Move large test modules into separate files
This complies better with the Android Rust style guide, and makes it
easier to navigate the code.
Test: keystore2_test libwatchdog_rs.test librkpd_client.test
Change-Id: Iceb49e309af66ec16d31da66b328936b0312061a
diff --git a/keystore2/src/async_task/tests.rs b/keystore2/src/async_task/tests.rs
new file mode 100644
index 0000000..e67303e
--- /dev/null
+++ b/keystore2/src/async_task/tests.rs
@@ -0,0 +1,287 @@
+// Copyright 2020, The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+//! Async task tests.
+use super::{AsyncTask, Shelf};
+use std::sync::{
+ mpsc::{channel, sync_channel, RecvTimeoutError},
+ Arc,
+};
+use std::time::Duration;
+
+#[test]
+fn test_shelf() {
+ let mut shelf = Shelf::default();
+
+ let s = "A string".to_string();
+ assert_eq!(shelf.put(s), None);
+
+ let s2 = "Another string".to_string();
+ assert_eq!(shelf.put(s2), Some("A string".to_string()));
+
+ // Put something of a different type on the shelf.
+ #[derive(Debug, PartialEq, Eq)]
+ struct Elf {
+ pub name: String,
+ }
+ let e1 = Elf { name: "Glorfindel".to_string() };
+ assert_eq!(shelf.put(e1), None);
+
+ // The String value is still on the shelf.
+ let s3 = shelf.get_downcast_ref::<String>().unwrap();
+ assert_eq!(s3, "Another string");
+
+ // As is the Elf.
+ {
+ let e2 = shelf.get_downcast_mut::<Elf>().unwrap();
+ assert_eq!(e2.name, "Glorfindel");
+ e2.name = "Celeborn".to_string();
+ }
+
+ // Take the Elf off the shelf.
+ let e3 = shelf.remove_downcast_ref::<Elf>().unwrap();
+ assert_eq!(e3.name, "Celeborn");
+
+ assert_eq!(shelf.remove_downcast_ref::<Elf>(), None);
+
+ // No u64 value has been put on the shelf, so getting one gives the default value.
+ {
+ let i = shelf.get_mut::<u64>();
+ assert_eq!(*i, 0);
+ *i = 42;
+ }
+ let i2 = shelf.get_downcast_ref::<u64>().unwrap();
+ assert_eq!(*i2, 42);
+
+ // No i32 value has ever been seen near the shelf.
+ assert_eq!(shelf.get_downcast_ref::<i32>(), None);
+ assert_eq!(shelf.get_downcast_mut::<i32>(), None);
+ assert_eq!(shelf.remove_downcast_ref::<i32>(), None);
+}
+
+#[test]
+fn test_async_task() {
+ let at = AsyncTask::default();
+
+ // First queue up a job that blocks until we release it, to avoid
+ // unpredictable synchronization.
+ let (start_sender, start_receiver) = channel();
+ at.queue_hi(move |shelf| {
+ start_receiver.recv().unwrap();
+ // Put a trace vector on the shelf
+ shelf.put(Vec::<String>::new());
+ });
+
+ // Queue up some high-priority and low-priority jobs.
+ for i in 0..3 {
+ let j = i;
+ at.queue_lo(move |shelf| {
+ let trace = shelf.get_mut::<Vec<String>>();
+ trace.push(format!("L{}", j));
+ });
+ let j = i;
+ at.queue_hi(move |shelf| {
+ let trace = shelf.get_mut::<Vec<String>>();
+ trace.push(format!("H{}", j));
+ });
+ }
+
+ // Finally queue up a low priority job that emits the trace.
+ let (trace_sender, trace_receiver) = channel();
+ at.queue_lo(move |shelf| {
+ let trace = shelf.get_downcast_ref::<Vec<String>>().unwrap();
+ trace_sender.send(trace.clone()).unwrap();
+ });
+
+ // Ready, set, go.
+ start_sender.send(()).unwrap();
+ let trace = trace_receiver.recv().unwrap();
+
+ assert_eq!(trace, vec!["H0", "H1", "H2", "L0", "L1", "L2"]);
+}
+
+#[test]
+fn test_async_task_chain() {
+ let at = Arc::new(AsyncTask::default());
+ let (sender, receiver) = channel();
+ // Queue up a job that will queue up another job. This confirms
+ // that the job is not invoked with any internal AsyncTask locks held.
+ let at_clone = at.clone();
+ at.queue_hi(move |_shelf| {
+ at_clone.queue_lo(move |_shelf| {
+ sender.send(()).unwrap();
+ });
+ });
+ receiver.recv().unwrap();
+}
+
+#[test]
+#[should_panic]
+fn test_async_task_panic() {
+ let at = AsyncTask::default();
+ at.queue_hi(|_shelf| {
+ panic!("Panic from queued job");
+ });
+ // Queue another job afterwards to ensure that the async thread gets joined.
+ let (done_sender, done_receiver) = channel();
+ at.queue_hi(move |_shelf| {
+ done_sender.send(()).unwrap();
+ });
+ done_receiver.recv().unwrap();
+}
+
+#[test]
+fn test_async_task_idle() {
+ let at = AsyncTask::new(Duration::from_secs(3));
+ // Need a SyncSender as it is Send+Sync.
+ let (idle_done_sender, idle_done_receiver) = sync_channel::<()>(3);
+ at.add_idle(move |_shelf| {
+ idle_done_sender.send(()).unwrap();
+ });
+
+ // Queue up some high-priority and low-priority jobs that take time.
+ for _i in 0..3 {
+ at.queue_lo(|_shelf| {
+ std::thread::sleep(Duration::from_millis(500));
+ });
+ at.queue_hi(|_shelf| {
+ std::thread::sleep(Duration::from_millis(500));
+ });
+ }
+ // Final low-priority job.
+ let (done_sender, done_receiver) = channel();
+ at.queue_lo(move |_shelf| {
+ done_sender.send(()).unwrap();
+ });
+
+ // Nothing happens until the last job completes.
+ assert_eq!(
+ idle_done_receiver.recv_timeout(Duration::from_secs(1)),
+ Err(RecvTimeoutError::Timeout)
+ );
+ done_receiver.recv().unwrap();
+ // Now that the last low-priority job has completed, the idle task should
+ // fire pretty much immediately.
+ idle_done_receiver.recv_timeout(Duration::from_millis(50)).unwrap();
+
+ // Idle callback not executed again even if we wait for a while.
+ assert_eq!(
+ idle_done_receiver.recv_timeout(Duration::from_secs(3)),
+ Err(RecvTimeoutError::Timeout)
+ );
+
+ // However, if more work is done then there's another chance to go idle.
+ let (done_sender, done_receiver) = channel();
+ at.queue_hi(move |_shelf| {
+ std::thread::sleep(Duration::from_millis(500));
+ done_sender.send(()).unwrap();
+ });
+ // Idle callback not immediately executed, because the high priority
+ // job is taking a while.
+ assert_eq!(
+ idle_done_receiver.recv_timeout(Duration::from_millis(1)),
+ Err(RecvTimeoutError::Timeout)
+ );
+ done_receiver.recv().unwrap();
+ idle_done_receiver.recv_timeout(Duration::from_millis(50)).unwrap();
+}
+
+#[test]
+fn test_async_task_multiple_idle() {
+ let at = AsyncTask::new(Duration::from_secs(3));
+ let (idle_sender, idle_receiver) = sync_channel::<i32>(5);
+ // Queue a high priority job to start things off
+ at.queue_hi(|_shelf| {
+ std::thread::sleep(Duration::from_millis(500));
+ });
+
+ // Multiple idle callbacks.
+ for i in 0..3 {
+ let idle_sender = idle_sender.clone();
+ at.add_idle(move |_shelf| {
+ idle_sender.send(i).unwrap();
+ });
+ }
+
+ // Nothing happens immediately.
+ assert_eq!(
+ idle_receiver.recv_timeout(Duration::from_millis(1)),
+ Err(RecvTimeoutError::Timeout)
+ );
+ // Wait for a moment and the idle jobs should have run.
+ std::thread::sleep(Duration::from_secs(1));
+
+ let mut results = Vec::new();
+ while let Ok(i) = idle_receiver.recv_timeout(Duration::from_millis(1)) {
+ results.push(i);
+ }
+ assert_eq!(results, [0, 1, 2]);
+}
+
+#[test]
+fn test_async_task_idle_queues_job() {
+ let at = Arc::new(AsyncTask::new(Duration::from_secs(1)));
+ let at_clone = at.clone();
+ let (idle_sender, idle_receiver) = sync_channel::<i32>(100);
+ // Add an idle callback that queues a low-priority job.
+ at.add_idle(move |shelf| {
+ at_clone.queue_lo(|_shelf| {
+ // Slow things down so the channel doesn't fill up.
+ std::thread::sleep(Duration::from_millis(50));
+ });
+ let i = shelf.get_mut::<i32>();
+ idle_sender.send(*i).unwrap();
+ *i += 1;
+ });
+
+ // Nothing happens immediately.
+ assert_eq!(
+ idle_receiver.recv_timeout(Duration::from_millis(1500)),
+ Err(RecvTimeoutError::Timeout)
+ );
+
+ // Once we queue a normal job, things start.
+ at.queue_hi(|_shelf| {});
+ assert_eq!(0, idle_receiver.recv_timeout(Duration::from_millis(200)).unwrap());
+
+ // The idle callback queues a job, and completion of that job
+ // means the task is going idle again...so the idle callback will
+ // be called repeatedly.
+ assert_eq!(1, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap());
+ assert_eq!(2, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap());
+ assert_eq!(3, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap());
+}
+
+#[test]
+#[should_panic]
+fn test_async_task_idle_panic() {
+ let at = AsyncTask::new(Duration::from_secs(1));
+ let (idle_sender, idle_receiver) = sync_channel::<()>(3);
+ // Add an idle callback that panics.
+ at.add_idle(move |_shelf| {
+ idle_sender.send(()).unwrap();
+ panic!("Panic from idle callback");
+ });
+ // Queue a job to trigger idleness and ensuing panic.
+ at.queue_hi(|_shelf| {});
+ idle_receiver.recv().unwrap();
+
+ // Queue another job afterwards to ensure that the async thread gets joined
+ // and the panic detected.
+ let (done_sender, done_receiver) = channel();
+ at.queue_hi(move |_shelf| {
+ done_sender.send(()).unwrap();
+ });
+ done_receiver.recv().unwrap();
+}