No code changes, this cl only reorganizes the functions
This is done such that future cls are easier to visualize.
Bug: 188081026
Test: atest ReorderWidgets
Change-Id: I749d21b517dada97887d5b5e7cb5e2ac644d0030
diff --git a/src/com/android/launcher3/CellLayout.java b/src/com/android/launcher3/CellLayout.java
index 19afa78..9d059bb 100644
--- a/src/com/android/launcher3/CellLayout.java
+++ b/src/com/android/launcher3/CellLayout.java
@@ -1396,649 +1396,6 @@
return bestXY;
}
- /**
- * Find a vacant area that will fit the given bounds nearest the requested
- * cell location, and will also weigh in a suggested direction vector of the
- * desired location. This method computers distance based on unit grid distances,
- * not pixel distances.
- *
- * @param cellX The X cell nearest to which you want to search for a vacant area.
- * @param cellY The Y cell nearest which you want to search for a vacant area.
- * @param spanX Horizontal span of the object.
- * @param spanY Vertical span of the object.
- * @param direction The favored direction in which the views should move from x, y
- * @param occupied The array which represents which cells in the CellLayout are occupied
- * @param blockOccupied The array which represents which cells in the specified block (cellX,
- * cellY, spanX, spanY) are occupied. This is used when try to move a group of views.
- * @param result Array in which to place the result, or null (in which case a new array will
- * be allocated)
- * @return The X, Y cell of a vacant area that can contain this object,
- * nearest the requested location.
- */
- private int[] findNearestArea(int cellX, int cellY, int spanX, int spanY, int[] direction,
- boolean[][] occupied, boolean blockOccupied[][], int[] result) {
- // Keep track of best-scoring drop area
- final int[] bestXY = result != null ? result : new int[2];
- float bestDistance = Float.MAX_VALUE;
- int bestDirectionScore = Integer.MIN_VALUE;
-
- final int countX = mCountX;
- final int countY = mCountY;
-
- for (int y = 0; y < countY - (spanY - 1); y++) {
- inner:
- for (int x = 0; x < countX - (spanX - 1); x++) {
- // First, let's see if this thing fits anywhere
- for (int i = 0; i < spanX; i++) {
- for (int j = 0; j < spanY; j++) {
- if (occupied[x + i][y + j] && (blockOccupied == null || blockOccupied[i][j])) {
- continue inner;
- }
- }
- }
-
- float distance = (float) Math.hypot(x - cellX, y - cellY);
- int[] curDirection = mTmpPoint;
- computeDirectionVector(x - cellX, y - cellY, curDirection);
- // The direction score is just the dot product of the two candidate direction
- // and that passed in.
- int curDirectionScore = direction[0] * curDirection[0] +
- direction[1] * curDirection[1];
- if (Float.compare(distance, bestDistance) < 0 ||
- (Float.compare(distance, bestDistance) == 0
- && curDirectionScore > bestDirectionScore)) {
- bestDistance = distance;
- bestDirectionScore = curDirectionScore;
- bestXY[0] = x;
- bestXY[1] = y;
- }
- }
- }
-
- // Return -1, -1 if no suitable location found
- if (bestDistance == Float.MAX_VALUE) {
- bestXY[0] = -1;
- bestXY[1] = -1;
- }
- return bestXY;
- }
-
- private boolean addViewToTempLocation(View v, Rect rectOccupiedByPotentialDrop,
- int[] direction, ItemConfiguration currentState) {
- CellAndSpan c = currentState.map.get(v);
- boolean success = false;
- mTmpOccupied.markCells(c, false);
- mTmpOccupied.markCells(rectOccupiedByPotentialDrop, true);
-
- findNearestArea(c.cellX, c.cellY, c.spanX, c.spanY, direction,
- mTmpOccupied.cells, null, mTempLocation);
-
- if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) {
- c.cellX = mTempLocation[0];
- c.cellY = mTempLocation[1];
- success = true;
- }
- mTmpOccupied.markCells(c, true);
- return success;
- }
-
- /**
- * This helper class defines a cluster of views. It helps with defining complex edges
- * of the cluster and determining how those edges interact with other views. The edges
- * essentially define a fine-grained boundary around the cluster of views -- like a more
- * precise version of a bounding box.
- */
- private class ViewCluster {
- final static int LEFT = 1 << 0;
- final static int TOP = 1 << 1;
- final static int RIGHT = 1 << 2;
- final static int BOTTOM = 1 << 3;
-
- final ArrayList<View> views;
- final ItemConfiguration config;
- final Rect boundingRect = new Rect();
-
- final int[] leftEdge = new int[mCountY];
- final int[] rightEdge = new int[mCountY];
- final int[] topEdge = new int[mCountX];
- final int[] bottomEdge = new int[mCountX];
- int dirtyEdges;
- boolean boundingRectDirty;
-
- @SuppressWarnings("unchecked")
- public ViewCluster(ArrayList<View> views, ItemConfiguration config) {
- this.views = (ArrayList<View>) views.clone();
- this.config = config;
- resetEdges();
- }
-
- void resetEdges() {
- for (int i = 0; i < mCountX; i++) {
- topEdge[i] = -1;
- bottomEdge[i] = -1;
- }
- for (int i = 0; i < mCountY; i++) {
- leftEdge[i] = -1;
- rightEdge[i] = -1;
- }
- dirtyEdges = LEFT | TOP | RIGHT | BOTTOM;
- boundingRectDirty = true;
- }
-
- void computeEdge(int which) {
- int count = views.size();
- for (int i = 0; i < count; i++) {
- CellAndSpan cs = config.map.get(views.get(i));
- switch (which) {
- case LEFT:
- int left = cs.cellX;
- for (int j = cs.cellY; j < cs.cellY + cs.spanY; j++) {
- if (left < leftEdge[j] || leftEdge[j] < 0) {
- leftEdge[j] = left;
- }
- }
- break;
- case RIGHT:
- int right = cs.cellX + cs.spanX;
- for (int j = cs.cellY; j < cs.cellY + cs.spanY; j++) {
- if (right > rightEdge[j]) {
- rightEdge[j] = right;
- }
- }
- break;
- case TOP:
- int top = cs.cellY;
- for (int j = cs.cellX; j < cs.cellX + cs.spanX; j++) {
- if (top < topEdge[j] || topEdge[j] < 0) {
- topEdge[j] = top;
- }
- }
- break;
- case BOTTOM:
- int bottom = cs.cellY + cs.spanY;
- for (int j = cs.cellX; j < cs.cellX + cs.spanX; j++) {
- if (bottom > bottomEdge[j]) {
- bottomEdge[j] = bottom;
- }
- }
- break;
- }
- }
- }
-
- boolean isViewTouchingEdge(View v, int whichEdge) {
- CellAndSpan cs = config.map.get(v);
-
- if ((dirtyEdges & whichEdge) == whichEdge) {
- computeEdge(whichEdge);
- dirtyEdges &= ~whichEdge;
- }
-
- switch (whichEdge) {
- case LEFT:
- for (int i = cs.cellY; i < cs.cellY + cs.spanY; i++) {
- if (leftEdge[i] == cs.cellX + cs.spanX) {
- return true;
- }
- }
- break;
- case RIGHT:
- for (int i = cs.cellY; i < cs.cellY + cs.spanY; i++) {
- if (rightEdge[i] == cs.cellX) {
- return true;
- }
- }
- break;
- case TOP:
- for (int i = cs.cellX; i < cs.cellX + cs.spanX; i++) {
- if (topEdge[i] == cs.cellY + cs.spanY) {
- return true;
- }
- }
- break;
- case BOTTOM:
- for (int i = cs.cellX; i < cs.cellX + cs.spanX; i++) {
- if (bottomEdge[i] == cs.cellY) {
- return true;
- }
- }
- break;
- }
- return false;
- }
-
- void shift(int whichEdge, int delta) {
- for (View v: views) {
- CellAndSpan c = config.map.get(v);
- switch (whichEdge) {
- case LEFT:
- c.cellX -= delta;
- break;
- case RIGHT:
- c.cellX += delta;
- break;
- case TOP:
- c.cellY -= delta;
- break;
- case BOTTOM:
- default:
- c.cellY += delta;
- break;
- }
- }
- resetEdges();
- }
-
- public void addView(View v) {
- views.add(v);
- resetEdges();
- }
-
- public Rect getBoundingRect() {
- if (boundingRectDirty) {
- config.getBoundingRectForViews(views, boundingRect);
- }
- return boundingRect;
- }
-
- final PositionComparator comparator = new PositionComparator();
- class PositionComparator implements Comparator<View> {
- int whichEdge = 0;
- public int compare(View left, View right) {
- CellAndSpan l = config.map.get(left);
- CellAndSpan r = config.map.get(right);
- switch (whichEdge) {
- case LEFT:
- return (r.cellX + r.spanX) - (l.cellX + l.spanX);
- case RIGHT:
- return l.cellX - r.cellX;
- case TOP:
- return (r.cellY + r.spanY) - (l.cellY + l.spanY);
- case BOTTOM:
- default:
- return l.cellY - r.cellY;
- }
- }
- }
-
- public void sortConfigurationForEdgePush(int edge) {
- comparator.whichEdge = edge;
- Collections.sort(config.sortedViews, comparator);
- }
- }
-
- private boolean pushViewsToTempLocation(ArrayList<View> views, Rect rectOccupiedByPotentialDrop,
- int[] direction, View dragView, ItemConfiguration currentState) {
-
- ViewCluster cluster = new ViewCluster(views, currentState);
- Rect clusterRect = cluster.getBoundingRect();
- int whichEdge;
- int pushDistance;
- boolean fail = false;
-
- // Determine the edge of the cluster that will be leading the push and how far
- // the cluster must be shifted.
- if (direction[0] < 0) {
- whichEdge = ViewCluster.LEFT;
- pushDistance = clusterRect.right - rectOccupiedByPotentialDrop.left;
- } else if (direction[0] > 0) {
- whichEdge = ViewCluster.RIGHT;
- pushDistance = rectOccupiedByPotentialDrop.right - clusterRect.left;
- } else if (direction[1] < 0) {
- whichEdge = ViewCluster.TOP;
- pushDistance = clusterRect.bottom - rectOccupiedByPotentialDrop.top;
- } else {
- whichEdge = ViewCluster.BOTTOM;
- pushDistance = rectOccupiedByPotentialDrop.bottom - clusterRect.top;
- }
-
- // Break early for invalid push distance.
- if (pushDistance <= 0) {
- return false;
- }
-
- // Mark the occupied state as false for the group of views we want to move.
- for (View v: views) {
- CellAndSpan c = currentState.map.get(v);
- mTmpOccupied.markCells(c, false);
- }
-
- // We save the current configuration -- if we fail to find a solution we will revert
- // to the initial state. The process of finding a solution modifies the configuration
- // in place, hence the need for revert in the failure case.
- currentState.save();
-
- // The pushing algorithm is simplified by considering the views in the order in which
- // they would be pushed by the cluster. For example, if the cluster is leading with its
- // left edge, we consider sort the views by their right edge, from right to left.
- cluster.sortConfigurationForEdgePush(whichEdge);
-
- while (pushDistance > 0 && !fail) {
- for (View v: currentState.sortedViews) {
- // For each view that isn't in the cluster, we see if the leading edge of the
- // cluster is contacting the edge of that view. If so, we add that view to the
- // cluster.
- if (!cluster.views.contains(v) && v != dragView) {
- if (cluster.isViewTouchingEdge(v, whichEdge)) {
- CellLayoutLayoutParams lp = (CellLayoutLayoutParams) v.getLayoutParams();
- if (!lp.canReorder) {
- // The push solution includes the all apps button, this is not viable.
- fail = true;
- break;
- }
- cluster.addView(v);
- CellAndSpan c = currentState.map.get(v);
-
- // Adding view to cluster, mark it as not occupied.
- mTmpOccupied.markCells(c, false);
- }
- }
- }
- pushDistance--;
-
- // The cluster has been completed, now we move the whole thing over in the appropriate
- // direction.
- cluster.shift(whichEdge, 1);
- }
-
- boolean foundSolution = false;
- clusterRect = cluster.getBoundingRect();
-
- // Due to the nature of the algorithm, the only check required to verify a valid solution
- // is to ensure that completed shifted cluster lies completely within the cell layout.
- if (!fail && clusterRect.left >= 0 && clusterRect.right <= mCountX && clusterRect.top >= 0 &&
- clusterRect.bottom <= mCountY) {
- foundSolution = true;
- } else {
- currentState.restore();
- }
-
- // In either case, we set the occupied array as marked for the location of the views
- for (View v: cluster.views) {
- CellAndSpan c = currentState.map.get(v);
- mTmpOccupied.markCells(c, true);
- }
-
- return foundSolution;
- }
-
- private boolean addViewsToTempLocation(ArrayList<View> views, Rect rectOccupiedByPotentialDrop,
- int[] direction, View dragView, ItemConfiguration currentState) {
- if (views.size() == 0) return true;
-
- boolean success = false;
- Rect boundingRect = new Rect();
- // We construct a rect which represents the entire group of views passed in
- currentState.getBoundingRectForViews(views, boundingRect);
-
- // Mark the occupied state as false for the group of views we want to move.
- for (View v: views) {
- CellAndSpan c = currentState.map.get(v);
- mTmpOccupied.markCells(c, false);
- }
-
- GridOccupancy blockOccupied = new GridOccupancy(boundingRect.width(), boundingRect.height());
- int top = boundingRect.top;
- int left = boundingRect.left;
- // We mark more precisely which parts of the bounding rect are truly occupied, allowing
- // for interlocking.
- for (View v: views) {
- CellAndSpan c = currentState.map.get(v);
- blockOccupied.markCells(c.cellX - left, c.cellY - top, c.spanX, c.spanY, true);
- }
-
- mTmpOccupied.markCells(rectOccupiedByPotentialDrop, true);
-
- findNearestArea(boundingRect.left, boundingRect.top, boundingRect.width(),
- boundingRect.height(), direction,
- mTmpOccupied.cells, blockOccupied.cells, mTempLocation);
-
- // If we successfuly found a location by pushing the block of views, we commit it
- if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) {
- int deltaX = mTempLocation[0] - boundingRect.left;
- int deltaY = mTempLocation[1] - boundingRect.top;
- for (View v: views) {
- CellAndSpan c = currentState.map.get(v);
- c.cellX += deltaX;
- c.cellY += deltaY;
- }
- success = true;
- }
-
- // In either case, we set the occupied array as marked for the location of the views
- for (View v: views) {
- CellAndSpan c = currentState.map.get(v);
- mTmpOccupied.markCells(c, true);
- }
- return success;
- }
-
- // This method tries to find a reordering solution which satisfies the push mechanic by trying
- // to push items in each of the cardinal directions, in an order based on the direction vector
- // passed.
- private boolean attemptPushInDirection(ArrayList<View> intersectingViews, Rect occupied,
- int[] direction, View ignoreView, ItemConfiguration solution) {
- if ((Math.abs(direction[0]) + Math.abs(direction[1])) > 1) {
- // If the direction vector has two non-zero components, we try pushing
- // separately in each of the components.
- int temp = direction[1];
- direction[1] = 0;
-
- if (pushViewsToTempLocation(intersectingViews, occupied, direction,
- ignoreView, solution)) {
- return true;
- }
- direction[1] = temp;
- temp = direction[0];
- direction[0] = 0;
-
- if (pushViewsToTempLocation(intersectingViews, occupied, direction,
- ignoreView, solution)) {
- return true;
- }
- // Revert the direction
- direction[0] = temp;
-
- // Now we try pushing in each component of the opposite direction
- direction[0] *= -1;
- direction[1] *= -1;
- temp = direction[1];
- direction[1] = 0;
- if (pushViewsToTempLocation(intersectingViews, occupied, direction,
- ignoreView, solution)) {
- return true;
- }
-
- direction[1] = temp;
- temp = direction[0];
- direction[0] = 0;
- if (pushViewsToTempLocation(intersectingViews, occupied, direction,
- ignoreView, solution)) {
- return true;
- }
- // revert the direction
- direction[0] = temp;
- direction[0] *= -1;
- direction[1] *= -1;
-
- } else {
- // If the direction vector has a single non-zero component, we push first in the
- // direction of the vector
- if (pushViewsToTempLocation(intersectingViews, occupied, direction,
- ignoreView, solution)) {
- return true;
- }
- // Then we try the opposite direction
- direction[0] *= -1;
- direction[1] *= -1;
- if (pushViewsToTempLocation(intersectingViews, occupied, direction,
- ignoreView, solution)) {
- return true;
- }
- // Switch the direction back
- direction[0] *= -1;
- direction[1] *= -1;
-
- // If we have failed to find a push solution with the above, then we try
- // to find a solution by pushing along the perpendicular axis.
-
- // Swap the components
- int temp = direction[1];
- direction[1] = direction[0];
- direction[0] = temp;
- if (pushViewsToTempLocation(intersectingViews, occupied, direction,
- ignoreView, solution)) {
- return true;
- }
-
- // Then we try the opposite direction
- direction[0] *= -1;
- direction[1] *= -1;
- if (pushViewsToTempLocation(intersectingViews, occupied, direction,
- ignoreView, solution)) {
- return true;
- }
- // Switch the direction back
- direction[0] *= -1;
- direction[1] *= -1;
-
- // Swap the components back
- temp = direction[1];
- direction[1] = direction[0];
- direction[0] = temp;
- }
- return false;
- }
-
- private boolean rearrangementExists(int cellX, int cellY, int spanX, int spanY, int[] direction,
- View ignoreView, ItemConfiguration solution) {
- // Return early if get invalid cell positions
- if (cellX < 0 || cellY < 0) return false;
-
- mIntersectingViews.clear();
- mOccupiedRect.set(cellX, cellY, cellX + spanX, cellY + spanY);
-
- // Mark the desired location of the view currently being dragged.
- if (ignoreView != null) {
- CellAndSpan c = solution.map.get(ignoreView);
- if (c != null) {
- c.cellX = cellX;
- c.cellY = cellY;
- }
- }
- Rect r0 = new Rect(cellX, cellY, cellX + spanX, cellY + spanY);
- Rect r1 = new Rect();
- for (View child: solution.map.keySet()) {
- if (child == ignoreView) continue;
- CellAndSpan c = solution.map.get(child);
- CellLayoutLayoutParams lp = (CellLayoutLayoutParams) child.getLayoutParams();
- r1.set(c.cellX, c.cellY, c.cellX + c.spanX, c.cellY + c.spanY);
- if (Rect.intersects(r0, r1)) {
- if (!lp.canReorder) {
- return false;
- }
- mIntersectingViews.add(child);
- }
- }
-
- solution.intersectingViews = new ArrayList<>(mIntersectingViews);
-
- // First we try to find a solution which respects the push mechanic. That is,
- // we try to find a solution such that no displaced item travels through another item
- // without also displacing that item.
- if (attemptPushInDirection(mIntersectingViews, mOccupiedRect, direction, ignoreView,
- solution)) {
- return true;
- }
-
- // Next we try moving the views as a block, but without requiring the push mechanic.
- if (addViewsToTempLocation(mIntersectingViews, mOccupiedRect, direction, ignoreView,
- solution)) {
- return true;
- }
-
- // Ok, they couldn't move as a block, let's move them individually
- for (View v : mIntersectingViews) {
- if (!addViewToTempLocation(v, mOccupiedRect, direction, solution)) {
- return false;
- }
- }
- return true;
- }
-
- /*
- * Returns a pair (x, y), where x,y are in {-1, 0, 1} corresponding to vector between
- * the provided point and the provided cell
- */
- private void computeDirectionVector(float deltaX, float deltaY, int[] result) {
- double angle = Math.atan(deltaY / deltaX);
-
- result[0] = 0;
- result[1] = 0;
- if (Math.abs(Math.cos(angle)) > 0.5f) {
- result[0] = (int) Math.signum(deltaX);
- }
- if (Math.abs(Math.sin(angle)) > 0.5f) {
- result[1] = (int) Math.signum(deltaY);
- }
- }
-
- private ItemConfiguration findReorderSolution(int pixelX, int pixelY, int minSpanX, int minSpanY,
- int spanX, int spanY, int[] direction, View dragView, boolean decX,
- ItemConfiguration solution) {
- // Copy the current state into the solution. This solution will be manipulated as necessary.
- copyCurrentStateToSolution(solution, false);
- // Copy the current occupied array into the temporary occupied array. This array will be
- // manipulated as necessary to find a solution.
- mOccupied.copyTo(mTmpOccupied);
-
- // We find the nearest cell into which we would place the dragged item, assuming there's
- // nothing in its way.
- int result[] = new int[2];
- result = findNearestArea(pixelX, pixelY, spanX, spanY, result);
-
- boolean success;
- // First we try the exact nearest position of the item being dragged,
- // we will then want to try to move this around to other neighbouring positions
- success = rearrangementExists(result[0], result[1], spanX, spanY, direction, dragView,
- solution);
-
- if (!success) {
- // We try shrinking the widget down to size in an alternating pattern, shrink 1 in
- // x, then 1 in y etc.
- if (spanX > minSpanX && (minSpanY == spanY || decX)) {
- return findReorderSolution(pixelX, pixelY, minSpanX, minSpanY, spanX - 1, spanY,
- direction, dragView, false, solution);
- } else if (spanY > minSpanY) {
- return findReorderSolution(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY - 1,
- direction, dragView, true, solution);
- }
- solution.isSolution = false;
- } else {
- solution.isSolution = true;
- solution.cellX = result[0];
- solution.cellY = result[1];
- solution.spanX = spanX;
- solution.spanY = spanY;
- }
- return solution;
- }
-
- private void copyCurrentStateToSolution(ItemConfiguration solution, boolean temp) {
- int childCount = mShortcutsAndWidgets.getChildCount();
- for (int i = 0; i < childCount; i++) {
- View child = mShortcutsAndWidgets.getChildAt(i);
- CellLayoutLayoutParams lp = (CellLayoutLayoutParams) child.getLayoutParams();
- CellAndSpan c;
- if (temp) {
- c = new CellAndSpan(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan);
- } else {
- c = new CellAndSpan(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan);
- }
- solution.add(child, c);
- }
- }
-
private void copySolutionToTempState(ItemConfiguration solution, View dragView) {
mTmpOccupied.clear();
@@ -2335,54 +1692,6 @@
return solution;
}
- /* This seems like it should be obvious and straight-forward, but when the direction vector
- needs to match with the notion of the dragView pushing other views, we have to employ
- a slightly more subtle notion of the direction vector. The question is what two points is
- the vector between? The center of the dragView and its desired destination? Not quite, as
- this doesn't necessarily coincide with the interaction of the dragView and items occupying
- those cells. Instead we use some heuristics to often lock the vector to up, down, left
- or right, which helps make pushing feel right.
- */
- private void getDirectionVectorForDrop(int dragViewCenterX, int dragViewCenterY, int spanX,
- int spanY, View dragView, int[] resultDirection) {
-
- //TODO(adamcohen) b/151776141 use the items visual center for the direction vector
- int[] targetDestination = new int[2];
-
- findNearestArea(dragViewCenterX, dragViewCenterY, spanX, spanY, targetDestination);
- Rect dragRect = new Rect();
- cellToRect(targetDestination[0], targetDestination[1], spanX, spanY, dragRect);
- dragRect.offset(dragViewCenterX - dragRect.centerX(), dragViewCenterY - dragRect.centerY());
-
- Rect dropRegionRect = new Rect();
- getViewsIntersectingRegion(targetDestination[0], targetDestination[1], spanX, spanY,
- dragView, dropRegionRect, mIntersectingViews);
-
- int dropRegionSpanX = dropRegionRect.width();
- int dropRegionSpanY = dropRegionRect.height();
-
- cellToRect(dropRegionRect.left, dropRegionRect.top, dropRegionRect.width(),
- dropRegionRect.height(), dropRegionRect);
-
- int deltaX = (dropRegionRect.centerX() - dragViewCenterX) / spanX;
- int deltaY = (dropRegionRect.centerY() - dragViewCenterY) / spanY;
-
- if (dropRegionSpanX == mCountX || spanX == mCountX) {
- deltaX = 0;
- }
- if (dropRegionSpanY == mCountY || spanY == mCountY) {
- deltaY = 0;
- }
-
- if (deltaX == 0 && deltaY == 0) {
- // No idea what to do, give a random direction.
- resultDirection[0] = 1;
- resultDirection[1] = 0;
- } else {
- computeDirectionVector(deltaX, deltaY, resultDirection);
- }
- }
-
// For a given cell and span, fetch the set of views intersecting the region.
private void getViewsIntersectingRegion(int cellX, int cellY, int spanX, int spanY,
View dragView, Rect boundingRect, ArrayList<View> intersectingViews) {
@@ -2466,42 +1775,695 @@
return swapSolution.isSolution;
}
- int[] performReorder(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY,
- View dragView, int[] result, int[] resultSpan, int mode) {
- if (resultSpan == null) {
- resultSpan = new int[]{-1, -1};
- }
- if (result == null) {
- result = new int[]{-1, -1};
- }
+ /**
+ * Find a vacant area that will fit the given bounds nearest the requested
+ * cell location, and will also weigh in a suggested direction vector of the
+ * desired location. This method computers distance based on unit grid distances,
+ * not pixel distances.
+ *
+ * @param cellX The X cell nearest to which you want to search for a vacant area.
+ * @param cellY The Y cell nearest which you want to search for a vacant area.
+ * @param spanX Horizontal span of the object.
+ * @param spanY Vertical span of the object.
+ * @param direction The favored direction in which the views should move from x, y
+ * @param occupied The array which represents which cells in the CellLayout are occupied
+ * @param blockOccupied The array which represents which cells in the specified block (cellX,
+ * cellY, spanX, spanY) are occupied. This is used when try to move a group of views.
+ * @param result Array in which to place the result, or null (in which case a new array will
+ * be allocated)
+ * @return The X, Y cell of a vacant area that can contain this object,
+ * nearest the requested location.
+ */
+ private int[] findNearestArea(int cellX, int cellY, int spanX, int spanY, int[] direction,
+ boolean[][] occupied, boolean blockOccupied[][], int[] result) {
+ // Keep track of best-scoring drop area
+ final int[] bestXY = result != null ? result : new int[2];
+ float bestDistance = Float.MAX_VALUE;
+ int bestDirectionScore = Integer.MIN_VALUE;
- ItemConfiguration finalSolution;
- // When we are checking drop validity or actually dropping, we don't recompute the
- // direction vector, since we want the solution to match the preview, and it's possible
- // that the exact position of the item has changed to result in a new reordering outcome.
- if ((mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL || mode == MODE_ACCEPT_DROP)
- && mPreviousSolution != null) {
- finalSolution = mPreviousSolution;
- // We reset this vector after drop
- if (mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL) {
- mPreviousSolution = null;
+ final int countX = mCountX;
+ final int countY = mCountY;
+
+ for (int y = 0; y < countY - (spanY - 1); y++) {
+ inner:
+ for (int x = 0; x < countX - (spanX - 1); x++) {
+ // First, let's see if this thing fits anywhere
+ for (int i = 0; i < spanX; i++) {
+ for (int j = 0; j < spanY; j++) {
+ if (occupied[x + i][y + j] && (blockOccupied == null || blockOccupied[i][j])) {
+ continue inner;
+ }
+ }
+ }
+
+ float distance = (float) Math.hypot(x - cellX, y - cellY);
+ int[] curDirection = mTmpPoint;
+ computeDirectionVector(x - cellX, y - cellY, curDirection);
+ // The direction score is just the dot product of the two candidate direction
+ // and that passed in.
+ int curDirectionScore = direction[0] * curDirection[0] +
+ direction[1] * curDirection[1];
+ if (Float.compare(distance, bestDistance) < 0 ||
+ (Float.compare(distance, bestDistance) == 0
+ && curDirectionScore > bestDirectionScore)) {
+ bestDistance = distance;
+ bestDirectionScore = curDirectionScore;
+ bestXY[0] = x;
+ bestXY[1] = y;
+ }
}
- } else {
- finalSolution = calculateReorder(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY,
- dragView);
- mPreviousSolution = finalSolution;
}
- if (finalSolution == null || !finalSolution.isSolution) {
- result[0] = result[1] = resultSpan[0] = resultSpan[1] = -1;
- } else {
- result[0] = finalSolution.cellX;
- result[1] = finalSolution.cellY;
- resultSpan[0] = finalSolution.spanX;
- resultSpan[1] = finalSolution.spanY;
+ // Return -1, -1 if no suitable location found
+ if (bestDistance == Float.MAX_VALUE) {
+ bestXY[0] = -1;
+ bestXY[1] = -1;
}
- performReorder(finalSolution, dragView, mode);
- return result;
+ return bestXY;
+ }
+
+ private boolean addViewToTempLocation(View v, Rect rectOccupiedByPotentialDrop,
+ int[] direction, ItemConfiguration currentState) {
+ CellAndSpan c = currentState.map.get(v);
+ boolean success = false;
+ mTmpOccupied.markCells(c, false);
+ mTmpOccupied.markCells(rectOccupiedByPotentialDrop, true);
+
+ findNearestArea(c.cellX, c.cellY, c.spanX, c.spanY, direction,
+ mTmpOccupied.cells, null, mTempLocation);
+
+ if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) {
+ c.cellX = mTempLocation[0];
+ c.cellY = mTempLocation[1];
+ success = true;
+ }
+ mTmpOccupied.markCells(c, true);
+ return success;
+ }
+
+ private boolean pushViewsToTempLocation(ArrayList<View> views, Rect rectOccupiedByPotentialDrop,
+ int[] direction, View dragView, ItemConfiguration currentState) {
+
+ ViewCluster cluster = new ViewCluster(views, currentState);
+ Rect clusterRect = cluster.getBoundingRect();
+ int whichEdge;
+ int pushDistance;
+ boolean fail = false;
+
+ // Determine the edge of the cluster that will be leading the push and how far
+ // the cluster must be shifted.
+ if (direction[0] < 0) {
+ whichEdge = ViewCluster.LEFT;
+ pushDistance = clusterRect.right - rectOccupiedByPotentialDrop.left;
+ } else if (direction[0] > 0) {
+ whichEdge = ViewCluster.RIGHT;
+ pushDistance = rectOccupiedByPotentialDrop.right - clusterRect.left;
+ } else if (direction[1] < 0) {
+ whichEdge = ViewCluster.TOP;
+ pushDistance = clusterRect.bottom - rectOccupiedByPotentialDrop.top;
+ } else {
+ whichEdge = ViewCluster.BOTTOM;
+ pushDistance = rectOccupiedByPotentialDrop.bottom - clusterRect.top;
+ }
+
+ // Break early for invalid push distance.
+ if (pushDistance <= 0) {
+ return false;
+ }
+
+ // Mark the occupied state as false for the group of views we want to move.
+ for (View v: views) {
+ CellAndSpan c = currentState.map.get(v);
+ mTmpOccupied.markCells(c, false);
+ }
+
+ // We save the current configuration -- if we fail to find a solution we will revert
+ // to the initial state. The process of finding a solution modifies the configuration
+ // in place, hence the need for revert in the failure case.
+ currentState.save();
+
+ // The pushing algorithm is simplified by considering the views in the order in which
+ // they would be pushed by the cluster. For example, if the cluster is leading with its
+ // left edge, we consider sort the views by their right edge, from right to left.
+ cluster.sortConfigurationForEdgePush(whichEdge);
+
+ while (pushDistance > 0 && !fail) {
+ for (View v: currentState.sortedViews) {
+ // For each view that isn't in the cluster, we see if the leading edge of the
+ // cluster is contacting the edge of that view. If so, we add that view to the
+ // cluster.
+ if (!cluster.views.contains(v) && v != dragView) {
+ if (cluster.isViewTouchingEdge(v, whichEdge)) {
+ CellLayoutLayoutParams lp = (CellLayoutLayoutParams) v.getLayoutParams();
+ if (!lp.canReorder) {
+ // The push solution includes the all apps button, this is not viable.
+ fail = true;
+ break;
+ }
+ cluster.addView(v);
+ CellAndSpan c = currentState.map.get(v);
+
+ // Adding view to cluster, mark it as not occupied.
+ mTmpOccupied.markCells(c, false);
+ }
+ }
+ }
+ pushDistance--;
+
+ // The cluster has been completed, now we move the whole thing over in the appropriate
+ // direction.
+ cluster.shift(whichEdge, 1);
+ }
+
+ boolean foundSolution = false;
+ clusterRect = cluster.getBoundingRect();
+
+ // Due to the nature of the algorithm, the only check required to verify a valid solution
+ // is to ensure that completed shifted cluster lies completely within the cell layout.
+ if (!fail && clusterRect.left >= 0 && clusterRect.right <= mCountX && clusterRect.top >= 0 &&
+ clusterRect.bottom <= mCountY) {
+ foundSolution = true;
+ } else {
+ currentState.restore();
+ }
+
+ // In either case, we set the occupied array as marked for the location of the views
+ for (View v: cluster.views) {
+ CellAndSpan c = currentState.map.get(v);
+ mTmpOccupied.markCells(c, true);
+ }
+
+ return foundSolution;
+ }
+
+ /**
+ * This helper class defines a cluster of views. It helps with defining complex edges
+ * of the cluster and determining how those edges interact with other views. The edges
+ * essentially define a fine-grained boundary around the cluster of views -- like a more
+ * precise version of a bounding box.
+ */
+ private class ViewCluster {
+ final static int LEFT = 1 << 0;
+ final static int TOP = 1 << 1;
+ final static int RIGHT = 1 << 2;
+ final static int BOTTOM = 1 << 3;
+
+ final ArrayList<View> views;
+ final ItemConfiguration config;
+ final Rect boundingRect = new Rect();
+
+ final int[] leftEdge = new int[mCountY];
+ final int[] rightEdge = new int[mCountY];
+ final int[] topEdge = new int[mCountX];
+ final int[] bottomEdge = new int[mCountX];
+ int dirtyEdges;
+ boolean boundingRectDirty;
+
+ @SuppressWarnings("unchecked")
+ public ViewCluster(ArrayList<View> views, ItemConfiguration config) {
+ this.views = (ArrayList<View>) views.clone();
+ this.config = config;
+ resetEdges();
+ }
+
+ void resetEdges() {
+ for (int i = 0; i < mCountX; i++) {
+ topEdge[i] = -1;
+ bottomEdge[i] = -1;
+ }
+ for (int i = 0; i < mCountY; i++) {
+ leftEdge[i] = -1;
+ rightEdge[i] = -1;
+ }
+ dirtyEdges = LEFT | TOP | RIGHT | BOTTOM;
+ boundingRectDirty = true;
+ }
+
+ void computeEdge(int which) {
+ int count = views.size();
+ for (int i = 0; i < count; i++) {
+ CellAndSpan cs = config.map.get(views.get(i));
+ switch (which) {
+ case LEFT:
+ int left = cs.cellX;
+ for (int j = cs.cellY; j < cs.cellY + cs.spanY; j++) {
+ if (left < leftEdge[j] || leftEdge[j] < 0) {
+ leftEdge[j] = left;
+ }
+ }
+ break;
+ case RIGHT:
+ int right = cs.cellX + cs.spanX;
+ for (int j = cs.cellY; j < cs.cellY + cs.spanY; j++) {
+ if (right > rightEdge[j]) {
+ rightEdge[j] = right;
+ }
+ }
+ break;
+ case TOP:
+ int top = cs.cellY;
+ for (int j = cs.cellX; j < cs.cellX + cs.spanX; j++) {
+ if (top < topEdge[j] || topEdge[j] < 0) {
+ topEdge[j] = top;
+ }
+ }
+ break;
+ case BOTTOM:
+ int bottom = cs.cellY + cs.spanY;
+ for (int j = cs.cellX; j < cs.cellX + cs.spanX; j++) {
+ if (bottom > bottomEdge[j]) {
+ bottomEdge[j] = bottom;
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ boolean isViewTouchingEdge(View v, int whichEdge) {
+ CellAndSpan cs = config.map.get(v);
+
+ if ((dirtyEdges & whichEdge) == whichEdge) {
+ computeEdge(whichEdge);
+ dirtyEdges &= ~whichEdge;
+ }
+
+ switch (whichEdge) {
+ case LEFT:
+ for (int i = cs.cellY; i < cs.cellY + cs.spanY; i++) {
+ if (leftEdge[i] == cs.cellX + cs.spanX) {
+ return true;
+ }
+ }
+ break;
+ case RIGHT:
+ for (int i = cs.cellY; i < cs.cellY + cs.spanY; i++) {
+ if (rightEdge[i] == cs.cellX) {
+ return true;
+ }
+ }
+ break;
+ case TOP:
+ for (int i = cs.cellX; i < cs.cellX + cs.spanX; i++) {
+ if (topEdge[i] == cs.cellY + cs.spanY) {
+ return true;
+ }
+ }
+ break;
+ case BOTTOM:
+ for (int i = cs.cellX; i < cs.cellX + cs.spanX; i++) {
+ if (bottomEdge[i] == cs.cellY) {
+ return true;
+ }
+ }
+ break;
+ }
+ return false;
+ }
+
+ void shift(int whichEdge, int delta) {
+ for (View v: views) {
+ CellAndSpan c = config.map.get(v);
+ switch (whichEdge) {
+ case LEFT:
+ c.cellX -= delta;
+ break;
+ case RIGHT:
+ c.cellX += delta;
+ break;
+ case TOP:
+ c.cellY -= delta;
+ break;
+ case BOTTOM:
+ default:
+ c.cellY += delta;
+ break;
+ }
+ }
+ resetEdges();
+ }
+
+ public void addView(View v) {
+ views.add(v);
+ resetEdges();
+ }
+
+ public Rect getBoundingRect() {
+ if (boundingRectDirty) {
+ config.getBoundingRectForViews(views, boundingRect);
+ }
+ return boundingRect;
+ }
+
+ final PositionComparator comparator = new PositionComparator();
+ class PositionComparator implements Comparator<View> {
+ int whichEdge = 0;
+ public int compare(View left, View right) {
+ CellAndSpan l = config.map.get(left);
+ CellAndSpan r = config.map.get(right);
+ switch (whichEdge) {
+ case LEFT:
+ return (r.cellX + r.spanX) - (l.cellX + l.spanX);
+ case RIGHT:
+ return l.cellX - r.cellX;
+ case TOP:
+ return (r.cellY + r.spanY) - (l.cellY + l.spanY);
+ case BOTTOM:
+ default:
+ return l.cellY - r.cellY;
+ }
+ }
+ }
+
+ public void sortConfigurationForEdgePush(int edge) {
+ comparator.whichEdge = edge;
+ Collections.sort(config.sortedViews, comparator);
+ }
+ }
+
+ // This method tries to find a reordering solution which satisfies the push mechanic by trying
+ // to push items in each of the cardinal directions, in an order based on the direction vector
+ // passed.
+ private boolean attemptPushInDirection(ArrayList<View> intersectingViews, Rect occupied,
+ int[] direction, View ignoreView, ItemConfiguration solution) {
+ if ((Math.abs(direction[0]) + Math.abs(direction[1])) > 1) {
+ // If the direction vector has two non-zero components, we try pushing
+ // separately in each of the components.
+ int temp = direction[1];
+ direction[1] = 0;
+
+ if (pushViewsToTempLocation(intersectingViews, occupied, direction,
+ ignoreView, solution)) {
+ return true;
+ }
+ direction[1] = temp;
+ temp = direction[0];
+ direction[0] = 0;
+
+ if (pushViewsToTempLocation(intersectingViews, occupied, direction,
+ ignoreView, solution)) {
+ return true;
+ }
+ // Revert the direction
+ direction[0] = temp;
+
+ // Now we try pushing in each component of the opposite direction
+ direction[0] *= -1;
+ direction[1] *= -1;
+ temp = direction[1];
+ direction[1] = 0;
+ if (pushViewsToTempLocation(intersectingViews, occupied, direction,
+ ignoreView, solution)) {
+ return true;
+ }
+
+ direction[1] = temp;
+ temp = direction[0];
+ direction[0] = 0;
+ if (pushViewsToTempLocation(intersectingViews, occupied, direction,
+ ignoreView, solution)) {
+ return true;
+ }
+ // revert the direction
+ direction[0] = temp;
+ direction[0] *= -1;
+ direction[1] *= -1;
+
+ } else {
+ // If the direction vector has a single non-zero component, we push first in the
+ // direction of the vector
+ if (pushViewsToTempLocation(intersectingViews, occupied, direction,
+ ignoreView, solution)) {
+ return true;
+ }
+ // Then we try the opposite direction
+ direction[0] *= -1;
+ direction[1] *= -1;
+ if (pushViewsToTempLocation(intersectingViews, occupied, direction,
+ ignoreView, solution)) {
+ return true;
+ }
+ // Switch the direction back
+ direction[0] *= -1;
+ direction[1] *= -1;
+
+ // If we have failed to find a push solution with the above, then we try
+ // to find a solution by pushing along the perpendicular axis.
+
+ // Swap the components
+ int temp = direction[1];
+ direction[1] = direction[0];
+ direction[0] = temp;
+ if (pushViewsToTempLocation(intersectingViews, occupied, direction,
+ ignoreView, solution)) {
+ return true;
+ }
+
+ // Then we try the opposite direction
+ direction[0] *= -1;
+ direction[1] *= -1;
+ if (pushViewsToTempLocation(intersectingViews, occupied, direction,
+ ignoreView, solution)) {
+ return true;
+ }
+ // Switch the direction back
+ direction[0] *= -1;
+ direction[1] *= -1;
+
+ // Swap the components back
+ temp = direction[1];
+ direction[1] = direction[0];
+ direction[0] = temp;
+ }
+ return false;
+ }
+
+ /*
+ * Returns a pair (x, y), where x,y are in {-1, 0, 1} corresponding to vector between
+ * the provided point and the provided cell
+ */
+ private void computeDirectionVector(float deltaX, float deltaY, int[] result) {
+ double angle = Math.atan(deltaY / deltaX);
+
+ result[0] = 0;
+ result[1] = 0;
+ if (Math.abs(Math.cos(angle)) > 0.5f) {
+ result[0] = (int) Math.signum(deltaX);
+ }
+ if (Math.abs(Math.sin(angle)) > 0.5f) {
+ result[1] = (int) Math.signum(deltaY);
+ }
+ }
+
+ /* This seems like it should be obvious and straight-forward, but when the direction vector
+ needs to match with the notion of the dragView pushing other views, we have to employ
+ a slightly more subtle notion of the direction vector. The question is what two points is
+ the vector between? The center of the dragView and its desired destination? Not quite, as
+ this doesn't necessarily coincide with the interaction of the dragView and items occupying
+ those cells. Instead we use some heuristics to often lock the vector to up, down, left
+ or right, which helps make pushing feel right.
+ */
+ private void getDirectionVectorForDrop(int dragViewCenterX, int dragViewCenterY, int spanX,
+ int spanY, View dragView, int[] resultDirection) {
+
+ //TODO(adamcohen) b/151776141 use the items visual center for the direction vector
+ int[] targetDestination = new int[2];
+
+ findNearestArea(dragViewCenterX, dragViewCenterY, spanX, spanY, targetDestination);
+ Rect dragRect = new Rect();
+ cellToRect(targetDestination[0], targetDestination[1], spanX, spanY, dragRect);
+ dragRect.offset(dragViewCenterX - dragRect.centerX(), dragViewCenterY - dragRect.centerY());
+
+ Rect dropRegionRect = new Rect();
+ getViewsIntersectingRegion(targetDestination[0], targetDestination[1], spanX, spanY,
+ dragView, dropRegionRect, mIntersectingViews);
+
+ int dropRegionSpanX = dropRegionRect.width();
+ int dropRegionSpanY = dropRegionRect.height();
+
+ cellToRect(dropRegionRect.left, dropRegionRect.top, dropRegionRect.width(),
+ dropRegionRect.height(), dropRegionRect);
+
+ int deltaX = (dropRegionRect.centerX() - dragViewCenterX) / spanX;
+ int deltaY = (dropRegionRect.centerY() - dragViewCenterY) / spanY;
+
+ if (dropRegionSpanX == mCountX || spanX == mCountX) {
+ deltaX = 0;
+ }
+ if (dropRegionSpanY == mCountY || spanY == mCountY) {
+ deltaY = 0;
+ }
+
+ if (deltaX == 0 && deltaY == 0) {
+ // No idea what to do, give a random direction.
+ resultDirection[0] = 1;
+ resultDirection[1] = 0;
+ } else {
+ computeDirectionVector(deltaX, deltaY, resultDirection);
+ }
+ }
+
+ private boolean addViewsToTempLocation(ArrayList<View> views, Rect rectOccupiedByPotentialDrop,
+ int[] direction, View dragView, ItemConfiguration currentState) {
+ if (views.size() == 0) return true;
+
+ boolean success = false;
+ Rect boundingRect = new Rect();
+ // We construct a rect which represents the entire group of views passed in
+ currentState.getBoundingRectForViews(views, boundingRect);
+
+ // Mark the occupied state as false for the group of views we want to move.
+ for (View v: views) {
+ CellAndSpan c = currentState.map.get(v);
+ mTmpOccupied.markCells(c, false);
+ }
+
+ GridOccupancy blockOccupied = new GridOccupancy(boundingRect.width(), boundingRect.height());
+ int top = boundingRect.top;
+ int left = boundingRect.left;
+ // We mark more precisely which parts of the bounding rect are truly occupied, allowing
+ // for interlocking.
+ for (View v: views) {
+ CellAndSpan c = currentState.map.get(v);
+ blockOccupied.markCells(c.cellX - left, c.cellY - top, c.spanX, c.spanY, true);
+ }
+
+ mTmpOccupied.markCells(rectOccupiedByPotentialDrop, true);
+
+ findNearestArea(boundingRect.left, boundingRect.top, boundingRect.width(),
+ boundingRect.height(), direction,
+ mTmpOccupied.cells, blockOccupied.cells, mTempLocation);
+
+ // If we successfully found a location by pushing the block of views, we commit it
+ if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) {
+ int deltaX = mTempLocation[0] - boundingRect.left;
+ int deltaY = mTempLocation[1] - boundingRect.top;
+ for (View v: views) {
+ CellAndSpan c = currentState.map.get(v);
+ c.cellX += deltaX;
+ c.cellY += deltaY;
+ }
+ success = true;
+ }
+
+ // In either case, we set the occupied array as marked for the location of the views
+ for (View v: views) {
+ CellAndSpan c = currentState.map.get(v);
+ mTmpOccupied.markCells(c, true);
+ }
+ return success;
+ }
+
+ private boolean rearrangementExists(int cellX, int cellY, int spanX, int spanY, int[] direction,
+ View ignoreView, ItemConfiguration solution) {
+ // Return early if get invalid cell positions
+ if (cellX < 0 || cellY < 0) return false;
+
+ mIntersectingViews.clear();
+ mOccupiedRect.set(cellX, cellY, cellX + spanX, cellY + spanY);
+
+ // Mark the desired location of the view currently being dragged.
+ if (ignoreView != null) {
+ CellAndSpan c = solution.map.get(ignoreView);
+ if (c != null) {
+ c.cellX = cellX;
+ c.cellY = cellY;
+ }
+ }
+ Rect r0 = new Rect(cellX, cellY, cellX + spanX, cellY + spanY);
+ Rect r1 = new Rect();
+ for (View child: solution.map.keySet()) {
+ if (child == ignoreView) continue;
+ CellAndSpan c = solution.map.get(child);
+ CellLayoutLayoutParams lp = (CellLayoutLayoutParams) child.getLayoutParams();
+ r1.set(c.cellX, c.cellY, c.cellX + c.spanX, c.cellY + c.spanY);
+ if (Rect.intersects(r0, r1)) {
+ if (!lp.canReorder) {
+ return false;
+ }
+ mIntersectingViews.add(child);
+ }
+ }
+
+ solution.intersectingViews = new ArrayList<>(mIntersectingViews);
+
+ // First we try to find a solution which respects the push mechanic. That is,
+ // we try to find a solution such that no displaced item travels through another item
+ // without also displacing that item.
+ if (attemptPushInDirection(mIntersectingViews, mOccupiedRect, direction, ignoreView,
+ solution)) {
+ return true;
+ }
+
+ // Next we try moving the views as a block, but without requiring the push mechanic.
+ if (addViewsToTempLocation(mIntersectingViews, mOccupiedRect, direction, ignoreView,
+ solution)) {
+ return true;
+ }
+
+ // Ok, they couldn't move as a block, let's move them individually
+ for (View v : mIntersectingViews) {
+ if (!addViewToTempLocation(v, mOccupiedRect, direction, solution)) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ private ItemConfiguration findReorderSolution(int pixelX, int pixelY, int minSpanX, int minSpanY,
+ int spanX, int spanY, int[] direction, View dragView, boolean decX,
+ ItemConfiguration solution) {
+ // Copy the current state into the solution. This solution will be manipulated as necessary.
+ copyCurrentStateToSolution(solution, false);
+ // Copy the current occupied array into the temporary occupied array. This array will be
+ // manipulated as necessary to find a solution.
+ mOccupied.copyTo(mTmpOccupied);
+
+ // We find the nearest cell into which we would place the dragged item, assuming there's
+ // nothing in its way.
+ int result[] = new int[2];
+ result = findNearestArea(pixelX, pixelY, spanX, spanY, result);
+
+ boolean success;
+ // First we try the exact nearest position of the item being dragged,
+ // we will then want to try to move this around to other neighbouring positions
+ success = rearrangementExists(result[0], result[1], spanX, spanY, direction, dragView,
+ solution);
+
+ if (!success) {
+ // We try shrinking the widget down to size in an alternating pattern, shrink 1 in
+ // x, then 1 in y etc.
+ if (spanX > minSpanX && (minSpanY == spanY || decX)) {
+ return findReorderSolution(pixelX, pixelY, minSpanX, minSpanY, spanX - 1, spanY,
+ direction, dragView, false, solution);
+ } else if (spanY > minSpanY) {
+ return findReorderSolution(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY - 1,
+ direction, dragView, true, solution);
+ }
+ solution.isSolution = false;
+ } else {
+ solution.isSolution = true;
+ solution.cellX = result[0];
+ solution.cellY = result[1];
+ solution.spanX = spanX;
+ solution.spanY = spanY;
+ }
+ return solution;
+ }
+
+ private void copyCurrentStateToSolution(ItemConfiguration solution, boolean temp) {
+ int childCount = mShortcutsAndWidgets.getChildCount();
+ for (int i = 0; i < childCount; i++) {
+ View child = mShortcutsAndWidgets.getChildAt(i);
+ CellLayoutLayoutParams lp = (CellLayoutLayoutParams) child.getLayoutParams();
+ CellAndSpan c;
+ if (temp) {
+ c = new CellAndSpan(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan);
+ } else {
+ c = new CellAndSpan(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan);
+ }
+ solution.add(child, c);
+ }
}
/**
@@ -2573,6 +2535,43 @@
return null;
}
+ int[] performReorder(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY,
+ View dragView, int[] result, int[] resultSpan, int mode) {
+ if (resultSpan == null) {
+ resultSpan = new int[]{-1, -1};
+ }
+ if (result == null) {
+ result = new int[]{-1, -1};
+ }
+ ItemConfiguration finalSolution;
+ // When we are checking drop validity or actually dropping, we don't recompute the
+ // direction vector, since we want the solution to match the preview, and it's possible
+ // that the exact position of the item has changed to result in a new reordering outcome.
+ if ((mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL || mode == MODE_ACCEPT_DROP)
+ && mPreviousSolution != null) {
+ finalSolution = mPreviousSolution;
+ // We reset this vector after drop
+ if (mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL) {
+ mPreviousSolution = null;
+ }
+ } else {
+ finalSolution = calculateReorder(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY,
+ dragView);
+ mPreviousSolution = finalSolution;
+ }
+
+ if (finalSolution == null || !finalSolution.isSolution) {
+ result[0] = result[1] = resultSpan[0] = resultSpan[1] = -1;
+ } else {
+ result[0] = finalSolution.cellX;
+ result[1] = finalSolution.cellY;
+ resultSpan[0] = finalSolution.spanX;
+ resultSpan[1] = finalSolution.spanY;
+ }
+ performReorder(finalSolution, dragView, mode);
+ return result;
+ }
+
/**
* Animates and submits in the DB the given ItemConfiguration depending of the mode.
*