blob: 11284ce0e7ae2598908bf92d3924880bd8fc827f [file] [log] [blame]
Slava Shklyaev871be942018-09-12 14:52:02 +01001/*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "neuralnetworks_hidl_hal_test"
18
19#include "VtsHalNeuralnetworks.h"
20
21#include "Callbacks.h"
22
23namespace android {
24namespace hardware {
25namespace neuralnetworks {
26namespace V1_2 {
27
Slava Shklyaev871be942018-09-12 14:52:02 +010028using V1_0::OperandLifeTime;
Slava Shklyaev871be942018-09-12 14:52:02 +010029using V1_1::ExecutionPreference;
30
31namespace vts {
32namespace functional {
33
Xusong Wangb5cb8f72018-10-31 08:43:12 -070034using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
35using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
Slava Shklyaev871be942018-09-12 14:52:02 +010036
37///////////////////////// UTILITY FUNCTIONS /////////////////////////
38
39static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
40 const Model& model) {
41 SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
42
43 Return<void> ret =
44 device->getSupportedOperations_1_2(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
45 EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
46 });
47 EXPECT_TRUE(ret.isOk());
48}
49
50static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
51 const Model& model, ExecutionPreference preference) {
52 SCOPED_TRACE(message + " [prepareModel_1_2]");
53
54 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
55 ASSERT_NE(nullptr, preparedModelCallback.get());
56 Return<ErrorStatus> prepareLaunchStatus =
57 device->prepareModel_1_2(model, preference, preparedModelCallback);
58 ASSERT_TRUE(prepareLaunchStatus.isOk());
59 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
60
61 preparedModelCallback->wait();
62 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
63 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
Xusong Wangb5cb8f72018-10-31 08:43:12 -070064 sp<IPreparedModel> preparedModel = getPreparedModel_1_2(preparedModelCallback);
Slava Shklyaev871be942018-09-12 14:52:02 +010065 ASSERT_EQ(nullptr, preparedModel.get());
66}
67
68static bool validExecutionPreference(ExecutionPreference preference) {
69 return preference == ExecutionPreference::LOW_POWER ||
70 preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
71 preference == ExecutionPreference::SUSTAINED_SPEED;
72}
73
74// Primary validation function. This function will take a valid model, apply a
75// mutation to it to invalidate the model, then pass it to interface calls that
76// use the model. Note that the model here is passed by value, and any mutation
77// to the model does not leave this function.
78static void validate(const sp<IDevice>& device, const std::string& message, Model model,
79 const std::function<void(Model*)>& mutation,
80 ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
81 mutation(&model);
82 if (validExecutionPreference(preference)) {
83 validateGetSupportedOperations(device, message, model);
84 }
85 validatePrepareModel(device, message, model, preference);
86}
87
88// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
89// so this is efficiently accomplished by moving the element to the end and
90// resizing the hidl_vec to one less.
91template <typename Type>
92static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
93 if (vec) {
94 std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
95 vec->resize(vec->size() - 1);
96 }
97}
98
99template <typename Type>
100static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
101 // assume vec is valid
102 const uint32_t index = vec->size();
103 vec->resize(index + 1);
104 (*vec)[index] = value;
105 return index;
106}
107
108static uint32_t addOperand(Model* model) {
109 return hidl_vec_push_back(&model->operands,
110 {
111 .type = OperandType::INT32,
112 .dimensions = {},
113 .numberOfConsumers = 0,
114 .scale = 0.0f,
115 .zeroPoint = 0,
116 .lifetime = OperandLifeTime::MODEL_INPUT,
117 .location = {.poolIndex = 0, .offset = 0, .length = 0},
118 });
119}
120
121static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
122 uint32_t index = addOperand(model);
123 model->operands[index].numberOfConsumers = 1;
124 model->operands[index].lifetime = lifetime;
125 return index;
126}
127
128///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
129
Michael K. Sandersc785d462018-10-30 15:16:54 +0000130static const uint32_t invalidOperandTypes[] = {
131 static_cast<uint32_t>(OperandTypeRange::OPERAND_FUNDAMENTAL_MIN) - 1,
132 static_cast<uint32_t>(OperandTypeRange::OPERAND_FUNDAMENTAL_MAX) + 1,
133 static_cast<uint32_t>(OperandTypeRange::OPERAND_OEM_MIN) - 1,
134 static_cast<uint32_t>(OperandTypeRange::OPERAND_OEM_MAX) + 1,
Slava Shklyaev871be942018-09-12 14:52:02 +0100135};
136
137static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
138 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Michael K. Sandersc785d462018-10-30 15:16:54 +0000139 for (uint32_t invalidOperandType : invalidOperandTypes) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100140 const std::string message = "mutateOperandTypeTest: operand " +
141 std::to_string(operand) + " set to value " +
142 std::to_string(invalidOperandType);
143 validate(device, message, model, [operand, invalidOperandType](Model* model) {
144 model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
145 });
146 }
147 }
148}
149
150///////////////////////// VALIDATE OPERAND RANK /////////////////////////
151
152static uint32_t getInvalidRank(OperandType type) {
153 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800154 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100155 case OperandType::FLOAT32:
156 case OperandType::INT32:
157 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100158 case OperandType::BOOL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100159 return 1;
Michael K. Sanders19d63452018-10-12 09:10:15 +0100160 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100161 case OperandType::TENSOR_FLOAT32:
162 case OperandType::TENSOR_INT32:
163 case OperandType::TENSOR_QUANT8_ASYMM:
Xusong Wangd49f6652019-01-16 18:32:24 -0800164 case OperandType::TENSOR_QUANT16_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000165 case OperandType::TENSOR_QUANT16_SYMM:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000166 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100167 return 0;
168 default:
169 return 0;
170 }
171}
172
173static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
174 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
175 const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
Xusong Wanga3165812018-11-19 18:26:08 -0800176 if (invalidRank == 0) {
177 continue;
178 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100179 const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
180 " has rank of " + std::to_string(invalidRank);
181 validate(device, message, model, [operand, invalidRank](Model* model) {
182 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
183 });
184 }
185}
186
187///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
188
189static float getInvalidScale(OperandType type) {
190 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800191 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100192 case OperandType::FLOAT32:
193 case OperandType::INT32:
194 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100195 case OperandType::BOOL:
Michael K. Sanders19d63452018-10-12 09:10:15 +0100196 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100197 case OperandType::TENSOR_FLOAT32:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000198 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100199 return 1.0f;
200 case OperandType::TENSOR_INT32:
201 return -1.0f;
202 case OperandType::TENSOR_QUANT8_ASYMM:
Xusong Wangd49f6652019-01-16 18:32:24 -0800203 case OperandType::TENSOR_QUANT16_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000204 case OperandType::TENSOR_QUANT16_SYMM:
Slava Shklyaev871be942018-09-12 14:52:02 +0100205 return 0.0f;
206 default:
207 return 0.0f;
208 }
209}
210
211static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
212 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
213 const float invalidScale = getInvalidScale(model.operands[operand].type);
214 const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
215 " has scale of " + std::to_string(invalidScale);
216 validate(device, message, model, [operand, invalidScale](Model* model) {
217 model->operands[operand].scale = invalidScale;
218 });
219 }
220}
221
222///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
223
224static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
225 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800226 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100227 case OperandType::FLOAT32:
228 case OperandType::INT32:
229 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100230 case OperandType::BOOL:
Michael K. Sanders19d63452018-10-12 09:10:15 +0100231 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100232 case OperandType::TENSOR_FLOAT32:
233 case OperandType::TENSOR_INT32:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000234 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100235 return {1};
236 case OperandType::TENSOR_QUANT8_ASYMM:
237 return {-1, 256};
Xusong Wangd49f6652019-01-16 18:32:24 -0800238 case OperandType::TENSOR_QUANT16_ASYMM:
239 return {-1, 65536};
Lev Proleev48c88202018-11-13 15:42:36 +0000240 case OperandType::TENSOR_QUANT16_SYMM:
241 return {-32769, -1, 1, 32768};
Slava Shklyaev871be942018-09-12 14:52:02 +0100242 default:
243 return {};
244 }
245}
246
247static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
248 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
249 const std::vector<int32_t> invalidZeroPoints =
250 getInvalidZeroPoints(model.operands[operand].type);
251 for (int32_t invalidZeroPoint : invalidZeroPoints) {
252 const std::string message = "mutateOperandZeroPointTest: operand " +
253 std::to_string(operand) + " has zero point of " +
254 std::to_string(invalidZeroPoint);
255 validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
256 model->operands[operand].zeroPoint = invalidZeroPoint;
257 });
258 }
259 }
260}
261
262///////////////////////// VALIDATE EXTRA ??? /////////////////////////
263
264// TODO: Operand::lifetime
265// TODO: Operand::location
266
267///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
268
269static void mutateOperand(Operand* operand, OperandType type) {
270 Operand newOperand = *operand;
271 newOperand.type = type;
272 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800273 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100274 case OperandType::FLOAT32:
275 case OperandType::INT32:
276 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100277 case OperandType::BOOL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100278 newOperand.dimensions = hidl_vec<uint32_t>();
279 newOperand.scale = 0.0f;
280 newOperand.zeroPoint = 0;
281 break;
Michael K. Sanders19d63452018-10-12 09:10:15 +0100282 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100283 case OperandType::TENSOR_FLOAT32:
284 newOperand.dimensions =
285 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
286 newOperand.scale = 0.0f;
287 newOperand.zeroPoint = 0;
288 break;
289 case OperandType::TENSOR_INT32:
290 newOperand.dimensions =
291 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
292 newOperand.zeroPoint = 0;
293 break;
294 case OperandType::TENSOR_QUANT8_ASYMM:
Xusong Wangd49f6652019-01-16 18:32:24 -0800295 case OperandType::TENSOR_QUANT16_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000296 case OperandType::TENSOR_QUANT16_SYMM:
Slava Shklyaev871be942018-09-12 14:52:02 +0100297 newOperand.dimensions =
298 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
299 newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
300 break;
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000301 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
302 newOperand.dimensions =
303 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
304 newOperand.scale = 0.0f;
305 newOperand.zeroPoint = 0;
306
307 SymmPerChannelQuantParams channelQuant;
308 channelQuant.channelDim = 0;
309 channelQuant.scales = hidl_vec<float>(
310 operand->dimensions.size() > 0 ? static_cast<size_t>(operand->dimensions[0]) : 0);
311 for (size_t i = 0; i < channelQuant.scales.size(); ++i) {
312 channelQuant.scales[i] = 1.0f;
313 }
314 newOperand.extraParams.channelQuant(std::move(channelQuant));
315 } break;
Slava Shklyaev871be942018-09-12 14:52:02 +0100316 case OperandType::OEM:
317 case OperandType::TENSOR_OEM_BYTE:
318 default:
319 break;
320 }
321 *operand = newOperand;
322}
323
Xusong Wang5b747ae2018-10-05 11:49:13 -0700324static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, const Model& model) {
325 // Do not test OEM types
326 if (type == model.operands[operand].type || type == OperandType::OEM ||
327 type == OperandType::TENSOR_OEM_BYTE) {
328 return true;
329 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100330 for (const Operation& operation : model.operations) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700331 // Skip mutateOperationOperandTypeTest for the following operations.
332 // - LSH_PROJECTION's second argument is allowed to have any type.
Michael K. Sandersbbdab2f2018-11-28 10:35:08 +0000333 // - ARGMIN and ARGMAX's first argument can be any of
334 // TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
335 // - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
Michael K. Sanders5b2615b2018-12-06 12:34:07 +0000336 // - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
Przemyslaw Szczepaniakf54f1262018-11-26 14:10:06 +0000337 // - CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
Przemyslaw Szczepaniak47b91412018-12-11 13:42:27 +0000338 // - DEPTHWISE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
Lev Proleevb0762cc2019-01-15 17:53:46 +0000339 // - GROUPED_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
Xusong Wang5b747ae2018-10-05 11:49:13 -0700340 switch (operation.type) {
341 case OperationType::LSH_PROJECTION: {
342 if (operand == operation.inputs[1]) {
343 return true;
344 }
345 } break;
346 case OperationType::CAST:
347 case OperationType::ARGMAX:
348 case OperationType::ARGMIN: {
Michael K. Sandersbbdab2f2018-11-28 10:35:08 +0000349 if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32 ||
350 type == OperandType::TENSOR_INT32 || type == OperandType::TENSOR_QUANT8_ASYMM) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700351 return true;
352 }
353 } break;
Michael K. Sanders5b2615b2018-12-06 12:34:07 +0000354 case OperationType::RANDOM_MULTINOMIAL: {
355 if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32) {
356 return true;
357 }
358 } break;
Lev Proleevb0762cc2019-01-15 17:53:46 +0000359 case OperationType::GROUPED_CONV_2D:
Przemyslaw Szczepaniak47b91412018-12-11 13:42:27 +0000360 case OperationType::DEPTHWISE_CONV_2D:
Przemyslaw Szczepaniakf54f1262018-11-26 14:10:06 +0000361 case OperationType::CONV_2D: {
362 if (operand == 1 && (type == OperandType::TENSOR_QUANT8_ASYMM ||
363 type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
364 return true;
365 }
366 } break;
Xusong Wang5b747ae2018-10-05 11:49:13 -0700367 default:
368 break;
Slava Shklyaev871be942018-09-12 14:52:02 +0100369 }
370 }
371 return false;
372}
373
374static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
375 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100376 for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700377 if (mutateOperationOperandTypeSkip(operand, invalidOperandType, model)) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100378 continue;
379 }
380 const std::string message = "mutateOperationOperandTypeTest: operand " +
381 std::to_string(operand) + " set to type " +
382 toString(invalidOperandType);
383 validate(device, message, model, [operand, invalidOperandType](Model* model) {
384 mutateOperand(&model->operands[operand], invalidOperandType);
385 });
386 }
387 }
388}
389
390///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
391
Michael K. Sandersc785d462018-10-30 15:16:54 +0000392static const uint32_t invalidOperationTypes[] = {
393 static_cast<uint32_t>(OperationTypeRange::OPERATION_FUNDAMENTAL_MIN) - 1,
394 static_cast<uint32_t>(OperationTypeRange::OPERATION_FUNDAMENTAL_MAX) + 1,
395 static_cast<uint32_t>(OperationTypeRange::OPERATION_OEM_MIN) - 1,
396 static_cast<uint32_t>(OperationTypeRange::OPERATION_OEM_MAX) + 1,
Slava Shklyaev871be942018-09-12 14:52:02 +0100397};
398
399static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
400 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
Michael K. Sandersc785d462018-10-30 15:16:54 +0000401 for (uint32_t invalidOperationType : invalidOperationTypes) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100402 const std::string message = "mutateOperationTypeTest: operation " +
403 std::to_string(operation) + " set to value " +
404 std::to_string(invalidOperationType);
405 validate(device, message, model, [operation, invalidOperationType](Model* model) {
406 model->operations[operation].type =
407 static_cast<OperationType>(invalidOperationType);
408 });
409 }
410 }
411}
412
413///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
414
415static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
416 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
417 const uint32_t invalidOperand = model.operands.size();
418 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
419 const std::string message = "mutateOperationInputOperandIndexTest: operation " +
420 std::to_string(operation) + " input " +
421 std::to_string(input);
422 validate(device, message, model, [operation, input, invalidOperand](Model* model) {
423 model->operations[operation].inputs[input] = invalidOperand;
424 });
425 }
426 }
427}
428
429///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
430
431static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
432 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
433 const uint32_t invalidOperand = model.operands.size();
434 for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
435 const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
436 std::to_string(operation) + " output " +
437 std::to_string(output);
438 validate(device, message, model, [operation, output, invalidOperand](Model* model) {
439 model->operations[operation].outputs[output] = invalidOperand;
440 });
441 }
442 }
443}
444
445///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
446
447static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
448 if (vec) {
449 // remove elements matching "value"
450 auto last = std::remove(vec->begin(), vec->end(), value);
451 vec->resize(std::distance(vec->begin(), last));
452
453 // decrement elements exceeding "value"
454 std::transform(vec->begin(), vec->end(), vec->begin(),
455 [value](uint32_t v) { return v > value ? v-- : v; });
456 }
457}
458
459static void removeOperand(Model* model, uint32_t index) {
460 hidl_vec_removeAt(&model->operands, index);
461 for (Operation& operation : model->operations) {
462 removeValueAndDecrementGreaterValues(&operation.inputs, index);
463 removeValueAndDecrementGreaterValues(&operation.outputs, index);
464 }
465 removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
466 removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
467}
468
Xusong Wang5b747ae2018-10-05 11:49:13 -0700469static bool removeOperandSkip(size_t operand, const Model& model) {
470 for (const Operation& operation : model.operations) {
471 // Skip removeOperandTest for the following operations.
472 // - SPLIT's outputs are not checked during prepareModel.
473 if (operation.type == OperationType::SPLIT) {
474 for (const size_t outOprand : operation.outputs) {
475 if (operand == outOprand) {
476 return true;
477 }
478 }
479 }
480 }
481 return false;
482}
483
Slava Shklyaev871be942018-09-12 14:52:02 +0100484static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
485 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700486 if (removeOperandSkip(operand, model)) {
487 continue;
488 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100489 const std::string message = "removeOperandTest: operand " + std::to_string(operand);
490 validate(device, message, model,
491 [operand](Model* model) { removeOperand(model, operand); });
492 }
493}
494
495///////////////////////// REMOVE OPERATION /////////////////////////
496
497static void removeOperation(Model* model, uint32_t index) {
498 for (uint32_t operand : model->operations[index].inputs) {
499 model->operands[operand].numberOfConsumers--;
500 }
501 hidl_vec_removeAt(&model->operations, index);
502}
503
504static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
505 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
506 const std::string message = "removeOperationTest: operation " + std::to_string(operation);
507 validate(device, message, model,
508 [operation](Model* model) { removeOperation(model, operation); });
509 }
510}
511
512///////////////////////// REMOVE OPERATION INPUT /////////////////////////
513
Xusong Wang5b747ae2018-10-05 11:49:13 -0700514static bool removeOperationInputSkip(const Operation& op, size_t input) {
515 // Skip removeOperationInputTest for the following operations.
516 // - CONCATENATION has at least 2 inputs, with the last element being INT32.
517 // - CONV_2D, DEPTHWISE_CONV_2D, MAX_POOL_2D, AVERAGE_POOL_2D, L2_POOL_2D, RESIZE_BILINEAR,
518 // SPACE_TO_DEPTH, SPACE_TO_DEPTH, SPACE_TO_BATCH_ND, BATCH_TO_SPACE_ND can have an optional
519 // layout parameter.
520 // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional axis
521 // parameter.
522 switch (op.type) {
523 case OperationType::CONCATENATION: {
524 if (op.inputs.size() > 2 && input != op.inputs.size() - 1) {
525 return true;
526 }
527 } break;
528 case OperationType::DEPTHWISE_CONV_2D: {
529 if ((op.inputs.size() == 12 && input == 11) || (op.inputs.size() == 9 && input == 8)) {
530 return true;
531 }
532 } break;
533 case OperationType::CONV_2D:
534 case OperationType::AVERAGE_POOL_2D:
535 case OperationType::MAX_POOL_2D:
536 case OperationType::L2_POOL_2D: {
537 if ((op.inputs.size() == 11 && input == 10) || (op.inputs.size() == 8 && input == 7)) {
538 return true;
539 }
540 } break;
541 case OperationType::RESIZE_BILINEAR: {
542 if (op.inputs.size() == 4 && input == 3) {
543 return true;
544 }
545 } break;
546 case OperationType::SPACE_TO_DEPTH:
547 case OperationType::DEPTH_TO_SPACE:
548 case OperationType::BATCH_TO_SPACE_ND: {
549 if (op.inputs.size() == 3 && input == 2) {
550 return true;
551 }
552 } break;
553 case OperationType::SPACE_TO_BATCH_ND: {
554 if (op.inputs.size() == 4 && input == 3) {
555 return true;
556 }
557 } break;
558 case OperationType::L2_NORMALIZATION: {
559 if (op.inputs.size() == 2 && input == 1) {
560 return true;
561 }
562 } break;
563 case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
564 if (op.inputs.size() == 6 && input == 5) {
565 return true;
566 }
567 } break;
568 case OperationType::SOFTMAX: {
569 if (op.inputs.size() == 3 && input == 2) {
570 return true;
571 }
572 } break;
573 default:
574 break;
575 }
576 return false;
577}
578
Slava Shklyaev871be942018-09-12 14:52:02 +0100579static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
580 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
581 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
582 const Operation& op = model.operations[operation];
Xusong Wang5b747ae2018-10-05 11:49:13 -0700583 if (removeOperationInputSkip(op, input)) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100584 continue;
585 }
586 const std::string message = "removeOperationInputTest: operation " +
587 std::to_string(operation) + ", input " +
588 std::to_string(input);
589 validate(device, message, model, [operation, input](Model* model) {
590 uint32_t operand = model->operations[operation].inputs[input];
591 model->operands[operand].numberOfConsumers--;
592 hidl_vec_removeAt(&model->operations[operation].inputs, input);
593 });
594 }
595 }
596}
597
598///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
599
600static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
601 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
602 for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
603 const std::string message = "removeOperationOutputTest: operation " +
604 std::to_string(operation) + ", output " +
605 std::to_string(output);
606 validate(device, message, model, [operation, output](Model* model) {
607 hidl_vec_removeAt(&model->operations[operation].outputs, output);
608 });
609 }
610 }
611}
612
613///////////////////////// MODEL VALIDATION /////////////////////////
614
615// TODO: remove model input
616// TODO: remove model output
617// TODO: add unused operation
618
619///////////////////////// ADD OPERATION INPUT /////////////////////////
620
Xusong Wang5b747ae2018-10-05 11:49:13 -0700621static bool addOperationInputSkip(const Operation& op) {
Xusong Wang64337282018-10-22 13:49:00 -0700622 // Skip addOperationInputTest for the following operations.
Xusong Wang5b747ae2018-10-05 11:49:13 -0700623 // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional INT32 axis
624 // parameter.
625 if ((op.type == OperationType::L2_NORMALIZATION && op.inputs.size() == 1) ||
626 (op.type == OperationType::LOCAL_RESPONSE_NORMALIZATION && op.inputs.size() == 5) ||
627 (op.type == OperationType::SOFTMAX && op.inputs.size() == 2)) {
Xusong Wang64337282018-10-22 13:49:00 -0700628 return true;
629 }
630 return false;
631}
632
Slava Shklyaev871be942018-09-12 14:52:02 +0100633static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
634 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
Xusong Wang64337282018-10-22 13:49:00 -0700635 if (addOperationInputSkip(model.operations[operation])) {
636 continue;
637 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100638 const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
639 validate(device, message, model, [operation](Model* model) {
640 uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
641 hidl_vec_push_back(&model->operations[operation].inputs, index);
642 hidl_vec_push_back(&model->inputIndexes, index);
643 });
644 }
645}
646
647///////////////////////// ADD OPERATION OUTPUT /////////////////////////
648
649static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
650 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
651 const std::string message =
652 "addOperationOutputTest: operation " + std::to_string(operation);
653 validate(device, message, model, [operation](Model* model) {
654 uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
655 hidl_vec_push_back(&model->operations[operation].outputs, index);
656 hidl_vec_push_back(&model->outputIndexes, index);
657 });
658 }
659}
660
661///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
662
663static const int32_t invalidExecutionPreferences[] = {
664 static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1, // lower bound
665 static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1, // upper bound
666};
667
668static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
669 for (int32_t preference : invalidExecutionPreferences) {
670 const std::string message =
671 "mutateExecutionPreferenceTest: preference " + std::to_string(preference);
672 validate(device, message, model, [](Model*) {},
673 static_cast<ExecutionPreference>(preference));
674 }
675}
676
677////////////////////////// ENTRY POINT //////////////////////////////
678
679void ValidationTest::validateModel(const Model& model) {
680 mutateOperandTypeTest(device, model);
681 mutateOperandRankTest(device, model);
682 mutateOperandScaleTest(device, model);
683 mutateOperandZeroPointTest(device, model);
684 mutateOperationOperandTypeTest(device, model);
685 mutateOperationTypeTest(device, model);
686 mutateOperationInputOperandIndexTest(device, model);
687 mutateOperationOutputOperandIndexTest(device, model);
688 removeOperandTest(device, model);
689 removeOperationTest(device, model);
690 removeOperationInputTest(device, model);
691 removeOperationOutputTest(device, model);
692 addOperationInputTest(device, model);
693 addOperationOutputTest(device, model);
694 mutateExecutionPreferenceTest(device, model);
695}
696
697} // namespace functional
698} // namespace vts
699} // namespace V1_2
700} // namespace neuralnetworks
701} // namespace hardware
702} // namespace android