Use "float" instead of "double"

Change-Id: I93ed4d88ede4058f081dd8d634b00dfff4e96d07
diff --git a/native/jni/src/correction.cpp b/native/jni/src/correction.cpp
index a1f8129..5ae34cd 100644
--- a/native/jni/src/correction.cpp
+++ b/native/jni/src/correction.cpp
@@ -1113,7 +1113,7 @@
 // So, we can normalize original score by dividing pow(2, min(b.l(),a.l())) * 255 * 2.
 
 /* static */
-double Correction::RankingAlgorithm::calcNormalizedScore(const unsigned short* before,
+float Correction::RankingAlgorithm::calcNormalizedScore(const unsigned short* before,
         const int beforeLength, const unsigned short* after, const int afterLength,
         const int score) {
     if (0 == beforeLength || 0 == afterLength) {
@@ -1131,14 +1131,14 @@
         return 0;
     }
 
-    const double maxScore = score >= S_INT_MAX ? S_INT_MAX : MAX_INITIAL_SCORE
-            * pow((double)TYPED_LETTER_MULTIPLIER,
-                    (double)min(beforeLength, afterLength - spaceCount)) * FULL_WORD_MULTIPLIER;
+    const float maxScore = score >= S_INT_MAX ? S_INT_MAX : MAX_INITIAL_SCORE
+            * pow((float)TYPED_LETTER_MULTIPLIER,
+                    (float)min(beforeLength, afterLength - spaceCount)) * FULL_WORD_MULTIPLIER;
 
     // add a weight based on edit distance.
     // distance <= max(afterLength, beforeLength) == afterLength,
     // so, 0 <= distance / afterLength <= 1
-    const double weight = 1.0 - (double) distance / afterLength;
+    const float weight = 1.0 - (float) distance / afterLength;
     return (score / maxScore) * weight;
 }
 
diff --git a/native/jni/src/correction.h b/native/jni/src/correction.h
index 1b4e4bf..1ac4b87 100644
--- a/native/jni/src/correction.h
+++ b/native/jni/src/correction.h
@@ -162,7 +162,7 @@
         static int calcFreqForSplitMultipleWords(const int *freqArray, const int *wordLengthArray,
                 const int wordCount, const Correction* correction, const bool isSpaceProximity,
                 const unsigned short *word);
-        static double calcNormalizedScore(const unsigned short* before, const int beforeLength,
+        static float calcNormalizedScore(const unsigned short* before, const int beforeLength,
                 const unsigned short* after, const int afterLength, const int score);
         static int editDistance(const unsigned short* before,
                 const int beforeLength, const unsigned short* after, const int afterLength);
diff --git a/native/jni/src/defines.h b/native/jni/src/defines.h
index cb3dbb1..c6ad66a 100644
--- a/native/jni/src/defines.h
+++ b/native/jni/src/defines.h
@@ -46,8 +46,8 @@
 #include <time.h>
 
 #define PROF_BUF_SIZE 100
-static double profile_buf[PROF_BUF_SIZE];
-static double profile_old[PROF_BUF_SIZE];
+static float profile_buf[PROF_BUF_SIZE];
+static float profile_old[PROF_BUF_SIZE];
 static unsigned int profile_counter[PROF_BUF_SIZE];
 
 #define PROF_RESET               prof_reset()
@@ -74,8 +74,8 @@
         AKLOGI("Error: You must call PROF_OPEN before PROF_CLOSE.");
     }
     AKLOGI("Total time is %6.3f ms.",
-            profile_buf[PROF_BUF_SIZE - 1] * 1000 / (double)CLOCKS_PER_SEC);
-    double all = 0;
+            profile_buf[PROF_BUF_SIZE - 1] * 1000 / (float)CLOCKS_PER_SEC);
+    float all = 0;
     for (int i = 0; i < PROF_BUF_SIZE - 1; ++i) {
         all += profile_buf[i];
     }
@@ -84,7 +84,7 @@
         if (profile_buf[i] != 0) {
             AKLOGI("(%d): Used %4.2f%%, %8.4f ms. Called %d times.",
                     i, (profile_buf[i] * 100 / all),
-                    profile_buf[i] * 1000 / (double)CLOCKS_PER_SEC, profile_counter[i]);
+                    profile_buf[i] * 1000 / (float)CLOCKS_PER_SEC, profile_counter[i]);
         }
     }
 }
diff --git a/native/jni/src/unigram_dictionary.cpp b/native/jni/src/unigram_dictionary.cpp
index 43fe892..ee8c497 100644
--- a/native/jni/src/unigram_dictionary.cpp
+++ b/native/jni/src/unigram_dictionary.cpp
@@ -202,7 +202,7 @@
 
     PROF_START(20);
     if (DEBUG_DICT) {
-        double ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
+        float ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
                 proximityInfo->getPrimaryInputWord(), codesSize, 0, 0, 0);
         ns += 0;
         AKLOGI("Max normalized score = %f", ns);
@@ -212,7 +212,7 @@
                     proximityInfo->getPrimaryInputWord(), codesSize, frequencies, outWords);
 
     if (DEBUG_DICT) {
-        double ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
+        float ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
                 proximityInfo->getPrimaryInputWord(), codesSize, 0, 0, 0);
         ns += 0;
         AKLOGI("Returning %d words", suggestedWordsCount);
@@ -255,7 +255,7 @@
     bool hasAutoCorrectionCandidate = false;
     WordsPriorityQueue* masterQueue = queuePool->getMasterQueue();
     if (masterQueue->size() > 0) {
-        double nsForMaster = masterQueue->getHighestNormalizedScore(
+        float nsForMaster = masterQueue->getHighestNormalizedScore(
                 proximityInfo->getPrimaryInputWord(), inputLength, 0, 0, 0);
         hasAutoCorrectionCandidate = (nsForMaster > START_TWO_WORDS_CORRECTION_THRESHOLD);
     }
@@ -284,7 +284,7 @@
                 const int score = sw->mScore;
                 const unsigned short* word = sw->mWord;
                 const int wordLength = sw->mWordLength;
-                double ns = Correction::RankingAlgorithm::calcNormalizedScore(
+                float ns = Correction::RankingAlgorithm::calcNormalizedScore(
                         proximityInfo->getPrimaryInputWord(), i, word, wordLength, score);
                 ns += 0;
                 AKLOGI("--- TOP SUB WORDS for %d --- %d %f [%d]", i, score, ns,
@@ -452,7 +452,7 @@
             return false;
         }
         int score = 0;
-        const double ns = queue->getHighestNormalizedScore(
+        const float ns = queue->getHighestNormalizedScore(
                 proximityInfo->getPrimaryInputWord(), inputWordLength,
                 &tempOutputWord, &score, &nextWordLength);
         if (DEBUG_DICT) {
diff --git a/native/jni/src/words_priority_queue.h b/native/jni/src/words_priority_queue.h
index 1387267..7629251 100644
--- a/native/jni/src/words_priority_queue.h
+++ b/native/jni/src/words_priority_queue.h
@@ -112,13 +112,13 @@
         if (size >= 2) {
             SuggestedWord* nsMaxSw = 0;
             unsigned int maxIndex = 0;
-            double maxNs = 0;
+            float maxNs = 0;
             for (unsigned int i = 0; i < size; ++i) {
                 SuggestedWord* tempSw = swBuffer[i];
                 if (!tempSw) {
                     continue;
                 }
-                const double tempNs = getNormalizedScore(tempSw, before, beforeLength, 0, 0, 0);
+                const float tempNs = getNormalizedScore(tempSw, before, beforeLength, 0, 0, 0);
                 if (tempNs >= maxNs) {
                     maxNs = tempNs;
                     maxIndex = i;
@@ -172,7 +172,7 @@
         DUMP_WORD(mHighestSuggestedWord->mWord, mHighestSuggestedWord->mWordLength);
     }
 
-    double getHighestNormalizedScore(const unsigned short* before, const int beforeLength,
+    float getHighestNormalizedScore(const unsigned short* before, const int beforeLength,
             unsigned short** outWord, int *outScore, int *outLength) {
         if (!mHighestSuggestedWord) {
             return 0.0;
@@ -199,7 +199,7 @@
         return 0;
     }
 
-    static double getNormalizedScore(SuggestedWord* sw, const unsigned short* before,
+    static float getNormalizedScore(SuggestedWord* sw, const unsigned short* before,
             const int beforeLength, unsigned short** outWord, int *outScore, int *outLength) {
         const int score = sw->mScore;
         unsigned short* word = sw->mWord;