blob: 33e666ff2e9777b83307b9053414f3c28aae86bd [file] [log] [blame]
Alice Wang0cafa142022-09-23 15:17:02 +00001/*
2 * Copyright (C) 2022 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17//! API for APK Signature Scheme [v4].
18//!
19//! [v4]: https://source.android.com/security/apksigning/v4
20
Alice Wang1bf3d782022-09-28 07:56:36 +000021use anyhow::{anyhow, bail, ensure, Context, Result};
22use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
23use num_derive::{FromPrimitive, ToPrimitive};
24use num_traits::{FromPrimitive, ToPrimitive};
25use std::fs;
26use std::io::{copy, Cursor, Read, Seek, SeekFrom, Write};
27use std::path::Path;
Alice Wang0cafa142022-09-23 15:17:02 +000028
29use crate::algorithms::SignatureAlgorithmID;
Alice Wang1bf3d782022-09-28 07:56:36 +000030use crate::hashtree::*;
Alice Wang0cafa142022-09-23 15:17:02 +000031use crate::v3::extract_signer_and_apk_sections;
32
33/// Gets the v4 [apk_digest]. If `verify` is true, we verify that digest computed
34/// with the extracted algorithm is equal to the digest extracted directly from apk.
35/// Otherwise, the extracted digest will be returned directly.
36///
37/// [apk_digest]: https://source.android.com/docs/security/apksigning/v4#apk-digest
38pub fn get_apk_digest<R: Read + Seek>(
39 apk: R,
40 verify: bool,
41) -> Result<(SignatureAlgorithmID, Box<[u8]>)> {
42 let (signer, mut sections) = extract_signer_and_apk_sections(apk)?;
Alice Wangf27626a2022-09-27 12:36:22 +000043 let strongest_algorithm_id = signer
44 .strongest_signature()?
45 .signature_algorithm_id
46 .context("Strongest signature should contain a valid signature algorithm.")?;
47 let extracted_digest = signer.find_digest_by_algorithm(strongest_algorithm_id)?;
Alice Wang0cafa142022-09-23 15:17:02 +000048 if verify {
Alice Wangf27626a2022-09-27 12:36:22 +000049 let computed_digest = sections.compute_digest(strongest_algorithm_id)?;
Alice Wang0cafa142022-09-23 15:17:02 +000050 ensure!(
51 computed_digest == extracted_digest.as_ref(),
52 "Computed digest does not match the extracted digest."
53 );
54 }
Alice Wangf27626a2022-09-27 12:36:22 +000055 Ok((strongest_algorithm_id, extracted_digest))
Alice Wang0cafa142022-09-23 15:17:02 +000056}
Alice Wang1bf3d782022-09-28 07:56:36 +000057
58/// `V4Signature` provides access to the various fields in an idsig file.
59#[derive(Default)]
60pub struct V4Signature<R: Read + Seek> {
61 /// Version of the header. Should be 2.
62 pub version: Version,
63 /// Provides access to the information about how the APK is hashed.
64 pub hashing_info: HashingInfo,
65 /// Provides access to the information that can be used to verify this file
66 pub signing_info: SigningInfo,
67 /// Total size of the merkle tree
68 pub merkle_tree_size: u32,
69 /// Offset of the merkle tree in the idsig file
70 pub merkle_tree_offset: u64,
71
72 // Provides access to the underlying data
73 data: R,
74}
75
76/// `HashingInfo` provides information about how the APK is hashed.
77#[derive(Default)]
78pub struct HashingInfo {
79 /// Hash algorithm used when creating the merkle tree for the APK.
80 pub hash_algorithm: HashAlgorithm,
81 /// The log size of a block used when creating the merkle tree. 12 if 4k block was used.
82 pub log2_blocksize: u8,
83 /// The salt used when creating the merkle tree. 32 bytes max.
84 pub salt: Box<[u8]>,
85 /// The root hash of the merkle tree created.
86 pub raw_root_hash: Box<[u8]>,
87}
88
89/// `SigningInfo` provides information that can be used to verify the idsig file.
90#[derive(Default)]
91pub struct SigningInfo {
92 /// Digest of the APK that this idsig file is for.
93 pub apk_digest: Box<[u8]>,
94 /// Certificate of the signer that signed this idsig file. ASN.1 DER form.
95 pub x509_certificate: Box<[u8]>,
96 /// A free-form binary data
97 pub additional_data: Box<[u8]>,
98 /// Public key of the signer in ASN.1 DER form. This must match the `x509_certificate` field.
99 pub public_key: Box<[u8]>,
100 /// Signature algorithm used to sign this file.
101 pub signature_algorithm_id: SignatureAlgorithmID,
102 /// The signature of this file.
103 pub signature: Box<[u8]>,
104}
105
106/// Version of the idsig file format
107#[derive(Debug, PartialEq, Eq, FromPrimitive, ToPrimitive)]
108#[repr(u32)]
109pub enum Version {
110 /// Version 2, the only supported version.
111 V2 = 2,
112}
113
114impl Version {
115 fn from(val: u32) -> Result<Version> {
116 Self::from_u32(val).ok_or_else(|| anyhow!("{} is an unsupported version", val))
117 }
118}
119
120impl Default for Version {
121 fn default() -> Self {
122 Version::V2
123 }
124}
125
126/// Hash algorithm that can be used for idsig file.
127#[derive(Debug, PartialEq, Eq, FromPrimitive, ToPrimitive)]
128#[repr(u32)]
129pub enum HashAlgorithm {
130 /// SHA2-256
131 SHA256 = 1,
132}
133
134impl HashAlgorithm {
135 fn from(val: u32) -> Result<HashAlgorithm> {
136 Self::from_u32(val).ok_or_else(|| anyhow!("{} is an unsupported hash algorithm", val))
137 }
138}
139
140impl Default for HashAlgorithm {
141 fn default() -> Self {
142 HashAlgorithm::SHA256
143 }
144}
145
146impl V4Signature<fs::File> {
147 /// Creates a `V4Signature` struct from the given idsig path.
148 pub fn from_idsig_path<P: AsRef<Path>>(idsig_path: P) -> Result<Self> {
149 let idsig = fs::File::open(idsig_path).context("Cannot find idsig file")?;
150 Self::from_idsig(idsig)
151 }
152}
153
154impl<R: Read + Seek> V4Signature<R> {
155 /// Consumes a stream for an idsig file into a `V4Signature` struct.
156 pub fn from_idsig(mut r: R) -> Result<V4Signature<R>> {
157 Ok(V4Signature {
158 version: Version::from(r.read_u32::<LittleEndian>()?)?,
159 hashing_info: HashingInfo::from(&mut r)?,
160 signing_info: SigningInfo::from(&mut r)?,
161 merkle_tree_size: r.read_u32::<LittleEndian>()?,
162 merkle_tree_offset: r.stream_position()?,
163 data: r,
164 })
165 }
166
167 /// Read a stream for an APK file and creates a corresponding `V4Signature` struct that digests
168 /// the APK file. Note that the signing is not done.
169 pub fn create(
170 mut apk: &mut R,
171 block_size: usize,
172 salt: &[u8],
173 algorithm: HashAlgorithm,
174 ) -> Result<V4Signature<Cursor<Vec<u8>>>> {
175 // Determine the size of the apk
176 let start = apk.stream_position()?;
177 let size = apk.seek(SeekFrom::End(0))? as usize;
178 apk.seek(SeekFrom::Start(start))?;
179
180 // Create hash tree (and root hash)
181 let algorithm = match algorithm {
182 HashAlgorithm::SHA256 => openssl::hash::MessageDigest::sha256(),
183 };
184 let hash_tree = HashTree::from(&mut apk, size, salt, block_size, algorithm)?;
185
186 let mut ret = V4Signature {
187 version: Version::default(),
188 hashing_info: HashingInfo::default(),
189 signing_info: SigningInfo::default(),
190 merkle_tree_size: hash_tree.tree.len() as u32,
191 merkle_tree_offset: 0, // merkle tree starts from the beginning of `data`
192 data: Cursor::new(hash_tree.tree),
193 };
194 ret.hashing_info.raw_root_hash = hash_tree.root_hash.into_boxed_slice();
195 ret.hashing_info.log2_blocksize = log2(block_size);
196
197 apk.seek(SeekFrom::Start(start))?;
198 let (signature_algorithm_id, apk_digest) = get_apk_digest(apk, /*verify=*/ false)?;
199 ret.signing_info.signature_algorithm_id = signature_algorithm_id;
200 ret.signing_info.apk_digest = apk_digest;
201 // TODO(jiyong): add a signature to the signing_info struct
202
203 Ok(ret)
204 }
205
206 /// Writes the data into a writer
207 pub fn write_into<W: Write + Seek>(&mut self, mut w: &mut W) -> Result<()> {
208 // Writes the header part
209 w.write_u32::<LittleEndian>(self.version.to_u32().unwrap())?;
210 self.hashing_info.write_into(&mut w)?;
211 self.signing_info.write_into(&mut w)?;
212 w.write_u32::<LittleEndian>(self.merkle_tree_size)?;
213
214 // Writes the merkle tree
215 self.data.seek(SeekFrom::Start(self.merkle_tree_offset))?;
216 let copied_size = copy(&mut self.data, &mut w)?;
217 if copied_size != self.merkle_tree_size as u64 {
218 bail!(
219 "merkle tree is {} bytes, but only {} bytes are written.",
220 self.merkle_tree_size,
221 copied_size
222 );
223 }
224 Ok(())
225 }
226
227 /// Returns the bytes that represents the merkle tree
228 pub fn merkle_tree(&mut self) -> Result<Vec<u8>> {
229 self.data.seek(SeekFrom::Start(self.merkle_tree_offset))?;
230 let mut out = Vec::new();
231 self.data.read_to_end(&mut out)?;
232 Ok(out)
233 }
234}
235
236impl HashingInfo {
237 fn from(mut r: &mut dyn Read) -> Result<HashingInfo> {
238 // Size of the entire hashing_info struct. We don't need this because each variable-sized
239 // fields in the struct are also length encoded.
240 r.read_u32::<LittleEndian>()?;
241 Ok(HashingInfo {
242 hash_algorithm: HashAlgorithm::from(r.read_u32::<LittleEndian>()?)?,
243 log2_blocksize: r.read_u8()?,
244 salt: read_sized_array(&mut r)?,
245 raw_root_hash: read_sized_array(&mut r)?,
246 })
247 }
248
249 fn write_into<W: Write + Seek>(&self, mut w: &mut W) -> Result<()> {
250 let start = w.stream_position()?;
251 // Size of the entire hashing_info struct. Since we don't know the size yet, fill the place
252 // with 0. The exact size will then be written below.
253 w.write_u32::<LittleEndian>(0)?;
254
255 w.write_u32::<LittleEndian>(self.hash_algorithm.to_u32().unwrap())?;
256 w.write_u8(self.log2_blocksize)?;
257 write_sized_array(&mut w, &self.salt)?;
258 write_sized_array(&mut w, &self.raw_root_hash)?;
259
260 // Determine the size of hashing_info, and write it in front of the struct where the value
261 // was initialized to zero.
262 let end = w.stream_position()?;
263 let size = end - start - std::mem::size_of::<u32>() as u64;
264 w.seek(SeekFrom::Start(start))?;
265 w.write_u32::<LittleEndian>(size as u32)?;
266 w.seek(SeekFrom::Start(end))?;
267 Ok(())
268 }
269}
270
271impl SigningInfo {
272 fn from(mut r: &mut dyn Read) -> Result<SigningInfo> {
273 // Size of the entire signing_info struct. We don't need this because each variable-sized
274 // fields in the struct are also length encoded.
275 r.read_u32::<LittleEndian>()?;
276 Ok(SigningInfo {
277 apk_digest: read_sized_array(&mut r)?,
278 x509_certificate: read_sized_array(&mut r)?,
279 additional_data: read_sized_array(&mut r)?,
280 public_key: read_sized_array(&mut r)?,
281 signature_algorithm_id: SignatureAlgorithmID::from_u32(r.read_u32::<LittleEndian>()?)
282 .context("Unsupported signature algorithm")?,
283 signature: read_sized_array(&mut r)?,
284 })
285 }
286
287 fn write_into<W: Write + Seek>(&self, mut w: &mut W) -> Result<()> {
288 let start = w.stream_position()?;
289 // Size of the entire signing_info struct. Since we don't know the size yet, fill the place
290 // with 0. The exact size will then be written below.
291 w.write_u32::<LittleEndian>(0)?;
292
293 write_sized_array(&mut w, &self.apk_digest)?;
294 write_sized_array(&mut w, &self.x509_certificate)?;
295 write_sized_array(&mut w, &self.additional_data)?;
296 write_sized_array(&mut w, &self.public_key)?;
297 w.write_u32::<LittleEndian>(self.signature_algorithm_id.to_u32())?;
298 write_sized_array(&mut w, &self.signature)?;
299
300 // Determine the size of signing_info, and write it in front of the struct where the value
301 // was initialized to zero.
302 let end = w.stream_position()?;
303 let size = end - start - std::mem::size_of::<u32>() as u64;
304 w.seek(SeekFrom::Start(start))?;
305 w.write_u32::<LittleEndian>(size as u32)?;
306 w.seek(SeekFrom::Start(end))?;
307 Ok(())
308 }
309}
310
311fn read_sized_array(r: &mut dyn Read) -> Result<Box<[u8]>> {
312 let size = r.read_u32::<LittleEndian>()?;
313 let mut data = vec![0; size as usize];
314 r.read_exact(&mut data)?;
315 Ok(data.into_boxed_slice())
316}
317
318fn write_sized_array(w: &mut dyn Write, data: &[u8]) -> Result<()> {
319 w.write_u32::<LittleEndian>(data.len() as u32)?;
320 Ok(w.write_all(data)?)
321}
322
323fn log2(n: usize) -> u8 {
324 let num_bits = std::mem::size_of::<usize>() * 8;
325 (num_bits as u32 - n.leading_zeros() - 1) as u8
326}
327
328#[cfg(test)]
329mod tests {
330 use super::*;
331 use std::io::Cursor;
332
333 const TEST_APK_PATH: &str = "tests/data/v4-digest-v3-Sha256withEC.apk";
334
335 fn hexstring_from(s: &[u8]) -> String {
336 s.iter().map(|byte| format!("{:02x}", byte)).reduce(|i, j| i + &j).unwrap_or_default()
337 }
338
339 #[test]
340 fn parse_idsig_file() {
341 let parsed = V4Signature::from_idsig_path(format!("{}.idsig", TEST_APK_PATH)).unwrap();
342
343 assert_eq!(Version::V2, parsed.version);
344
345 let hi = parsed.hashing_info;
346 assert_eq!(HashAlgorithm::SHA256, hi.hash_algorithm);
347 assert_eq!(12, hi.log2_blocksize);
348 assert_eq!("", hexstring_from(hi.salt.as_ref()));
349 assert_eq!(
350 "77f063b48b63f846690fa76450a8d3b61a295b6158f50592e873f76dbeeb0201",
351 hexstring_from(hi.raw_root_hash.as_ref())
352 );
353
354 let si = parsed.signing_info;
355 assert_eq!(
356 "c02fe2eddeb3078801828b930de546ea4f98d37fb98b40c7c7ed169b0d713583",
357 hexstring_from(si.apk_digest.as_ref())
358 );
359 assert_eq!("", hexstring_from(si.additional_data.as_ref()));
360 assert_eq!(
361 "3046022100fb6383ba300dc7e1e6931a25b381398a16e5575baefd82afd12ba88660d9a6\
362 4c022100ebdcae13ab18c4e30bf6ae634462e526367e1ba26c2647a1d87a0f42843fc128",
363 hexstring_from(si.signature.as_ref())
364 );
365 assert_eq!(SignatureAlgorithmID::EcdsaWithSha256, si.signature_algorithm_id);
366
367 assert_eq!(4096, parsed.merkle_tree_size);
368 assert_eq!(648, parsed.merkle_tree_offset);
369 }
370
371 /// Parse an idsig file into V4Signature and write it. The written date must be the same as
372 /// the input file.
373 #[test]
374 fn parse_and_compose() {
375 let idsig_path = format!("{}.idsig", TEST_APK_PATH);
376 let mut v4_signature = V4Signature::from_idsig_path(&idsig_path).unwrap();
377
378 let mut output = Cursor::new(Vec::new());
379 v4_signature.write_into(&mut output).unwrap();
380
381 assert_eq!(fs::read(&idsig_path).unwrap(), output.get_ref().as_slice());
382 }
383
384 /// Create V4Signature by hashing an APK. Merkle tree and the root hash should be the same
385 /// as those in the idsig file created by the signapk tool.
386 #[test]
387 fn digest_from_apk() {
388 let mut input = Cursor::new(include_bytes!("../tests/data/v4-digest-v3-Sha256withEC.apk"));
389 let mut created =
390 V4Signature::create(&mut input, 4096, &[], HashAlgorithm::SHA256).unwrap();
391
392 let mut golden = V4Signature::from_idsig_path(format!("{}.idsig", TEST_APK_PATH)).unwrap();
393
394 // Compare the root hash
395 assert_eq!(
396 created.hashing_info.raw_root_hash.as_ref(),
397 golden.hashing_info.raw_root_hash.as_ref()
398 );
399
400 // Compare the merkle tree
401 assert_eq!(
402 created.merkle_tree().unwrap().as_slice(),
403 golden.merkle_tree().unwrap().as_slice()
404 );
405 }
406}