satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 1 | /* |
| 2 | ** |
| 3 | ** Copyright 2010, The Android Open Source Project |
| 4 | ** |
| 5 | ** Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | ** you may not use this file except in compliance with the License. |
| 7 | ** You may obtain a copy of the License at |
| 8 | ** |
| 9 | ** http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | ** |
| 11 | ** Unless required by applicable law or agreed to in writing, software |
| 12 | ** distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | ** See the License for the specific language governing permissions and |
| 15 | ** limitations under the License. |
| 16 | */ |
| 17 | |
satok | 48e432c | 2010-12-06 17:38:58 +0900 | [diff] [blame] | 18 | #include <assert.h> |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 19 | #include <string.h> |
| 20 | |
satok | e808e43 | 2010-12-02 14:53:24 +0900 | [diff] [blame] | 21 | #define LOG_TAG "LatinIME: unigram_dictionary.cpp" |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 22 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 23 | #include "char_utils.h" |
satok | e808e43 | 2010-12-02 14:53:24 +0900 | [diff] [blame] | 24 | #include "dictionary.h" |
| 25 | #include "unigram_dictionary.h" |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 26 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 27 | #include "binary_format.h" |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 28 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 29 | namespace latinime { |
| 30 | |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 31 | const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = |
| 32 | { { 'a', 'e' }, |
| 33 | { 'o', 'e' }, |
| 34 | { 'u', 'e' } }; |
| 35 | |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 36 | // TODO: check the header |
| 37 | UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 38 | int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars, |
satok | 18c28f4 | 2010-12-02 18:11:54 +0900 | [diff] [blame] | 39 | const bool isLatestDictVersion) |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 40 | : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE), |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 41 | MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 42 | MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion), |
| 43 | TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 44 | // TODO : remove this variable. |
| 45 | ROOT_POS(0), |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 46 | BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)), |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 47 | MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 48 | if (DEBUG_DICT) { |
| 49 | LOGI("UnigramDictionary - constructor"); |
| 50 | } |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 51 | mCorrectionState = new CorrectionState(); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 52 | } |
| 53 | |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 54 | UnigramDictionary::~UnigramDictionary() { |
| 55 | delete mCorrectionState; |
| 56 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 57 | |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 58 | static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize, |
| 59 | const int MAX_PROXIMITY_CHARS) { |
| 60 | return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize; |
| 61 | } |
| 62 | |
| 63 | bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const { |
| 64 | |
| 65 | // There can't be a digraph if we don't have at least 2 characters to examine |
| 66 | if (i + 2 > codesSize) return false; |
| 67 | |
| 68 | // Search for the first char of some digraph |
| 69 | int lastDigraphIndex = -1; |
| 70 | const int thisChar = codes[i * MAX_PROXIMITY_CHARS]; |
| 71 | for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1; |
| 72 | lastDigraphIndex >= 0; --lastDigraphIndex) { |
| 73 | if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break; |
| 74 | } |
| 75 | // No match: return early |
| 76 | if (lastDigraphIndex < 0) return false; |
| 77 | |
| 78 | // It's an interesting digraph if the second char matches too. |
| 79 | return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS]; |
| 80 | } |
| 81 | |
| 82 | // Mostly the same arguments as the non-recursive version, except: |
| 83 | // codes is the original value. It points to the start of the work buffer, and gets passed as is. |
| 84 | // codesSize is the size of the user input (thus, it is the size of codesSrc). |
| 85 | // codesDest is the current point in the work buffer. |
| 86 | // codesSrc is the current point in the user-input, original, content-unmodified buffer. |
| 87 | // codesRemain is the remaining size in codesSrc. |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 88 | void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 89 | const int *xcoordinates, const int* ycoordinates, const int *codesBuffer, |
| 90 | const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain, |
satok | 3c4bb77 | 2011-03-04 22:50:19 -0800 | [diff] [blame] | 91 | const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) { |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 92 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 93 | if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) { |
| 94 | for (int i = 0; i < codesRemain; ++i) { |
| 95 | if (isDigraph(codesSrc, i, codesRemain)) { |
| 96 | // Found a digraph. We will try both spellings. eg. the word is "pruefen" |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 97 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 98 | // Copy the word up to the first char of the digraph, then continue processing |
| 99 | // on the remaining part of the word, skipping the second char of the digraph. |
| 100 | // In our example, copy "pru" and continue running on "fen" |
| 101 | // Make i the index of the second char of the digraph for simplicity. Forgetting |
| 102 | // to do that results in an infinite recursion so take care! |
| 103 | ++i; |
| 104 | memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); |
| 105 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
| 106 | codesBuffer, codesBufferSize, flags, |
| 107 | codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1, |
| 108 | currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords, |
| 109 | frequencies); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 110 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 111 | // Copy the second char of the digraph in place, then continue processing on |
| 112 | // the remaining part of the word. |
| 113 | // In our example, after "pru" in the buffer copy the "e", and continue on "fen" |
| 114 | memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS, |
| 115 | BYTES_IN_ONE_CHAR); |
| 116 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
| 117 | codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS, |
| 118 | codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, |
| 119 | outWords, frequencies); |
| 120 | return; |
| 121 | } |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 122 | } |
| 123 | } |
| 124 | |
| 125 | // If we come here, we hit the end of the word: let's check it against the dictionary. |
| 126 | // In our example, we'll come here once for "prufen" and then once for "pruefen". |
| 127 | // If the word contains several digraphs, we'll come it for the product of them. |
| 128 | // eg. if the word is "ueberpruefen" we'll test, in order, against |
| 129 | // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". |
| 130 | const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; |
| 131 | if (0 != remainingBytes) |
| 132 | memcpy(codesDest, codesSrc, remainingBytes); |
| 133 | |
| 134 | getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
| 135 | (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies); |
| 136 | } |
| 137 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 138 | int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 139 | const int *ycoordinates, const int *codes, const int codesSize, const int flags, |
| 140 | unsigned short *outWords, int *frequencies) { |
| 141 | |
| 142 | if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) |
| 143 | { // Incrementally tune the word and try all possibilities |
| 144 | int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)]; |
| 145 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 146 | codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 147 | } else { // Normal processing |
| 148 | getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, |
| 149 | outWords, frequencies); |
| 150 | } |
| 151 | |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 152 | PROF_START(20); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 153 | // Get the word count |
| 154 | int suggestedWordsCount = 0; |
| 155 | while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) { |
| 156 | suggestedWordsCount++; |
| 157 | } |
| 158 | |
| 159 | if (DEBUG_DICT) { |
| 160 | LOGI("Returning %d words", suggestedWordsCount); |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 161 | /// Print the returned words |
| 162 | for (int j = 0; j < suggestedWordsCount; ++j) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 163 | #ifdef FLAG_DBG |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 164 | short unsigned int* w = mOutputChars + j * MAX_WORD_LENGTH; |
| 165 | char s[MAX_WORD_LENGTH]; |
| 166 | for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i]; |
| 167 | LOGI("%s %i", s, mFrequencies[j]); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 168 | #endif |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 169 | } |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 170 | LOGI("Next letters: "); |
| 171 | for (int k = 0; k < NEXT_LETTERS_SIZE; k++) { |
| 172 | if (mNextLettersFrequency[k] > 0) { |
| 173 | LOGI("%c = %d,", k, mNextLettersFrequency[k]); |
| 174 | } |
| 175 | } |
| 176 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 177 | PROF_END(20); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 178 | PROF_CLOSE; |
| 179 | return suggestedWordsCount; |
| 180 | } |
| 181 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 182 | void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 183 | const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, |
| 184 | unsigned short *outWords, int *frequencies) { |
| 185 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 186 | PROF_OPEN; |
| 187 | PROF_START(0); |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 188 | initSuggestions( |
| 189 | proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 190 | if (DEBUG_DICT) assert(codesSize == mInputLength); |
| 191 | |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 192 | const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 193 | PROF_END(0); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 194 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 195 | PROF_START(1); |
Tadashi G. Takaoka | 887f11e | 2011-02-10 20:53:58 +0900 | [diff] [blame] | 196 | getSuggestionCandidates(-1, -1, -1, mNextLettersFrequency, NEXT_LETTERS_SIZE, MAX_DEPTH); |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 197 | PROF_END(1); |
| 198 | |
| 199 | PROF_START(2); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 200 | // Suggestion with missing character |
| 201 | if (SUGGEST_WORDS_WITH_MISSING_CHARACTER) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 202 | for (int i = 0; i < codesSize; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 203 | if (DEBUG_DICT) { |
| 204 | LOGI("--- Suggest missing characters %d", i); |
| 205 | } |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 206 | getSuggestionCandidates(i, -1, -1, NULL, 0, MAX_DEPTH); |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 207 | } |
| 208 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 209 | PROF_END(2); |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 210 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 211 | PROF_START(3); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 212 | // Suggestion with excessive character |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 213 | if (SUGGEST_WORDS_WITH_EXCESSIVE_CHARACTER |
| 214 | && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_EXCESSIVE_CHARACTER_SUGGESTION) { |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 215 | for (int i = 0; i < codesSize; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 216 | if (DEBUG_DICT) { |
| 217 | LOGI("--- Suggest excessive characters %d", i); |
| 218 | } |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 219 | getSuggestionCandidates(-1, i, -1, NULL, 0, MAX_DEPTH); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 220 | } |
| 221 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 222 | PROF_END(3); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 223 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 224 | PROF_START(4); |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 225 | // Suggestion with transposed characters |
| 226 | // Only suggest words that length is mInputLength |
| 227 | if (SUGGEST_WORDS_WITH_TRANSPOSED_CHARACTERS) { |
| 228 | for (int i = 0; i < codesSize; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 229 | if (DEBUG_DICT) { |
| 230 | LOGI("--- Suggest transposed characters %d", i); |
| 231 | } |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 232 | getSuggestionCandidates(-1, -1, i, NULL, 0, mInputLength - 1); |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 233 | } |
| 234 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 235 | PROF_END(4); |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 236 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 237 | PROF_START(5); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 238 | // Suggestions with missing space |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 239 | if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER |
| 240 | && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) { |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 241 | for (int i = 1; i < codesSize; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 242 | if (DEBUG_DICT) { |
| 243 | LOGI("--- Suggest missing space characters %d", i); |
| 244 | } |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 245 | getMissingSpaceWords(mInputLength, i); |
| 246 | } |
| 247 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 248 | PROF_END(5); |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 249 | |
| 250 | PROF_START(6); |
Jean Chalard | e93b1f22 | 2011-06-01 17:12:25 +0900 | [diff] [blame] | 251 | if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) { |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 252 | // The first and last "mistyped spaces" are taken care of by excessive character handling |
| 253 | for (int i = 1; i < codesSize - 1; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 254 | if (DEBUG_DICT) { |
| 255 | LOGI("--- Suggest words with proximity space %d", i); |
| 256 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 257 | const int x = xcoordinates[i]; |
| 258 | const int y = ycoordinates[i]; |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 259 | if (DEBUG_PROXIMITY_INFO) { |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 260 | LOGI("Input[%d] x = %d, y = %d, has space proximity = %d", |
| 261 | i, x, y, proximityInfo->hasSpaceProximity(x, y)); |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 262 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 263 | if (proximityInfo->hasSpaceProximity(x, y)) { |
| 264 | getMistypedSpaceWords(mInputLength, i); |
| 265 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 266 | } |
| 267 | } |
| 268 | PROF_END(6); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 269 | } |
| 270 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 271 | void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, |
| 272 | const int *ycoordinates, const int *codes, const int codesSize, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 273 | unsigned short *outWords, int *frequencies) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 274 | if (DEBUG_DICT) { |
| 275 | LOGI("initSuggest"); |
| 276 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 277 | mFrequencies = frequencies; |
| 278 | mOutputChars = outWords; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 279 | mInputLength = codesSize; |
| 280 | mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2; |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 281 | proximityInfo->setInputParams(codes, codesSize); |
| 282 | mProximityInfo = proximityInfo; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 283 | } |
| 284 | |
Jean Chalard | 8124e64 | 2011-06-16 22:33:41 +0900 | [diff] [blame] | 285 | static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 286 | if (c < nextLettersSize) { |
| 287 | nextLetters[c]++; |
| 288 | } |
| 289 | } |
| 290 | |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 291 | // TODO: We need to optimize addWord by using STL or something |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 292 | // TODO: This needs to take an const unsigned short* and not tinker with its contents |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 293 | bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 294 | word[length] = 0; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 295 | if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 296 | #ifdef FLAG_DBG |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 297 | char s[length + 1]; |
| 298 | for (int i = 0; i <= length; i++) s[i] = word[i]; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 299 | LOGI("Found word = %s, freq = %d", s, frequency); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 300 | #endif |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 301 | } |
satok | f5cded1 | 2010-12-06 21:28:24 +0900 | [diff] [blame] | 302 | if (length > MAX_WORD_LENGTH) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 303 | if (DEBUG_DICT) { |
| 304 | LOGI("Exceeded max word length."); |
| 305 | } |
satok | f5cded1 | 2010-12-06 21:28:24 +0900 | [diff] [blame] | 306 | return false; |
| 307 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 308 | |
| 309 | // Find the right insertion point |
| 310 | int insertAt = 0; |
| 311 | while (insertAt < MAX_WORDS) { |
Jean Chalard | 17e44a7 | 2011-06-16 22:51:11 +0900 | [diff] [blame] | 312 | // TODO: How should we sort words with the same frequency? |
| 313 | if (frequency > mFrequencies[insertAt]) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 314 | break; |
| 315 | } |
| 316 | insertAt++; |
| 317 | } |
| 318 | if (insertAt < MAX_WORDS) { |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 319 | if (DEBUG_DICT) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 320 | #ifdef FLAG_DBG |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 321 | char s[length + 1]; |
| 322 | for (int i = 0; i <= length; i++) s[i] = word[i]; |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 323 | LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 324 | #endif |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 325 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 326 | memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), |
| 327 | (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), |
| 328 | (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0])); |
| 329 | mFrequencies[insertAt] = frequency; |
| 330 | memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 331 | (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short), |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 332 | (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 333 | unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 334 | while (length--) { |
| 335 | *dest++ = *word++; |
| 336 | } |
| 337 | *dest = 0; // NULL terminate |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 338 | if (DEBUG_DICT) { |
| 339 | LOGI("Added word at %d", insertAt); |
| 340 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 341 | return true; |
| 342 | } |
| 343 | return false; |
| 344 | } |
| 345 | |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 346 | static const char QUOTE = '\''; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 347 | static const char SPACE = ' '; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 348 | |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 349 | void UnigramDictionary::getSuggestionCandidates(const int skipPos, |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 350 | const int excessivePos, const int transposedPos, int *nextLetters, |
| 351 | const int nextLettersSize, const int maxDepth) { |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 352 | if (DEBUG_DICT) { |
| 353 | LOGI("getSuggestionCandidates %d", maxDepth); |
| 354 | assert(transposedPos + 1 < mInputLength); |
| 355 | assert(excessivePos < mInputLength); |
| 356 | assert(missingPos < mInputLength); |
| 357 | } |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 358 | mCorrectionState->setCorrectionParams(mProximityInfo, mInputLength, skipPos, excessivePos, |
| 359 | transposedPos); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 360 | int rootPosition = ROOT_POS; |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 361 | // Get the number of children of root, then increment the position |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 362 | int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 363 | int depth = 0; |
| 364 | |
| 365 | mStackChildCount[0] = childCount; |
| 366 | mStackTraverseAll[0] = (mInputLength <= 0); |
| 367 | mStackNodeFreq[0] = 1; |
| 368 | mStackInputIndex[0] = 0; |
| 369 | mStackDiffs[0] = 0; |
| 370 | mStackSiblingPos[0] = rootPosition; |
Jean Chalard | 17e44a7 | 2011-06-16 22:51:11 +0900 | [diff] [blame] | 371 | mStackOutputIndex[0] = 0; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 372 | |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 373 | // Depth first search |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 374 | while (depth >= 0) { |
| 375 | if (mStackChildCount[depth] > 0) { |
| 376 | --mStackChildCount[depth]; |
| 377 | bool traverseAllNodes = mStackTraverseAll[depth]; |
Jean Chalard | f5f834a | 2011-02-22 15:12:46 +0900 | [diff] [blame] | 378 | int matchWeight = mStackNodeFreq[depth]; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 379 | int inputIndex = mStackInputIndex[depth]; |
| 380 | int diffs = mStackDiffs[depth]; |
| 381 | int siblingPos = mStackSiblingPos[depth]; |
Jean Chalard | 17e44a7 | 2011-06-16 22:51:11 +0900 | [diff] [blame] | 382 | int outputIndex = mStackOutputIndex[depth]; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 383 | int firstChildPos; |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 384 | // depth will never be greater than maxDepth because in that case, |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 385 | // needsToTraverseChildrenNodes should be false |
Jean Chalard | 17e44a7 | 2011-06-16 22:51:11 +0900 | [diff] [blame] | 386 | const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, outputIndex, |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 387 | maxDepth, traverseAllNodes, matchWeight, inputIndex, diffs, |
| 388 | nextLetters, nextLettersSize, mCorrectionState, &childCount, |
Jean Chalard | f5f834a | 2011-02-22 15:12:46 +0900 | [diff] [blame] | 389 | &firstChildPos, &traverseAllNodes, &matchWeight, &inputIndex, &diffs, |
Jean Chalard | 17e44a7 | 2011-06-16 22:51:11 +0900 | [diff] [blame] | 390 | &siblingPos, &outputIndex); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 391 | // Update next sibling pos |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 392 | mStackSiblingPos[depth] = siblingPos; |
| 393 | if (needsToTraverseChildrenNodes) { |
| 394 | // Goes to child node |
| 395 | ++depth; |
| 396 | mStackChildCount[depth] = childCount; |
| 397 | mStackTraverseAll[depth] = traverseAllNodes; |
Jean Chalard | f5f834a | 2011-02-22 15:12:46 +0900 | [diff] [blame] | 398 | mStackNodeFreq[depth] = matchWeight; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 399 | mStackInputIndex[depth] = inputIndex; |
| 400 | mStackDiffs[depth] = diffs; |
| 401 | mStackSiblingPos[depth] = firstChildPos; |
Jean Chalard | 17e44a7 | 2011-06-16 22:51:11 +0900 | [diff] [blame] | 402 | mStackOutputIndex[depth] = outputIndex; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 403 | } |
| 404 | } else { |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 405 | // Goes to parent sibling node |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 406 | --depth; |
| 407 | } |
| 408 | } |
| 409 | } |
| 410 | |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 411 | static const int TWO_31ST_DIV_255 = S_INT_MAX / 255; |
| 412 | static inline int capped255MultForFullMatchAccentsOrCapitalizationDifference(const int num) { |
| 413 | return (num < TWO_31ST_DIV_255 ? 255 * num : S_INT_MAX); |
| 414 | } |
| 415 | |
| 416 | static const int TWO_31ST_DIV_2 = S_INT_MAX / 2; |
| 417 | inline static void multiplyIntCapped(const int multiplier, int *base) { |
| 418 | const int temp = *base; |
| 419 | if (temp != S_INT_MAX) { |
| 420 | // Branch if multiplier == 2 for the optimization |
| 421 | if (multiplier == 2) { |
| 422 | *base = TWO_31ST_DIV_2 >= temp ? temp << 1 : S_INT_MAX; |
| 423 | } else { |
| 424 | const int tempRetval = temp * multiplier; |
| 425 | *base = tempRetval >= temp ? tempRetval : S_INT_MAX; |
| 426 | } |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | inline static int powerIntCapped(const int base, const int n) { |
satok | 0b6b0a5 | 2011-04-27 16:29:27 +0900 | [diff] [blame] | 431 | if (base == 2) { |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 432 | return n < 31 ? 1 << n : S_INT_MAX; |
satok | f7425bb | 2011-01-05 16:37:53 +0900 | [diff] [blame] | 433 | } else { |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 434 | int ret = base; |
| 435 | for (int i = 1; i < n; ++i) multiplyIntCapped(base, &ret); |
| 436 | return ret; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | inline static void multiplyRate(const int rate, int *freq) { |
| 441 | if (*freq != S_INT_MAX) { |
| 442 | if (*freq > 1000000) { |
| 443 | *freq /= 100; |
| 444 | multiplyIntCapped(rate, freq); |
| 445 | } else { |
| 446 | multiplyIntCapped(rate, freq); |
| 447 | *freq /= 100; |
| 448 | } |
satok | f7425bb | 2011-01-05 16:37:53 +0900 | [diff] [blame] | 449 | } |
| 450 | } |
| 451 | |
satok | 4c981d3 | 2011-04-19 13:58:42 +0900 | [diff] [blame] | 452 | inline static int calcFreqForSplitTwoWords( |
satok | d8db9f8 | 2011-05-18 15:31:04 +0900 | [diff] [blame] | 453 | const int typedLetterMultiplier, const int firstWordLength, const int secondWordLength, |
| 454 | const int firstFreq, const int secondFreq, const bool isSpaceProximity) { |
satok | 4c981d3 | 2011-04-19 13:58:42 +0900 | [diff] [blame] | 455 | if (firstWordLength == 0 || secondWordLength == 0) { |
| 456 | return 0; |
| 457 | } |
| 458 | const int firstDemotionRate = 100 - 100 / (firstWordLength + 1); |
| 459 | int tempFirstFreq = firstFreq; |
| 460 | multiplyRate(firstDemotionRate, &tempFirstFreq); |
| 461 | |
| 462 | const int secondDemotionRate = 100 - 100 / (secondWordLength + 1); |
| 463 | int tempSecondFreq = secondFreq; |
| 464 | multiplyRate(secondDemotionRate, &tempSecondFreq); |
| 465 | |
| 466 | const int totalLength = firstWordLength + secondWordLength; |
| 467 | |
| 468 | // Promote pairFreq with multiplying by 2, because the word length is the same as the typed |
| 469 | // length. |
| 470 | int totalFreq = tempFirstFreq + tempSecondFreq; |
| 471 | |
| 472 | // This is a workaround to try offsetting the not-enough-demotion which will be done in |
| 473 | // calcNormalizedScore in Utils.java. |
| 474 | // In calcNormalizedScore the score will be demoted by (1 - 1 / length) |
| 475 | // but we demoted only (1 - 1 / (length + 1)) so we will additionally adjust freq by |
| 476 | // (1 - 1 / length) / (1 - 1 / (length + 1)) = (1 - 1 / (length * length)) |
| 477 | const int normalizedScoreNotEnoughDemotionAdjustment = 100 - 100 / (totalLength * totalLength); |
| 478 | multiplyRate(normalizedScoreNotEnoughDemotionAdjustment, &totalFreq); |
| 479 | |
| 480 | // At this moment, totalFreq is calculated by the following formula: |
| 481 | // (firstFreq * (1 - 1 / (firstWordLength + 1)) + secondFreq * (1 - 1 / (secondWordLength + 1))) |
| 482 | // * (1 - 1 / totalLength) / (1 - 1 / (totalLength + 1)) |
| 483 | |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 484 | multiplyIntCapped(powerIntCapped(typedLetterMultiplier, totalLength), &totalFreq); |
satok | 4c981d3 | 2011-04-19 13:58:42 +0900 | [diff] [blame] | 485 | |
| 486 | // This is another workaround to offset the demotion which will be done in |
| 487 | // calcNormalizedScore in Utils.java. |
| 488 | // In calcNormalizedScore the score will be demoted by (1 - 1 / length) so we have to promote |
| 489 | // the same amount because we already have adjusted the synthetic freq of this "missing or |
| 490 | // mistyped space" suggestion candidate above in this method. |
| 491 | const int normalizedScoreDemotionRateOffset = (100 + 100 / totalLength); |
| 492 | multiplyRate(normalizedScoreDemotionRateOffset, &totalFreq); |
| 493 | |
satok | d8db9f8 | 2011-05-18 15:31:04 +0900 | [diff] [blame] | 494 | if (isSpaceProximity) { |
| 495 | // A word pair with one space proximity correction |
| 496 | if (DEBUG_DICT) { |
| 497 | LOGI("Found a word pair with space proximity correction."); |
| 498 | } |
| 499 | multiplyIntCapped(typedLetterMultiplier, &totalFreq); |
| 500 | multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &totalFreq); |
| 501 | } |
| 502 | |
satok | 4c981d3 | 2011-04-19 13:58:42 +0900 | [diff] [blame] | 503 | multiplyRate(WORDS_WITH_MISSING_SPACE_CHARACTER_DEMOTION_RATE, &totalFreq); |
| 504 | return totalFreq; |
| 505 | } |
| 506 | |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 507 | bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) { |
| 508 | return getSplitTwoWordsSuggestion( |
satok | d8db9f8 | 2011-05-18 15:31:04 +0900 | [diff] [blame] | 509 | inputLength, 0, missingSpacePos, missingSpacePos, inputLength - missingSpacePos, false); |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 510 | } |
| 511 | |
| 512 | bool UnigramDictionary::getMistypedSpaceWords(const int inputLength, const int spaceProximityPos) { |
| 513 | return getSplitTwoWordsSuggestion( |
| 514 | inputLength, 0, spaceProximityPos, spaceProximityPos + 1, |
satok | d8db9f8 | 2011-05-18 15:31:04 +0900 | [diff] [blame] | 515 | inputLength - spaceProximityPos - 1, true); |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 516 | } |
| 517 | |
satok | 58c49b9 | 2011-01-27 03:23:39 +0900 | [diff] [blame] | 518 | inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int depth, |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 519 | const int matchWeight, const int freq, const bool sameLength, |
| 520 | CorrectionState *correctionState) const { |
| 521 | const int skipPos = correctionState->getSkipPos(); |
| 522 | const int excessivePos = correctionState->getExcessivePos(); |
| 523 | const int transposedPos = correctionState->getTransposedPos(); |
| 524 | |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 525 | // TODO: Demote by edit distance |
Jean Chalard | f5f834a | 2011-02-22 15:12:46 +0900 | [diff] [blame] | 526 | int finalFreq = freq * matchWeight; |
Jean Chalard | 07a8406 | 2011-03-03 10:22:10 +0900 | [diff] [blame] | 527 | if (skipPos >= 0) { |
satok | dc5301e | 2011-04-11 16:14:45 +0900 | [diff] [blame] | 528 | if (mInputLength >= 2) { |
| 529 | const int demotionRate = WORDS_WITH_MISSING_CHARACTER_DEMOTION_RATE |
| 530 | * (10 * mInputLength - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X) |
| 531 | / (10 * mInputLength |
| 532 | - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X + 10); |
satok | 9674f65 | 2011-04-20 17:15:27 +0900 | [diff] [blame] | 533 | if (DEBUG_DICT_FULL) { |
satok | 72bc17e | 2011-04-13 17:23:27 +0900 | [diff] [blame] | 534 | LOGI("Demotion rate for missing character is %d.", demotionRate); |
| 535 | } |
satok | dc5301e | 2011-04-11 16:14:45 +0900 | [diff] [blame] | 536 | multiplyRate(demotionRate, &finalFreq); |
Jean Chalard | 07a8406 | 2011-03-03 10:22:10 +0900 | [diff] [blame] | 537 | } else { |
| 538 | finalFreq = 0; |
| 539 | } |
| 540 | } |
satok | f7425bb | 2011-01-05 16:37:53 +0900 | [diff] [blame] | 541 | if (transposedPos >= 0) multiplyRate( |
| 542 | WORDS_WITH_TRANSPOSED_CHARACTERS_DEMOTION_RATE, &finalFreq); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 543 | if (excessivePos >= 0) { |
satok | f7425bb | 2011-01-05 16:37:53 +0900 | [diff] [blame] | 544 | multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_DEMOTION_RATE, &finalFreq); |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 545 | if (!mProximityInfo->existsAdjacentProximityChars(inputIndex)) { |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 546 | // If an excessive character is not adjacent to the left char or the right char, |
| 547 | // we will demote this word. |
satok | f7425bb | 2011-01-05 16:37:53 +0900 | [diff] [blame] | 548 | multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_OUT_OF_PROXIMITY_DEMOTION_RATE, &finalFreq); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 549 | } |
| 550 | } |
satok | 58c49b9 | 2011-01-27 03:23:39 +0900 | [diff] [blame] | 551 | int lengthFreq = TYPED_LETTER_MULTIPLIER; |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 552 | multiplyIntCapped(powerIntCapped(TYPED_LETTER_MULTIPLIER, depth), &lengthFreq); |
Jean Chalard | f5f834a | 2011-02-22 15:12:46 +0900 | [diff] [blame] | 553 | if (lengthFreq == matchWeight) { |
satok | 72bc17e | 2011-04-13 17:23:27 +0900 | [diff] [blame] | 554 | // Full exact match |
Jean Chalard | 8dc754a | 2011-01-27 14:20:22 +0900 | [diff] [blame] | 555 | if (depth > 1) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 556 | if (DEBUG_DICT) { |
| 557 | LOGI("Found full matched word."); |
| 558 | } |
Jean Chalard | 8dc754a | 2011-01-27 14:20:22 +0900 | [diff] [blame] | 559 | multiplyRate(FULL_MATCHED_WORDS_PROMOTION_RATE, &finalFreq); |
| 560 | } |
| 561 | if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0) { |
Jean Chalard | a5d5849 | 2011-02-18 17:50:58 +0900 | [diff] [blame] | 562 | finalFreq = capped255MultForFullMatchAccentsOrCapitalizationDifference(finalFreq); |
Jean Chalard | 8dc754a | 2011-01-27 14:20:22 +0900 | [diff] [blame] | 563 | } |
satok | 9674f65 | 2011-04-20 17:15:27 +0900 | [diff] [blame] | 564 | } else if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0 && depth > 0) { |
satok | 9d2a302 | 2011-04-14 19:13:34 +0900 | [diff] [blame] | 565 | // A word with proximity corrections |
satok | 72bc17e | 2011-04-13 17:23:27 +0900 | [diff] [blame] | 566 | if (DEBUG_DICT) { |
| 567 | LOGI("Found one proximity correction."); |
| 568 | } |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 569 | multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &finalFreq); |
satok | 9d2a302 | 2011-04-14 19:13:34 +0900 | [diff] [blame] | 570 | multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &finalFreq); |
satok | 58c49b9 | 2011-01-27 03:23:39 +0900 | [diff] [blame] | 571 | } |
satok | 9674f65 | 2011-04-20 17:15:27 +0900 | [diff] [blame] | 572 | if (DEBUG_DICT) { |
| 573 | LOGI("calc: %d, %d", depth, sameLength); |
| 574 | } |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 575 | if (sameLength) multiplyIntCapped(FULL_WORD_MULTIPLIER, &finalFreq); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 576 | return finalFreq; |
| 577 | } |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 578 | |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 579 | inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c, |
satok | 6831926 | 2010-12-03 19:38:08 +0900 | [diff] [blame] | 580 | const int inputIndex, const int skipPos, const int depth) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 581 | const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(inputIndex); |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 582 | // Skip the ' or other letter and continue deeper |
| 583 | return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth; |
| 584 | } |
| 585 | |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 586 | |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 587 | inline void UnigramDictionary::onTerminal(unsigned short int* word, const int depth, |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 588 | const uint8_t* const root, const uint8_t flags, const int pos, |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 589 | const int inputIndex, const int matchWeight, const int freq, const bool sameLength, |
| 590 | int* nextLetters, const int nextLettersSize, CorrectionState *correctionState) { |
| 591 | const int skipPos = correctionState->getSkipPos(); |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 592 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 593 | const bool isSameAsTyped = sameLength ? mProximityInfo->sameAsTyped(word, depth + 1) : false; |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 594 | if (isSameAsTyped) return; |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 595 | |
| 596 | if (depth >= MIN_SUGGEST_DEPTH) { |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 597 | const int finalFreq = calculateFinalFreq(inputIndex, depth, matchWeight, |
| 598 | freq, sameLength, correctionState); |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 599 | if (!isSameAsTyped) |
| 600 | addWord(word, depth + 1, finalFreq); |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 601 | } |
| 602 | |
| 603 | if (sameLength && depth >= mInputLength && skipPos < 0) { |
| 604 | registerNextLetter(word[mInputLength], nextLetters, nextLettersSize); |
| 605 | } |
| 606 | } |
| 607 | |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 608 | bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength, |
| 609 | const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos, |
| 610 | const int secondWordLength, const bool isSpaceProximity) { |
| 611 | if (inputLength >= MAX_WORD_LENGTH) return false; |
| 612 | if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos |
| 613 | || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) |
| 614 | return false; |
| 615 | const int newWordLength = firstWordLength + secondWordLength + 1; |
| 616 | // Allocating variable length array on stack |
| 617 | unsigned short word[newWordLength]; |
| 618 | const int firstFreq = getMostFrequentWordLike(firstWordStartPos, firstWordLength, mWord); |
| 619 | if (DEBUG_DICT) { |
| 620 | LOGI("First freq: %d", firstFreq); |
| 621 | } |
| 622 | if (firstFreq <= 0) return false; |
| 623 | |
| 624 | for (int i = 0; i < firstWordLength; ++i) { |
| 625 | word[i] = mWord[i]; |
| 626 | } |
| 627 | |
| 628 | const int secondFreq = getMostFrequentWordLike(secondWordStartPos, secondWordLength, mWord); |
| 629 | if (DEBUG_DICT) { |
| 630 | LOGI("Second freq: %d", secondFreq); |
| 631 | } |
| 632 | if (secondFreq <= 0) return false; |
| 633 | |
| 634 | word[firstWordLength] = SPACE; |
| 635 | for (int i = (firstWordLength + 1); i < newWordLength; ++i) { |
| 636 | word[i] = mWord[i - firstWordLength - 1]; |
| 637 | } |
| 638 | |
| 639 | int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength, |
| 640 | secondWordLength, firstFreq, secondFreq, isSpaceProximity); |
| 641 | if (DEBUG_DICT) { |
| 642 | LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength, |
| 643 | TYPED_LETTER_MULTIPLIER); |
| 644 | } |
| 645 | addWord(word, newWordLength, pairFreq); |
| 646 | return true; |
| 647 | } |
| 648 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 649 | // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous |
| 650 | // interface. |
| 651 | inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex, |
| 652 | const int inputLength, unsigned short *word) { |
| 653 | uint16_t inWord[inputLength]; |
| 654 | |
| 655 | for (int i = 0; i < inputLength; ++i) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 656 | inWord[i] = (uint16_t)mProximityInfo->getPrimaryCharAt(startInputIndex + i); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 657 | } |
| 658 | return getMostFrequentWordLikeInner(inWord, inputLength, word); |
| 659 | } |
| 660 | |
| 661 | // This function will take the position of a character array within a CharGroup, |
| 662 | // and check it actually like-matches the word in inWord starting at startInputIndex, |
| 663 | // that is, it matches it with case and accents squashed. |
| 664 | // The function returns true if there was a full match, false otherwise. |
| 665 | // The function will copy on-the-fly the characters in the CharGroup to outNewWord. |
| 666 | // It will also place the end position of the array in outPos; in outInputIndex, |
| 667 | // it will place the index of the first char AFTER the match if there was a match, |
| 668 | // and the initial position if there was not. It makes sense because if there was |
| 669 | // a match we want to continue searching, but if there was not, we want to go to |
| 670 | // the next CharGroup. |
| 671 | // In and out parameters may point to the same location. This function takes care |
| 672 | // not to use any input parameters after it wrote into its outputs. |
| 673 | static inline bool testCharGroupForContinuedLikeness(const uint8_t flags, |
| 674 | const uint8_t* const root, const int startPos, |
| 675 | const uint16_t* const inWord, const int startInputIndex, |
| 676 | int32_t* outNewWord, int* outInputIndex, int* outPos) { |
| 677 | const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags)); |
| 678 | int pos = startPos; |
| 679 | int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 680 | int32_t baseChar = Dictionary::toBaseLowerCase(character); |
| 681 | const uint16_t wChar = Dictionary::toBaseLowerCase(inWord[startInputIndex]); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 682 | |
| 683 | if (baseChar != wChar) { |
| 684 | *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos; |
| 685 | *outInputIndex = startInputIndex; |
| 686 | return false; |
| 687 | } |
| 688 | int inputIndex = startInputIndex; |
| 689 | outNewWord[inputIndex] = character; |
| 690 | if (hasMultipleChars) { |
| 691 | character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| 692 | while (NOT_A_CHARACTER != character) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 693 | baseChar = Dictionary::toBaseLowerCase(character); |
| 694 | if (Dictionary::toBaseLowerCase(inWord[++inputIndex]) != baseChar) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 695 | *outPos = BinaryFormat::skipOtherCharacters(root, pos); |
| 696 | *outInputIndex = startInputIndex; |
| 697 | return false; |
| 698 | } |
| 699 | outNewWord[inputIndex] = character; |
| 700 | character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| 701 | } |
| 702 | } |
| 703 | *outInputIndex = inputIndex + 1; |
| 704 | *outPos = pos; |
| 705 | return true; |
| 706 | } |
| 707 | |
| 708 | // This function is invoked when a word like the word searched for is found. |
| 709 | // It will compare the frequency to the max frequency, and if greater, will |
| 710 | // copy the word into the output buffer. In output value maxFreq, it will |
| 711 | // write the new maximum frequency if it changed. |
| 712 | static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length, |
| 713 | short unsigned int* outWord, int* maxFreq) { |
| 714 | if (freq > *maxFreq) { |
| 715 | for (int q = 0; q < length; ++q) |
| 716 | outWord[q] = newWord[q]; |
| 717 | outWord[length] = 0; |
| 718 | *maxFreq = freq; |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | // Will find the highest frequency of the words like the one passed as an argument, |
| 723 | // that is, everything that only differs by case/accents. |
| 724 | int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord, |
| 725 | const int length, short unsigned int* outWord) { |
| 726 | int32_t newWord[MAX_WORD_LENGTH_INTERNAL]; |
| 727 | int depth = 0; |
| 728 | int maxFreq = -1; |
| 729 | const uint8_t* const root = DICT_ROOT; |
| 730 | |
| 731 | mStackChildCount[0] = root[0]; |
| 732 | mStackInputIndex[0] = 0; |
| 733 | mStackSiblingPos[0] = 1; |
| 734 | while (depth >= 0) { |
| 735 | const int charGroupCount = mStackChildCount[depth]; |
| 736 | int pos = mStackSiblingPos[depth]; |
| 737 | for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) { |
| 738 | int inputIndex = mStackInputIndex[depth]; |
| 739 | const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); |
| 740 | // Test whether all chars in this group match with the word we are searching for. If so, |
| 741 | // we want to traverse its children (or if the length match, evaluate its frequency). |
| 742 | // Note that this function will output the position regardless, but will only write |
| 743 | // into inputIndex if there is a match. |
| 744 | const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord, |
| 745 | inputIndex, newWord, &inputIndex, &pos); |
| 746 | if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) { |
| 747 | const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos); |
| 748 | onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq); |
| 749 | } |
| 750 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 751 | const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); |
| 752 | const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos); |
| 753 | // If we had a match and the word has children, we want to traverse them. We don't have |
| 754 | // to traverse words longer than the one we are searching for, since they will not match |
| 755 | // anyway, so don't traverse unless inputIndex < length. |
| 756 | if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) { |
| 757 | // Save position for this depth, to get back to this once children are done |
| 758 | mStackChildCount[depth] = charGroupIndex; |
| 759 | mStackSiblingPos[depth] = siblingPos; |
| 760 | // Prepare stack values for next depth |
| 761 | ++depth; |
| 762 | int childrenPos = childrenNodePos; |
| 763 | mStackChildCount[depth] = |
| 764 | BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos); |
| 765 | mStackSiblingPos[depth] = childrenPos; |
| 766 | mStackInputIndex[depth] = inputIndex; |
| 767 | pos = childrenPos; |
| 768 | // Go to the next depth level. |
| 769 | ++depth; |
| 770 | break; |
| 771 | } else { |
| 772 | // No match, or no children, or word too long to ever match: go the next sibling. |
| 773 | pos = siblingPos; |
| 774 | } |
| 775 | } |
| 776 | --depth; |
| 777 | } |
| 778 | return maxFreq; |
| 779 | } |
| 780 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 781 | bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const { |
Jean Chalard | 6a0e964 | 2011-07-25 18:17:11 +0900 | [diff] [blame] | 782 | return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 783 | } |
| 784 | |
| 785 | // TODO: remove this function. |
| 786 | int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, |
| 787 | int length) const { |
| 788 | return -1; |
| 789 | } |
| 790 | |
| 791 | // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not. |
| 792 | // If the return value is false, then the caller should read in the output "nextSiblingPosition" |
| 793 | // to find out the address of the next sibling node and pass it to a new call of processCurrentNode. |
| 794 | // It is worthy to note that when false is returned, the output values other than |
| 795 | // nextSiblingPosition are undefined. |
| 796 | // If the return value is true, then the caller must proceed to traverse the children of this |
| 797 | // node. processCurrentNode will output the information about the children: their count in |
| 798 | // newCount, their position in newChildrenPosition, the traverseAllNodes flag in |
| 799 | // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the |
| 800 | // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into |
| 801 | // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when |
| 802 | // there aren't any more nodes at this level, it merely returns the address of the first byte after |
| 803 | // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any |
| 804 | // given level, as output into newCount when traversing this level's parent. |
Jean Chalard | 0584f02 | 2011-06-30 19:23:16 +0900 | [diff] [blame] | 805 | inline bool UnigramDictionary::processCurrentNode(const int initialPos, const int initialDepth, |
| 806 | const int maxDepth, const bool initialTraverseAllNodes, int matchWeight, int inputIndex, |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 807 | const int initialDiffs, int *nextLetters, const int nextLettersSize, |
| 808 | CorrectionState *correctionState, int *newCount, int *newChildrenPosition, |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 809 | bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs, |
Jean Chalard | 432789a | 2011-06-30 17:50:48 +0900 | [diff] [blame] | 810 | int *nextSiblingPosition, int *newOutputIndex) { |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 811 | const int skipPos = correctionState->getSkipPos(); |
| 812 | const int excessivePos = correctionState->getExcessivePos(); |
| 813 | const int transposedPos = correctionState->getTransposedPos(); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 814 | if (DEBUG_DICT) { |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 815 | correctionState->checkState(); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 816 | } |
Jean Chalard | 0584f02 | 2011-06-30 19:23:16 +0900 | [diff] [blame] | 817 | int pos = initialPos; |
| 818 | int depth = initialDepth; |
| 819 | int traverseAllNodes = initialTraverseAllNodes; |
| 820 | int diffs = initialDiffs; |
| 821 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 822 | // Flags contain the following information: |
| 823 | // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits: |
| 824 | // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address |
| 825 | // is on the specified number of bytes. |
| 826 | // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address. |
| 827 | // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not. |
| 828 | // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children) |
| 829 | // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not |
| 830 | const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos); |
| 831 | const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags)); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 832 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 833 | // This gets only ONE character from the stream. Next there will be: |
| 834 | // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node |
| 835 | // else if FLAG_IS_TERMINAL: the frequency |
| 836 | // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address |
| 837 | // Note that you can't have a node that both is not a terminal and has no children. |
| 838 | int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos); |
| 839 | assert(NOT_A_CHARACTER != c); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 840 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 841 | // We are going to loop through each character and make it look like it's a different |
| 842 | // node each time. To do that, we will process characters in this node in order until |
| 843 | // we find the character terminator. This is signalled by getCharCode* returning |
| 844 | // NOT_A_CHARACTER. |
| 845 | // As a special case, if there is only one character in this node, we must not read the |
| 846 | // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags. |
| 847 | // This way, each loop run will look like a "virtual node". |
| 848 | do { |
| 849 | // We prefetch the next char. If 'c' is the last char of this node, we will have |
| 850 | // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node |
| 851 | // should behave as a terminal or not and whether we have children. |
| 852 | const int32_t nextc = hasMultipleChars |
| 853 | ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER; |
| 854 | const bool isLastChar = (NOT_A_CHARACTER == nextc); |
| 855 | // If there are more chars in this nodes, then this virtual node is not a terminal. |
| 856 | // If we are on the last char, this virtual node is a terminal if this node is. |
| 857 | const bool isTerminal = isLastChar && (0 != (FLAG_IS_TERMINAL & flags)); |
| 858 | // If there are more chars in this node, then this virtual node has children. |
| 859 | // If we are on the last char, this virtual node has children if this node has. |
| 860 | const bool hasChildren = (!isLastChar) || BinaryFormat::hasChildrenInFlags(flags); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 861 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 862 | // This has to be done for each virtual char (this forwards the "inputIndex" which |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 863 | // is the index in the user-inputted chars, as read by proximity chars. |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 864 | if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex; |
| 865 | if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) { |
| 866 | mWord[depth] = c; |
| 867 | if (traverseAllNodes && isTerminal) { |
| 868 | // The frequency should be here, because we come here only if this is actually |
| 869 | // a terminal node, and we are on its last char. |
| 870 | const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 871 | onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, |
| 872 | freq, false, nextLetters, nextLettersSize, mCorrectionState); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 873 | } |
| 874 | if (!hasChildren) { |
| 875 | // If we don't have children here, that means we finished processing all |
| 876 | // characters of this node (we are on the last virtual node), AND we are in |
| 877 | // traverseAllNodes mode, which means we are searching for *completions*. We |
| 878 | // should skip the frequency if we have a terminal, and report the position |
| 879 | // of the next sibling. We don't have to return other values because we are |
| 880 | // returning false, as in "don't traverse children". |
| 881 | if (isTerminal) pos = BinaryFormat::skipFrequency(flags, pos); |
| 882 | *nextSiblingPosition = |
| 883 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 884 | return false; |
| 885 | } |
| 886 | } else { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 887 | int inputIndexForProximity = inputIndex; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 888 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 889 | if (transposedPos >= 0) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 890 | if (inputIndex == transposedPos) ++inputIndexForProximity; |
| 891 | if (inputIndex == (transposedPos + 1)) --inputIndexForProximity; |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 892 | } |
| 893 | |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 894 | int matchedProximityCharId = mProximityInfo->getMatchedProximityId( |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 895 | inputIndexForProximity, c, mCorrectionState); |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 896 | if (ProximityInfo::UNRELATED_CHAR == matchedProximityCharId) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 897 | // We found that this is an unrelated character, so we should give up traversing |
| 898 | // this node and its children entirely. |
| 899 | // However we may not be on the last virtual node yet so we skip the remaining |
| 900 | // characters in this node, the frequency if it's there, read the next sibling |
| 901 | // position to output it, then return false. |
| 902 | // We don't have to output other values because we return false, as in |
| 903 | // "don't traverse children". |
| 904 | if (!isLastChar) { |
| 905 | pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); |
| 906 | } |
| 907 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 908 | *nextSiblingPosition = |
| 909 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 910 | return false; |
| 911 | } |
| 912 | mWord[depth] = c; |
| 913 | // If inputIndex is greater than mInputLength, that means there is no |
| 914 | // proximity chars. So, we don't need to check proximity. |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 915 | if (ProximityInfo::SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 916 | multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight); |
| 917 | } |
| 918 | const bool isSameAsUserTypedLength = mInputLength == inputIndex + 1 |
| 919 | || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2); |
| 920 | if (isSameAsUserTypedLength && isTerminal) { |
| 921 | const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 922 | onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, |
| 923 | freq, true, nextLetters, nextLettersSize, mCorrectionState); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 924 | } |
| 925 | // This character matched the typed character (enough to traverse the node at least) |
| 926 | // so we just evaluated it. Now we should evaluate this virtual node's children - that |
| 927 | // is, if it has any. If it has no children, we're done here - so we skip the end of |
| 928 | // the node, output the siblings position, and return false "don't traverse children". |
| 929 | // Note that !hasChildren implies isLastChar, so we know we don't have to skip any |
| 930 | // remaining char in this group for there can't be any. |
| 931 | if (!hasChildren) { |
| 932 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 933 | *nextSiblingPosition = |
| 934 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 935 | return false; |
| 936 | } |
| 937 | // Start traversing all nodes after the index exceeds the user typed length |
| 938 | traverseAllNodes = isSameAsUserTypedLength; |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 939 | diffs = diffs |
| 940 | + ((ProximityInfo::NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 941 | // Finally, we are ready to go to the next character, the next "virtual node". |
| 942 | // We should advance the input index. |
| 943 | // We do this in this branch of the 'if traverseAllNodes' because we are still matching |
| 944 | // characters to input; the other branch is not matching them but searching for |
| 945 | // completions, this is why it does not have to do it. |
| 946 | ++inputIndex; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 947 | } |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 948 | // Optimization: Prune out words that are too long compared to how much was typed. |
| 949 | if (depth >= maxDepth || diffs > mMaxEditDistance) { |
| 950 | // We are giving up parsing this node and its children. Skip the rest of the node, |
| 951 | // output the sibling position, and return that we don't want to traverse children. |
| 952 | if (!isLastChar) { |
| 953 | pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); |
| 954 | } |
| 955 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 956 | *nextSiblingPosition = |
| 957 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 958 | return false; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 959 | } |
| 960 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 961 | // Prepare for the next character. Promote the prefetched char to current char - the loop |
| 962 | // will take care of prefetching the next. If we finally found our last char, nextc will |
| 963 | // contain NOT_A_CHARACTER. |
| 964 | c = nextc; |
| 965 | // Also, the next char is one "virtual node" depth more than this char. |
| 966 | ++depth; |
| 967 | } while (NOT_A_CHARACTER != c); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 968 | |
| 969 | // If inputIndex is greater than mInputLength, that means there are no proximity chars. |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 970 | // Here, that's all we are interested in so we don't need to check for isSameAsUserTypedLength. |
| 971 | if (mInputLength <= *newInputIndex) { |
| 972 | traverseAllNodes = true; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 973 | } |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 974 | |
| 975 | // All the output values that are purely computation by this function are held in local |
| 976 | // variables. Output them to the caller. |
| 977 | *newTraverseAllNodes = traverseAllNodes; |
| 978 | *newMatchRate = matchWeight; |
| 979 | *newDiffs = diffs; |
| 980 | *newInputIndex = inputIndex; |
| 981 | *newOutputIndex = depth; |
| 982 | |
| 983 | // Now we finished processing this node, and we want to traverse children. If there are no |
| 984 | // children, we can't come here. |
| 985 | assert(BinaryFormat::hasChildrenInFlags(flags)); |
| 986 | |
| 987 | // If this node was a terminal it still has the frequency under the pointer (it may have been |
| 988 | // read, but not skipped - see readFrequencyWithoutMovingPointer). |
| 989 | // Next come the children position, then possibly attributes (attributes are bigrams only for |
| 990 | // now, maybe something related to shortcuts in the future). |
| 991 | // Once this is read, we still need to output the number of nodes in the immediate children of |
| 992 | // this node, so we read and output it before returning true, as in "please traverse children". |
| 993 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 994 | int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos); |
| 995 | *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 996 | *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos); |
| 997 | *newChildrenPosition = childrenPos; |
| 998 | return true; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 999 | } |
| 1000 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 1001 | } // namespace latinime |