result = true;
+        while ((file = readdir(dir)) != NULL) {
+            if (isKeyFile(file->d_name)) {
+                result = false;
+                break;
+            }
+        }
+        closedir(dir);
+        return result;
+    }
+
+    void lock() {
+        clearMasterKeys();
+        setState(STATE_LOCKED);
+    }
+
+    ResponseCode get(const char* filename, Blob* keyBlob) {
+        return keyBlob->decryptBlob(filename, &mMasterKeyDecryption);
+    }
+
+    ResponseCode put(const char* filename, Blob* keyBlob) {
+        return keyBlob->encryptBlob(filename, &mMasterKeyEncryption, mEntropy);
+    }
+
+private:
+    static const char* MASTER_KEY_FILE;
+    static const int MASTER_KEY_SIZE_BYTES = 16;
+    static const int MASTER_KEY_SIZE_BITS = MASTER_KEY_SIZE_BYTES * 8;
+
+    static const int MAX_RETRY = 4;
+    static const size_t SALT_SIZE = 16;
+
+    Entropy* mEntropy;
+
+    State mState;
+    int8_t mRetry;
+
+    uint8_t mMasterKey[MASTER_KEY_SIZE_BYTES];
+    uint8_t mSalt[SALT_SIZE];
+
+    AES_KEY mMasterKeyEncryption;
+    AES_KEY mMasterKeyDecryption;
+
+    void setState(State state) {
+        mState = state;
+        if (mState == STATE_NO_ERROR || mState == STATE_UNINITIALIZED) {
+            mRetry = MAX_RETRY;
+        }
+    }
+
+    bool generateSalt() {
+        return mEntropy->generate_random_data(mSalt, sizeof(mSalt));
+    }
+
+    bool generateMasterKey() {
+        if (!mEntropy->generate_random_data(mMasterKey, sizeof(mMasterKey))) {
+            return false;
+        }
+        if (!generateSalt()) {
+            return false;
+        }
+        return true;
+    }
+
+    void setupMasterKeys() {
+        AES_set_encrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyEncryption);
+        AES_set_decrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyDecryption);
+        setState(STATE_NO_ERROR);
+    }
+
+    void clearMasterKeys() {
+        memset(mMasterKey, 0, sizeof(mMasterKey));
+        memset(mSalt, 0, sizeof(mSalt));
+        memset(&mMasterKeyEncryption, 0, sizeof(mMasterKeyEncryption));
+        memset(&mMasterKeyDecryption, 0, sizeof(mMasterKeyDecryption));
+    }
+
+    static void generateKeyFromPassword(uint8_t* key, ssize_t keySize, Value* pw, uint8_t* salt) {
+        size_t saltSize;
+        if (salt != NULL) {
+            saltSize = SALT_SIZE;
+        } else {
+            // pre-gingerbread used this hardwired salt, readMasterKey will rewrite these when found
+            salt = (uint8_t*) "keystore";
+            // sizeof = 9, not strlen = 8
+            saltSize = sizeof("keystore");
+        }
+        PKCS5_PBKDF2_HMAC_SHA1((char*) pw->value, pw->length, salt, saltSize, 8192, keySize, key);
+    }
+
+    static bool isKeyFile(const char* filename) {
+        return ((strcmp(filename, MASTER_KEY_FILE) != 0)
+                && (strcmp(filename, ".") != 0)
+                && (strcmp(filename, "..") != 0));
+    }
+};
+
+const char* KeyStore::MASTER_KEY_FILE = ".masterkey";
+
+/* Here is the protocol used in both requests and responses:
+ *     code [length_1 message_1 ... length_n message_n] end-of-file
+ * where code is one byte long and lengths are unsigned 16-bit integers in
+ * network order. Thus the maximum length of a message is 65535 bytes. */
+
+static int recv_code(int sock, int8_t* code) {
+    return recv(sock, code, 1, 0) == 1;
+}
+
+static int recv_message(int sock, uint8_t* message, int length) {
+    uint8_t bytes[2];
+    if (recv(sock, &bytes[0], 1, 0) != 1 ||
+        recv(sock, &bytes[1], 1, 0) != 1) {
+        return -1;
+    } else {
+        int offset = bytes[0] << 8 | bytes[1];
+        if (length < offset) {
+            return -1;
+        }
+        length = offset;
+        offset = 0;
+        while (offset < length) {
+            int n = recv(sock, &message[offset], length - offset, 0);
+            if (n <= 0) {
+                return -1;
+            }
+            offset += n;
+        }
+    }
+    return length;
+}
+
+static int recv_end_of_file(int sock) {
+    uint8_t byte;
+    return recv(sock, &byte, 1, 0) == 0;
+}
+
+static void send_code(int sock, int8_t code) {
+    send(sock, &code, 1, 0);
+}
+
+static void send_message(int sock, uint8_t* message, int length) {
+    uint16_t bytes = htons(length);
+    send(sock, &bytes, 2, 0);
+    send(sock, message, length, 0);
+}
+
+/* Here are the actions. Each of them is a function without arguments. All
+ * information is defined in global variables, which are set properly before
+ * performing an action. The number of parameters required by each action is
+ * fixed and defined in a table. If the return value of an action is positive,
+ * it will be treated as a response code and transmitted to the client. Note
+ * that the lengths of parameters are checked when they are received, so
+ * boundary checks on parameters are omitted. */
+
+static const ResponseCode NO_ERROR_RESPONSE_CODE_SENT = (ResponseCode) 0;
+
+static ResponseCode test(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
+    return (ResponseCode) keyStore->getState();
+}
+
+static ResponseCode get(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
+    char filename[NAME_MAX];
+    encode_key(filename, uid, keyName);
+    Blob keyBlob;
+    ResponseCode responseCode = keyStore->get(filename, &keyBlob);
+    if (responseCode != NO_ERROR) {
+        return responseCode;
+    }
+    send_code(sock, NO_ERROR);
+    send_message(sock, keyBlob.getValue(), keyBlob.getLength());
+    return NO_ERROR_RESPONSE_CODE_SENT;
+}
+
+static ResponseCode insert(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value* val) {
+    char filename[NAME_MAX];
+    encode_key(filename, uid, keyName);
+    Blob keyBlob(val->value, val->length, NULL, 0);
+    return keyStore->put(filename, &keyBlob);
+}
+
+static ResponseCode del(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
+    char filename[NAME_MAX];
+    encode_key(filename, uid, keyName);
+    return (unlink(filename) && errno != ENOENT) ? SYSTEM_ERROR : NO_ERROR;
+}
+
+static ResponseCode exist(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
+    char filename[NAME_MAX];
+    encode_key(filename, uid, keyName);
+    if (access(filename, R_OK) == -1) {
+        return (errno != ENOENT) ? SYSTEM_ERROR : KEY_NOT_FOUND;
+    }
+    return NO_ERROR;
+}
+
+static ResponseCode saw(KeyStore* keyStore, int sock, uid_t uid, Value* keyPrefix, Value*) {
+    DIR* dir = opendir(".");
+    if (!dir) {
+        return SYSTEM_ERROR;
+    }
+    char filename[NAME_MAX];
+    int n = encode_key(filename, uid, keyPrefix);
+    send_code(sock, NO_ERROR);
+
+    struct dirent* file;
+    while ((file = readdir(dir)) != NULL) {
+        if (!strncmp(filename, file->d_name, n)) {
+            char* p = &file->d_name[n];
+            keyPrefix->length = decode_key(keyPrefix->value, p, strlen(p));
+            send_message(sock, keyPrefix->value, keyPrefix->length);
+        }
+    }
+    closedir(dir);
+    return NO_ERROR_RESPONSE_CODE_SENT;
+}
+
+static ResponseCode reset(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
+    return keyStore->reset() ? NO_ERROR : SYSTEM_ERROR;
+}
+
+/* Here is the history. To improve the security, the parameters to generate the
+ * master key has been changed. To make a seamless transition, we update the
+ * file using the same password when the user unlock it for the first time. If
+ * any thing goes wrong during the transition, the new file will not overwrite
+ * the old one. This avoids permanent damages of the existing data. */
+
+static ResponseCode password(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value*) {
+    switch (keyStore->getState()) {
+        case STATE_UNINITIALIZED: {
+            // generate master key, encrypt with password, write to file, initialize mMasterKey*.
+            return keyStore->initialize(pw);
+        }
+        case STATE_NO_ERROR: {
+            // rewrite master key with new password.
+            return keyStore->writeMasterKey(pw);
+        }
+        case STATE_LOCKED: {
+            // read master key, decrypt with password, initialize mMasterKey*.
+            return keyStore->readMasterKey(pw);
+        }
+    }
+    return SYSTEM_ERROR;
+}
+
+static ResponseCode lock(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
+    keyStore->lock();
+    return NO_ERROR;
+}
+
+static ResponseCode unlock(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value* unused) {
+    return password(keyStore, sock, uid, pw, unused);
+}
+
+static ResponseCode zero(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
+    return keyStore->isEmpty() ? KEY_NOT_FOUND : NO_ERROR;
+}
+
+/* Here are the permissions, actions, users, and the main function. */
+
+enum perm {
+    TEST     =    1,
+    GET      =    2,
+    INSERT   =    4,
+    DELETE   =    8,
+    EXIST    =   16,
+    SAW      =   32,
+    RESET    =   64,
+    PASSWORD =  128,
+    LOCK     =  256,
+    UNLOCK   =  512,
+    ZERO     = 1024,
+};
+
+static const int MAX_PARAM = 2;
+
+static const State STATE_ANY = (State) 0;
+
+static struct action {
+    ResponseCode (*run)(KeyStore* keyStore, int sock, uid_t uid, Value* param1, Value* param2);
+    int8_t code;
+    State state;
+    uint32_t perm;
+    int lengths[MAX_PARAM];
+} actions[] = {
+    {test,     't', STATE_ANY,      TEST,     {0, 0}},
+    {get,      'g', STATE_NO_ERROR, GET,      {KEY_SIZE, 0}},
+    {insert,   'i', STATE_NO_ERROR, INSERT,   {KEY_SIZE, VALUE_SIZE}},
+    {del,      'd', STATE_ANY,      DELETE,   {KEY_SIZE, 0}},
+    {exist,    'e', STATE_ANY,      EXIST,    {KEY_SIZE, 0}},
+    {saw,      's', STATE_ANY,      SAW,      {KEY_SIZE, 0}},
+    {reset,    'r', STATE_ANY,      RESET,    {0, 0}},
+    {password, 'p', STATE_ANY,      PASSWORD, {PASSWORD_SIZE, 0}},
+    {lock,     'l', STATE_NO_ERROR, LOCK,     {0, 0}},
+    {unlock,   'u', STATE_LOCKED,   UNLOCK,   {PASSWORD_SIZE, 0}},
+    {zero,     'z', STATE_ANY,      ZERO,     {0, 0}},
+    {NULL,      0 , STATE_ANY,      0,        {0, 0}},
+};
+
+static struct user {
+    uid_t uid;
+    uid_t euid;
+    uint32_t perms;
+} users[] = {
+    {AID_SYSTEM,   ~0,         ~0},
+    {AID_VPN,      AID_SYSTEM, GET},
+    {AID_WIFI,     AID_SYSTEM, GET},
+    {AID_ROOT,     AID_SYSTEM, GET},
+    {~0,           ~0,         TEST | GET | INSERT | DELETE | EXIST | SAW},
+};
+
+static ResponseCode process(KeyStore* keyStore, int sock, uid_t uid, int8_t code) {
+    struct user* user = users;
+    struct action* action = actions;
+    int i;
+
+    while (~user->uid && user->uid != uid) {
+        ++user;
+    }
+    while (action->code && action->code != code) {
+        ++action;
+    }
+    if (!action->code) {
+        return UNDEFINED_ACTION;
+    }
+    if (!(action->perm & user->perms)) {
+        return PERMISSION_DENIED;
+    }
+    if (action->state != STATE_ANY && action->state != keyStore->getState()) {
+        return (ResponseCode) keyStore->getState();
+    }
+    if (~user->euid) {
+        uid = user->euid;
+    }
+    Value params[MAX_PARAM];
+    for (i = 0; i < MAX_PARAM && action->lengths[i] != 0; ++i) {
+        params[i].length = recv_message(sock, params[i].value, action->lengths[i]);
+        if (params[i].length < 0) {
+            return PROTOCOL_ERROR;
+        }
+    }
+    if (!recv_end_of_file(sock)) {
+        return PROTOCOL_ERROR;
+    }
+    return action->run(keyStore, sock, uid, &params[0], &params[1]);
+}
+
+int main(int argc, char* argv[]) {
+    int controlSocket = android_get_control_socket("keystore");
+    if (argc < 2) {
+        ALOGE("A directory must be specified!");
+        return 1;
+    }
+    if (chdir(argv[1]) == -1) {
+        ALOGE("chdir: %s: %s", argv[1], strerror(errno));
+        return 1;
+    }
+
+    Entropy entropy;
+    if (!entropy.open()) {
+        return 1;
+    }
+    if (listen(controlSocket, 3) == -1) {
+        ALOGE("listen: %s", strerror(errno));
+        return 1;
+    }
+
+    signal(SIGPIPE, SIG_IGN);
+
+    KeyStore keyStore(&entropy);
+    int sock;
+    while ((sock = accept(controlSocket, NULL, 0)) != -1) {
+        struct timeval tv;
+        tv.tv_sec = 3;
+        setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv));
+        setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv));
+
+        struct ucred cred;
+        socklen_t size = sizeof(cred);
+        int credResult = getsockopt(sock, SOL_SOCKET, SO_PEERCRED, &cred, &size);
+        if (credResult != 0) {
+            ALOGW("getsockopt: %s", strerror(errno));
+        } else {
+            int8_t request;
+            if (recv_code(sock, &request)) {
+                State old_state = keyStore.getState();
+                ResponseCode response = process(&keyStore, sock, cred.uid, request);
+                if (response == NO_ERROR_RESPONSE_CODE_SENT) {
+                    response = NO_ERROR;
+                } else {
+                    send_code(sock, response);
+                }
+                ALOGI("uid: %d action: %c -> %d state: %d -> %d retry: %d",
+                     cred.uid,
+                     request, response,
+                     old_state, keyStore.getState(),
+                     keyStore.getRetry());
+            }
+        }
+        close(sock);
+    }
+    ALOGE("accept: %s", strerror(errno));
+    return 1;
+}