Jiyong Park | bf9673a | 2021-08-11 15:58:07 +0900 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2021 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
Jiyong Park | 4c2f33d | 2021-08-11 17:09:58 +0900 | [diff] [blame^] | 16 | |
| 17 | //! `idsig` provides routines for creating the idsig file that is defined for the APK signature |
| 18 | //! scheme v4 and for parsing the file. |
| 19 | |
Jiyong Park | bf9673a | 2021-08-11 15:58:07 +0900 | [diff] [blame] | 20 | use ring::digest::{self, Algorithm}; |
| 21 | use std::io::{Cursor, Read, Result, Seek, SeekFrom, Write}; |
| 22 | |
| 23 | /// `HashTree` is a merkle tree (and its root hash) that is compatible with fs-verity. |
| 24 | pub struct HashTree { |
Jiyong Park | 4c2f33d | 2021-08-11 17:09:58 +0900 | [diff] [blame^] | 25 | /// Binary presentation of the merkle tree |
Jiyong Park | bf9673a | 2021-08-11 15:58:07 +0900 | [diff] [blame] | 26 | pub tree: Vec<u8>, |
Jiyong Park | 4c2f33d | 2021-08-11 17:09:58 +0900 | [diff] [blame^] | 27 | /// Root hash |
Jiyong Park | bf9673a | 2021-08-11 15:58:07 +0900 | [diff] [blame] | 28 | pub root_hash: Vec<u8>, |
| 29 | } |
| 30 | |
| 31 | impl HashTree { |
| 32 | /// Creates merkle tree from `input`, using the given `salt` and hashing `algorithm`. `input` |
| 33 | /// is divided into `block_size` chunks. |
| 34 | pub fn from<R: Read>( |
| 35 | input: &mut R, |
| 36 | input_size: usize, |
| 37 | salt: &[u8], |
| 38 | block_size: usize, |
| 39 | algorithm: &'static Algorithm, |
| 40 | ) -> Result<Self> { |
Jiyong Park | 4c2f33d | 2021-08-11 17:09:58 +0900 | [diff] [blame^] | 41 | let salt = zero_pad_salt(salt, algorithm); |
Jiyong Park | bf9673a | 2021-08-11 15:58:07 +0900 | [diff] [blame] | 42 | let tree = generate_hash_tree(input, input_size, &salt, block_size, algorithm)?; |
| 43 | |
| 44 | // Root hash is from the first block of the hash or the input data if there is no hash tree |
| 45 | // generate which can happen when input data is smaller than block size |
| 46 | let root_hash = if tree.is_empty() { |
| 47 | hash_one_level(input, input_size, &salt, block_size, algorithm)? |
| 48 | } else { |
| 49 | let mut ctx = digest::Context::new(algorithm); |
| 50 | ctx.update(&salt); |
| 51 | ctx.update(&tree[0..block_size]); |
| 52 | ctx.finish().as_ref().to_vec() |
| 53 | }; |
| 54 | Ok(HashTree { tree, root_hash }) |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | /// Calculate hash tree for the blocks in `input`. |
| 59 | /// |
| 60 | /// This function implements: https://www.kernel.org/doc/html/latest/filesystems/fsverity.html#merkle-tree |
| 61 | /// |
| 62 | /// The file contents is divided into blocks, where the block size is configurable but is usually |
| 63 | /// 4096 bytes. The end of the last block is zero-padded if needed. Each block is then hashed, |
| 64 | /// producing the first level of hashes. Then, the hashes in this first level are grouped into |
| 65 | /// blocksize-byte blocks (zero-padding the ends as needed) and these blocks are hashed, |
| 66 | /// producing the second level of hashes. This proceeds up the tree until only a single block |
| 67 | /// remains. |
| 68 | fn generate_hash_tree<R: Read>( |
| 69 | input: &mut R, |
| 70 | input_size: usize, |
| 71 | salt: &[u8], |
| 72 | block_size: usize, |
| 73 | algorithm: &'static Algorithm, |
| 74 | ) -> Result<Vec<u8>> { |
| 75 | let digest_size = algorithm.output_len; |
| 76 | let (hash_level_offsets, tree_size) = |
| 77 | calc_hash_level_offsets(input_size, block_size, digest_size); |
| 78 | |
| 79 | let mut hash_tree = Cursor::new(vec![0; tree_size]); |
| 80 | let mut input_size = input_size; |
| 81 | for (level, offset) in hash_level_offsets.iter().enumerate() { |
| 82 | let hashes = if level == 0 { |
| 83 | hash_one_level(input, input_size, salt, block_size, algorithm)? |
| 84 | } else { |
| 85 | // For the intermediate levels, input is the output from the previous level |
| 86 | hash_tree.seek(SeekFrom::Start(hash_level_offsets[level - 1] as u64)).unwrap(); |
| 87 | hash_one_level(&mut hash_tree, input_size, salt, block_size, algorithm)? |
| 88 | }; |
| 89 | hash_tree.seek(SeekFrom::Start(*offset as u64)).unwrap(); |
| 90 | hash_tree.write_all(hashes.as_ref()).unwrap(); |
| 91 | // Output from this level becomes input for the next level |
| 92 | input_size = hashes.len(); |
| 93 | } |
| 94 | Ok(hash_tree.into_inner()) |
| 95 | } |
| 96 | |
| 97 | /// Calculate hashes for the blocks in `input`. The end of the last block is zero-padded if needed. |
| 98 | /// Each block is then hashed, producing a stream of hashes for a level. |
| 99 | fn hash_one_level<R: Read>( |
| 100 | input: &mut R, |
| 101 | input_size: usize, |
| 102 | salt: &[u8], |
| 103 | block_size: usize, |
| 104 | algorithm: &'static Algorithm, |
| 105 | ) -> Result<Vec<u8>> { |
| 106 | // Input is zero padded when it's not multiple of blocks. Note that `take()` is also needed to |
| 107 | // not read more than `input_size` from the `input` reader. This is required because `input` |
| 108 | // can be from the in-memory hashtree. We need to read only the part of hashtree that is for |
| 109 | // the current level. |
| 110 | let pad_size = round_to_multiple(input_size, block_size) - input_size; |
| 111 | let mut input = input.take(input_size as u64).chain(Cursor::new(vec![0; pad_size])); |
| 112 | |
| 113 | // Read one block from input, write the hash of it to the output. Repeat that for all input |
| 114 | // blocks. |
| 115 | let mut hashes = Cursor::new(Vec::new()); |
| 116 | let mut buf = vec![0; block_size]; |
| 117 | let mut num_blocks = (input_size + block_size - 1) / block_size; |
| 118 | while num_blocks > 0 { |
| 119 | input.read_exact(&mut buf)?; |
| 120 | let mut ctx = digest::Context::new(algorithm); |
| 121 | ctx.update(salt); |
| 122 | ctx.update(&buf); |
| 123 | let hash = ctx.finish(); |
| 124 | hashes.write_all(hash.as_ref())?; |
| 125 | num_blocks -= 1; |
| 126 | } |
| 127 | Ok(hashes.into_inner()) |
| 128 | } |
| 129 | |
| 130 | /// Calculate the size of hashes for each level, and also returns the total size of the hash tree. |
| 131 | /// This function is needed because hash tree is stored upside down; hashes for level N is stored |
| 132 | /// "after" hashes for level N + 1. |
| 133 | fn calc_hash_level_offsets( |
| 134 | input_size: usize, |
| 135 | block_size: usize, |
| 136 | digest_size: usize, |
| 137 | ) -> (Vec<usize>, usize) { |
| 138 | // The input is split into multiple blocks and each block is hashed, which becomes the input |
| 139 | // for the next level. Size of a single hash is `digest_size`. |
| 140 | let mut level_sizes = Vec::new(); |
| 141 | loop { |
| 142 | // Input for this level is from either the last level (if exists), or the input parameter. |
| 143 | let input_size = *level_sizes.last().unwrap_or(&input_size); |
| 144 | if input_size <= block_size { |
| 145 | break; |
| 146 | } |
| 147 | let num_blocks = (input_size + block_size - 1) / block_size; |
| 148 | let hashes_size = round_to_multiple(num_blocks * digest_size, block_size); |
| 149 | level_sizes.push(hashes_size); |
| 150 | } |
| 151 | if level_sizes.is_empty() { |
| 152 | return ([].to_vec(), 0); |
| 153 | } |
| 154 | |
| 155 | // The hash tree is stored upside down. The top level is at offset 0. The second level comes |
| 156 | // next, and so on. Level 0 is located at the end. |
| 157 | // |
| 158 | // Given level_sizes [10, 3, 1], the offsets for each label are ... |
| 159 | // |
| 160 | // Level 2 is at offset 0 |
| 161 | // Level 1 is at offset 1 (because Level 2 is of size 1) |
| 162 | // Level 0 is at offset 4 (because Level 1 is of size 3) |
| 163 | // |
| 164 | // This is done by accumulating the sizes in reverse order (i.e. from the highest level to the |
| 165 | // level 1 (not level 0) |
| 166 | let mut offsets = level_sizes.iter().rev().take(level_sizes.len() - 1).fold( |
| 167 | vec![0; 1], // offset for the top level |
| 168 | |mut offsets, size| { |
| 169 | offsets.push(offsets.last().unwrap() + size); |
| 170 | offsets |
| 171 | }, |
| 172 | ); |
| 173 | offsets.reverse(); // reverse the offsets again so that index N is for level N |
| 174 | let tree_size = level_sizes.iter().sum(); |
| 175 | (offsets, tree_size) |
| 176 | } |
| 177 | |
| 178 | /// Round `n` up to the nearest multiple of `unit` |
| 179 | fn round_to_multiple(n: usize, unit: usize) -> usize { |
| 180 | (n + unit - 1) & !(unit - 1) |
| 181 | } |
| 182 | |
| 183 | /// Pad zero to salt if necessary. |
| 184 | /// |
| 185 | /// According to https://www.kernel.org/doc/html/latest/filesystems/fsverity.html: |
| 186 | /// |
| 187 | /// If a salt was specified, then it’s zero-padded to the closest multiple of the input size of the |
| 188 | /// hash algorithm’s compression function, e.g. 64 bytes for SHA-256 or 128 bytes for SHA-512. The |
| 189 | /// padded salt is prepended to every data or Merkle tree block that is hashed. |
| 190 | fn zero_pad_salt(salt: &[u8], algorithm: &Algorithm) -> Vec<u8> { |
| 191 | if salt.is_empty() { |
| 192 | salt.to_vec() |
| 193 | } else { |
| 194 | let padded_len = round_to_multiple(salt.len(), algorithm.block_len); |
| 195 | let mut salt = salt.to_vec(); |
| 196 | salt.resize(padded_len, 0); |
| 197 | salt |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | #[cfg(test)] |
| 202 | mod tests { |
| 203 | use crate::*; |
| 204 | use ring::digest; |
| 205 | use std::fs::{self, File}; |
| 206 | |
| 207 | #[test] |
| 208 | fn compare_with_golden_output() -> Result<()> { |
| 209 | // The golden outputs are generated by using the `fsverity` utility. |
| 210 | let sizes = ["512", "4K", "1M", "10000000"]; |
| 211 | for size in sizes.iter() { |
| 212 | let input_name = format!("testdata/input.{}", size); |
| 213 | let mut input = File::open(&input_name)?; |
| 214 | let golden_hash_tree = fs::read(format!("testdata/input.{}.hash", size))?; |
| 215 | let golden_descriptor = fs::read(format!("testdata/input.{}.descriptor", size))?; |
| 216 | let golden_root_hash = &golden_descriptor[16..16 + 32]; |
| 217 | |
| 218 | let size = std::fs::metadata(&input_name)?.len() as usize; |
| 219 | let salt = vec![1, 2, 3, 4, 5, 6]; |
| 220 | let ht = HashTree::from(&mut input, size, &salt, 4096, &digest::SHA256)?; |
| 221 | |
| 222 | assert_eq!(golden_hash_tree.as_slice(), ht.tree.as_slice()); |
| 223 | assert_eq!(golden_root_hash, ht.root_hash.as_slice()); |
| 224 | } |
| 225 | Ok(()) |
| 226 | } |
| 227 | } |