David Zeuthen | c75ac31 | 2019-10-28 13:16:45 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2019, The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "IdentityCredentialSupport" |
| 18 | |
| 19 | #include <android/hardware/identity/support/IdentityCredentialSupport.h> |
| 20 | |
| 21 | #define _POSIX_C_SOURCE 199309L |
| 22 | |
| 23 | #include <ctype.h> |
| 24 | #include <stdarg.h> |
| 25 | #include <stdio.h> |
| 26 | #include <time.h> |
| 27 | #include <iomanip> |
| 28 | |
| 29 | #include <openssl/aes.h> |
| 30 | #include <openssl/bn.h> |
| 31 | #include <openssl/crypto.h> |
| 32 | #include <openssl/ec.h> |
| 33 | #include <openssl/err.h> |
| 34 | #include <openssl/evp.h> |
| 35 | #include <openssl/hkdf.h> |
| 36 | #include <openssl/hmac.h> |
| 37 | #include <openssl/objects.h> |
| 38 | #include <openssl/pem.h> |
| 39 | #include <openssl/pkcs12.h> |
| 40 | #include <openssl/rand.h> |
| 41 | #include <openssl/x509.h> |
| 42 | #include <openssl/x509_vfy.h> |
| 43 | |
| 44 | #include <android-base/logging.h> |
| 45 | #include <android-base/stringprintf.h> |
| 46 | |
| 47 | #include <cppbor.h> |
| 48 | #include <cppbor_parse.h> |
| 49 | |
Selene Huang | 459cb80 | 2020-01-08 22:59:02 -0800 | [diff] [blame] | 50 | #include <android/hardware/keymaster/4.0/types.h> |
| 51 | #include <keymaster/authorization_set.h> |
| 52 | #include <keymaster/contexts/pure_soft_keymaster_context.h> |
| 53 | #include <keymaster/contexts/soft_attestation_cert.h> |
| 54 | #include <keymaster/keymaster_tags.h> |
| 55 | #include <keymaster/km_openssl/attestation_utils.h> |
| 56 | |
David Zeuthen | c75ac31 | 2019-10-28 13:16:45 -0400 | [diff] [blame] | 57 | namespace android { |
| 58 | namespace hardware { |
| 59 | namespace identity { |
| 60 | namespace support { |
| 61 | |
| 62 | using ::std::pair; |
| 63 | using ::std::unique_ptr; |
| 64 | |
| 65 | // --------------------------------------------------------------------------- |
| 66 | // Miscellaneous utilities. |
| 67 | // --------------------------------------------------------------------------- |
| 68 | |
| 69 | void hexdump(const string& name, const vector<uint8_t>& data) { |
| 70 | fprintf(stderr, "%s: dumping %zd bytes\n", name.c_str(), data.size()); |
| 71 | size_t n, m, o; |
| 72 | for (n = 0; n < data.size(); n += 16) { |
| 73 | fprintf(stderr, "%04zx ", n); |
| 74 | for (m = 0; m < 16 && n + m < data.size(); m++) { |
| 75 | fprintf(stderr, "%02x ", data[n + m]); |
| 76 | } |
| 77 | for (o = m; o < 16; o++) { |
| 78 | fprintf(stderr, " "); |
| 79 | } |
| 80 | fprintf(stderr, " "); |
| 81 | for (m = 0; m < 16 && n + m < data.size(); m++) { |
| 82 | int c = data[n + m]; |
| 83 | fprintf(stderr, "%c", isprint(c) ? c : '.'); |
| 84 | } |
| 85 | fprintf(stderr, "\n"); |
| 86 | } |
| 87 | fprintf(stderr, "\n"); |
| 88 | } |
| 89 | |
| 90 | string encodeHex(const uint8_t* data, size_t dataLen) { |
| 91 | static const char hexDigits[16] = {'0', '1', '2', '3', '4', '5', '6', '7', |
| 92 | '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}; |
| 93 | |
| 94 | string ret; |
| 95 | ret.resize(dataLen * 2); |
| 96 | for (size_t n = 0; n < dataLen; n++) { |
| 97 | uint8_t byte = data[n]; |
| 98 | ret[n * 2 + 0] = hexDigits[byte >> 4]; |
| 99 | ret[n * 2 + 1] = hexDigits[byte & 0x0f]; |
| 100 | } |
| 101 | |
| 102 | return ret; |
| 103 | } |
| 104 | |
| 105 | string encodeHex(const string& str) { |
| 106 | return encodeHex(reinterpret_cast<const uint8_t*>(str.data()), str.size()); |
| 107 | } |
| 108 | |
| 109 | string encodeHex(const vector<uint8_t>& data) { |
| 110 | return encodeHex(data.data(), data.size()); |
| 111 | } |
| 112 | |
| 113 | // Returns -1 on error, otherwise an integer in the range 0 through 15, both inclusive. |
| 114 | int parseHexDigit(char hexDigit) { |
| 115 | if (hexDigit >= '0' && hexDigit <= '9') { |
| 116 | return int(hexDigit) - '0'; |
| 117 | } else if (hexDigit >= 'a' && hexDigit <= 'f') { |
| 118 | return int(hexDigit) - 'a' + 10; |
| 119 | } else if (hexDigit >= 'A' && hexDigit <= 'F') { |
| 120 | return int(hexDigit) - 'A' + 10; |
| 121 | } |
| 122 | return -1; |
| 123 | } |
| 124 | |
| 125 | optional<vector<uint8_t>> decodeHex(const string& hexEncoded) { |
| 126 | vector<uint8_t> out; |
| 127 | size_t hexSize = hexEncoded.size(); |
| 128 | if ((hexSize & 1) != 0) { |
| 129 | LOG(ERROR) << "Size of data cannot be odd"; |
| 130 | return {}; |
| 131 | } |
| 132 | |
| 133 | out.resize(hexSize / 2); |
| 134 | for (size_t n = 0; n < hexSize / 2; n++) { |
| 135 | int upperNibble = parseHexDigit(hexEncoded[n * 2]); |
| 136 | int lowerNibble = parseHexDigit(hexEncoded[n * 2 + 1]); |
| 137 | if (upperNibble == -1 || lowerNibble == -1) { |
| 138 | LOG(ERROR) << "Invalid hex digit at position " << n; |
| 139 | return {}; |
| 140 | } |
| 141 | out[n] = (upperNibble << 4) + lowerNibble; |
| 142 | } |
| 143 | |
| 144 | return out; |
| 145 | } |
| 146 | |
| 147 | // --------------------------------------------------------------------------- |
| 148 | // CBOR utilities. |
| 149 | // --------------------------------------------------------------------------- |
| 150 | |
| 151 | static bool cborAreAllElementsNonCompound(const cppbor::CompoundItem* compoundItem) { |
| 152 | if (compoundItem->type() == cppbor::ARRAY) { |
| 153 | const cppbor::Array* array = compoundItem->asArray(); |
| 154 | for (size_t n = 0; n < array->size(); n++) { |
| 155 | const cppbor::Item* entry = (*array)[n].get(); |
| 156 | switch (entry->type()) { |
| 157 | case cppbor::ARRAY: |
| 158 | case cppbor::MAP: |
| 159 | return false; |
| 160 | default: |
| 161 | break; |
| 162 | } |
| 163 | } |
| 164 | } else { |
| 165 | const cppbor::Map* map = compoundItem->asMap(); |
| 166 | for (size_t n = 0; n < map->size(); n++) { |
| 167 | auto [keyEntry, valueEntry] = (*map)[n]; |
| 168 | switch (keyEntry->type()) { |
| 169 | case cppbor::ARRAY: |
| 170 | case cppbor::MAP: |
| 171 | return false; |
| 172 | default: |
| 173 | break; |
| 174 | } |
| 175 | switch (valueEntry->type()) { |
| 176 | case cppbor::ARRAY: |
| 177 | case cppbor::MAP: |
| 178 | return false; |
| 179 | default: |
| 180 | break; |
| 181 | } |
| 182 | } |
| 183 | } |
| 184 | return true; |
| 185 | } |
| 186 | |
| 187 | static bool cborPrettyPrintInternal(const cppbor::Item* item, string& out, size_t indent, |
| 188 | size_t maxBStrSize, const vector<string>& mapKeysToNotPrint) { |
| 189 | char buf[80]; |
| 190 | |
| 191 | string indentString(indent, ' '); |
| 192 | |
| 193 | switch (item->type()) { |
| 194 | case cppbor::UINT: |
| 195 | snprintf(buf, sizeof(buf), "%" PRIu64, item->asUint()->unsignedValue()); |
| 196 | out.append(buf); |
| 197 | break; |
| 198 | |
| 199 | case cppbor::NINT: |
| 200 | snprintf(buf, sizeof(buf), "%" PRId64, item->asNint()->value()); |
| 201 | out.append(buf); |
| 202 | break; |
| 203 | |
| 204 | case cppbor::BSTR: { |
| 205 | const cppbor::Bstr* bstr = item->asBstr(); |
| 206 | const vector<uint8_t>& value = bstr->value(); |
| 207 | if (value.size() > maxBStrSize) { |
| 208 | unsigned char digest[SHA_DIGEST_LENGTH]; |
| 209 | SHA_CTX ctx; |
| 210 | SHA1_Init(&ctx); |
| 211 | SHA1_Update(&ctx, value.data(), value.size()); |
| 212 | SHA1_Final(digest, &ctx); |
| 213 | char buf2[SHA_DIGEST_LENGTH * 2 + 1]; |
| 214 | for (size_t n = 0; n < SHA_DIGEST_LENGTH; n++) { |
| 215 | snprintf(buf2 + n * 2, 3, "%02x", digest[n]); |
| 216 | } |
| 217 | snprintf(buf, sizeof(buf), "<bstr size=%zd sha1=%s>", value.size(), buf2); |
| 218 | out.append(buf); |
| 219 | } else { |
| 220 | out.append("{"); |
| 221 | for (size_t n = 0; n < value.size(); n++) { |
| 222 | if (n > 0) { |
| 223 | out.append(", "); |
| 224 | } |
| 225 | snprintf(buf, sizeof(buf), "0x%02x", value[n]); |
| 226 | out.append(buf); |
| 227 | } |
| 228 | out.append("}"); |
| 229 | } |
| 230 | } break; |
| 231 | |
| 232 | case cppbor::TSTR: |
| 233 | out.append("'"); |
| 234 | { |
| 235 | // TODO: escape "'" characters |
| 236 | out.append(item->asTstr()->value().c_str()); |
| 237 | } |
| 238 | out.append("'"); |
| 239 | break; |
| 240 | |
| 241 | case cppbor::ARRAY: { |
| 242 | const cppbor::Array* array = item->asArray(); |
| 243 | if (array->size() == 0) { |
| 244 | out.append("[]"); |
| 245 | } else if (cborAreAllElementsNonCompound(array)) { |
| 246 | out.append("["); |
| 247 | for (size_t n = 0; n < array->size(); n++) { |
| 248 | if (!cborPrettyPrintInternal((*array)[n].get(), out, indent + 2, maxBStrSize, |
| 249 | mapKeysToNotPrint)) { |
| 250 | return false; |
| 251 | } |
| 252 | out.append(", "); |
| 253 | } |
| 254 | out.append("]"); |
| 255 | } else { |
| 256 | out.append("[\n" + indentString); |
| 257 | for (size_t n = 0; n < array->size(); n++) { |
| 258 | out.append(" "); |
| 259 | if (!cborPrettyPrintInternal((*array)[n].get(), out, indent + 2, maxBStrSize, |
| 260 | mapKeysToNotPrint)) { |
| 261 | return false; |
| 262 | } |
| 263 | out.append(",\n" + indentString); |
| 264 | } |
| 265 | out.append("]"); |
| 266 | } |
| 267 | } break; |
| 268 | |
| 269 | case cppbor::MAP: { |
| 270 | const cppbor::Map* map = item->asMap(); |
| 271 | |
| 272 | if (map->size() == 0) { |
| 273 | out.append("{}"); |
| 274 | } else { |
| 275 | out.append("{\n" + indentString); |
| 276 | for (size_t n = 0; n < map->size(); n++) { |
| 277 | out.append(" "); |
| 278 | |
| 279 | auto [map_key, map_value] = (*map)[n]; |
| 280 | |
| 281 | if (!cborPrettyPrintInternal(map_key.get(), out, indent + 2, maxBStrSize, |
| 282 | mapKeysToNotPrint)) { |
| 283 | return false; |
| 284 | } |
| 285 | out.append(" : "); |
| 286 | if (map_key->type() == cppbor::TSTR && |
| 287 | std::find(mapKeysToNotPrint.begin(), mapKeysToNotPrint.end(), |
| 288 | map_key->asTstr()->value()) != mapKeysToNotPrint.end()) { |
| 289 | out.append("<not printed>"); |
| 290 | } else { |
| 291 | if (!cborPrettyPrintInternal(map_value.get(), out, indent + 2, maxBStrSize, |
| 292 | mapKeysToNotPrint)) { |
| 293 | return false; |
| 294 | } |
| 295 | } |
| 296 | out.append(",\n" + indentString); |
| 297 | } |
| 298 | out.append("}"); |
| 299 | } |
| 300 | } break; |
| 301 | |
| 302 | case cppbor::SEMANTIC: { |
| 303 | const cppbor::Semantic* semantic = item->asSemantic(); |
| 304 | snprintf(buf, sizeof(buf), "tag %" PRIu64 " ", semantic->value()); |
| 305 | out.append(buf); |
| 306 | cborPrettyPrintInternal(semantic->child().get(), out, indent, maxBStrSize, |
| 307 | mapKeysToNotPrint); |
| 308 | } break; |
| 309 | |
| 310 | case cppbor::SIMPLE: |
| 311 | const cppbor::Bool* asBool = item->asSimple()->asBool(); |
| 312 | const cppbor::Null* asNull = item->asSimple()->asNull(); |
| 313 | if (asBool != nullptr) { |
| 314 | out.append(asBool->value() ? "true" : "false"); |
| 315 | } else if (asNull != nullptr) { |
| 316 | out.append("null"); |
| 317 | } else { |
| 318 | LOG(ERROR) << "Only boolean/null is implemented for SIMPLE"; |
| 319 | return false; |
| 320 | } |
| 321 | break; |
| 322 | } |
| 323 | |
| 324 | return true; |
| 325 | } |
| 326 | |
| 327 | string cborPrettyPrint(const vector<uint8_t>& encodedCbor, size_t maxBStrSize, |
| 328 | const vector<string>& mapKeysToNotPrint) { |
| 329 | auto [item, _, message] = cppbor::parse(encodedCbor); |
| 330 | if (item == nullptr) { |
| 331 | LOG(ERROR) << "Data to pretty print is not valid CBOR: " << message; |
| 332 | return ""; |
| 333 | } |
| 334 | |
| 335 | string out; |
| 336 | cborPrettyPrintInternal(item.get(), out, 0, maxBStrSize, mapKeysToNotPrint); |
| 337 | return out; |
| 338 | } |
| 339 | |
| 340 | // --------------------------------------------------------------------------- |
| 341 | // Crypto functionality / abstraction. |
| 342 | // --------------------------------------------------------------------------- |
| 343 | |
| 344 | struct EVP_CIPHER_CTX_Deleter { |
| 345 | void operator()(EVP_CIPHER_CTX* ctx) const { |
| 346 | if (ctx != nullptr) { |
| 347 | EVP_CIPHER_CTX_free(ctx); |
| 348 | } |
| 349 | } |
| 350 | }; |
| 351 | |
| 352 | using EvpCipherCtxPtr = unique_ptr<EVP_CIPHER_CTX, EVP_CIPHER_CTX_Deleter>; |
| 353 | |
| 354 | // bool getRandom(size_t numBytes, vector<uint8_t>& output) { |
| 355 | optional<vector<uint8_t>> getRandom(size_t numBytes) { |
| 356 | vector<uint8_t> output; |
| 357 | output.resize(numBytes); |
| 358 | if (RAND_bytes(output.data(), numBytes) != 1) { |
| 359 | LOG(ERROR) << "RAND_bytes: failed getting " << numBytes << " random"; |
| 360 | return {}; |
| 361 | } |
| 362 | return output; |
| 363 | } |
| 364 | |
| 365 | optional<vector<uint8_t>> decryptAes128Gcm(const vector<uint8_t>& key, |
| 366 | const vector<uint8_t>& encryptedData, |
| 367 | const vector<uint8_t>& additionalAuthenticatedData) { |
| 368 | int cipherTextSize = int(encryptedData.size()) - kAesGcmIvSize - kAesGcmTagSize; |
| 369 | if (cipherTextSize < 0) { |
| 370 | LOG(ERROR) << "encryptedData too small"; |
| 371 | return {}; |
| 372 | } |
| 373 | unsigned char* nonce = (unsigned char*)encryptedData.data(); |
| 374 | unsigned char* cipherText = nonce + kAesGcmIvSize; |
| 375 | unsigned char* tag = cipherText + cipherTextSize; |
| 376 | |
| 377 | vector<uint8_t> plainText; |
| 378 | plainText.resize(cipherTextSize); |
| 379 | |
| 380 | auto ctx = EvpCipherCtxPtr(EVP_CIPHER_CTX_new()); |
| 381 | if (ctx.get() == nullptr) { |
| 382 | LOG(ERROR) << "EVP_CIPHER_CTX_new: failed"; |
| 383 | return {}; |
| 384 | } |
| 385 | |
| 386 | if (EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_gcm(), NULL, NULL, NULL) != 1) { |
| 387 | LOG(ERROR) << "EVP_DecryptInit_ex: failed"; |
| 388 | return {}; |
| 389 | } |
| 390 | |
| 391 | if (EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_GCM_SET_IVLEN, kAesGcmIvSize, NULL) != 1) { |
| 392 | LOG(ERROR) << "EVP_CIPHER_CTX_ctrl: failed setting nonce length"; |
| 393 | return {}; |
| 394 | } |
| 395 | |
| 396 | if (EVP_DecryptInit_ex(ctx.get(), NULL, NULL, (unsigned char*)key.data(), nonce) != 1) { |
| 397 | LOG(ERROR) << "EVP_DecryptInit_ex: failed"; |
| 398 | return {}; |
| 399 | } |
| 400 | |
| 401 | int numWritten; |
| 402 | if (additionalAuthenticatedData.size() > 0) { |
| 403 | if (EVP_DecryptUpdate(ctx.get(), NULL, &numWritten, |
| 404 | (unsigned char*)additionalAuthenticatedData.data(), |
| 405 | additionalAuthenticatedData.size()) != 1) { |
| 406 | LOG(ERROR) << "EVP_DecryptUpdate: failed for additionalAuthenticatedData"; |
| 407 | return {}; |
| 408 | } |
| 409 | if ((size_t)numWritten != additionalAuthenticatedData.size()) { |
| 410 | LOG(ERROR) << "EVP_DecryptUpdate: Unexpected outl=" << numWritten << " (expected " |
| 411 | << additionalAuthenticatedData.size() << ") for additionalAuthenticatedData"; |
| 412 | return {}; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | if (EVP_DecryptUpdate(ctx.get(), (unsigned char*)plainText.data(), &numWritten, cipherText, |
| 417 | cipherTextSize) != 1) { |
| 418 | LOG(ERROR) << "EVP_DecryptUpdate: failed"; |
| 419 | return {}; |
| 420 | } |
| 421 | if (numWritten != cipherTextSize) { |
| 422 | LOG(ERROR) << "EVP_DecryptUpdate: Unexpected outl=" << numWritten << " (expected " |
| 423 | << cipherTextSize << ")"; |
| 424 | return {}; |
| 425 | } |
| 426 | |
| 427 | if (!EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_GCM_SET_TAG, kAesGcmTagSize, tag)) { |
| 428 | LOG(ERROR) << "EVP_CIPHER_CTX_ctrl: failed setting expected tag"; |
| 429 | return {}; |
| 430 | } |
| 431 | |
| 432 | int ret = EVP_DecryptFinal_ex(ctx.get(), (unsigned char*)plainText.data() + numWritten, |
| 433 | &numWritten); |
| 434 | if (ret != 1) { |
| 435 | LOG(ERROR) << "EVP_DecryptFinal_ex: failed"; |
| 436 | return {}; |
| 437 | } |
| 438 | if (numWritten != 0) { |
| 439 | LOG(ERROR) << "EVP_DecryptFinal_ex: Unexpected non-zero outl=" << numWritten; |
| 440 | return {}; |
| 441 | } |
| 442 | |
| 443 | return plainText; |
| 444 | } |
| 445 | |
| 446 | optional<vector<uint8_t>> encryptAes128Gcm(const vector<uint8_t>& key, const vector<uint8_t>& nonce, |
| 447 | const vector<uint8_t>& data, |
| 448 | const vector<uint8_t>& additionalAuthenticatedData) { |
| 449 | if (key.size() != kAes128GcmKeySize) { |
| 450 | LOG(ERROR) << "key is not kAes128GcmKeySize bytes"; |
| 451 | return {}; |
| 452 | } |
| 453 | if (nonce.size() != kAesGcmIvSize) { |
| 454 | LOG(ERROR) << "nonce is not kAesGcmIvSize bytes"; |
| 455 | return {}; |
| 456 | } |
| 457 | |
| 458 | // The result is the nonce (kAesGcmIvSize bytes), the ciphertext, and |
| 459 | // finally the tag (kAesGcmTagSize bytes). |
| 460 | vector<uint8_t> encryptedData; |
| 461 | encryptedData.resize(data.size() + kAesGcmIvSize + kAesGcmTagSize); |
| 462 | unsigned char* noncePtr = (unsigned char*)encryptedData.data(); |
| 463 | unsigned char* cipherText = noncePtr + kAesGcmIvSize; |
| 464 | unsigned char* tag = cipherText + data.size(); |
| 465 | memcpy(noncePtr, nonce.data(), kAesGcmIvSize); |
| 466 | |
| 467 | auto ctx = EvpCipherCtxPtr(EVP_CIPHER_CTX_new()); |
| 468 | if (ctx.get() == nullptr) { |
| 469 | LOG(ERROR) << "EVP_CIPHER_CTX_new: failed"; |
| 470 | return {}; |
| 471 | } |
| 472 | |
| 473 | if (EVP_EncryptInit_ex(ctx.get(), EVP_aes_128_gcm(), NULL, NULL, NULL) != 1) { |
| 474 | LOG(ERROR) << "EVP_EncryptInit_ex: failed"; |
| 475 | return {}; |
| 476 | } |
| 477 | |
| 478 | if (EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_GCM_SET_IVLEN, kAesGcmIvSize, NULL) != 1) { |
| 479 | LOG(ERROR) << "EVP_CIPHER_CTX_ctrl: failed setting nonce length"; |
| 480 | return {}; |
| 481 | } |
| 482 | |
| 483 | if (EVP_EncryptInit_ex(ctx.get(), NULL, NULL, (unsigned char*)key.data(), |
| 484 | (unsigned char*)nonce.data()) != 1) { |
| 485 | LOG(ERROR) << "EVP_EncryptInit_ex: failed"; |
| 486 | return {}; |
| 487 | } |
| 488 | |
| 489 | int numWritten; |
| 490 | if (additionalAuthenticatedData.size() > 0) { |
| 491 | if (EVP_EncryptUpdate(ctx.get(), NULL, &numWritten, |
| 492 | (unsigned char*)additionalAuthenticatedData.data(), |
| 493 | additionalAuthenticatedData.size()) != 1) { |
| 494 | LOG(ERROR) << "EVP_EncryptUpdate: failed for additionalAuthenticatedData"; |
| 495 | return {}; |
| 496 | } |
| 497 | if ((size_t)numWritten != additionalAuthenticatedData.size()) { |
| 498 | LOG(ERROR) << "EVP_EncryptUpdate: Unexpected outl=" << numWritten << " (expected " |
| 499 | << additionalAuthenticatedData.size() << ") for additionalAuthenticatedData"; |
| 500 | return {}; |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | if (data.size() > 0) { |
| 505 | if (EVP_EncryptUpdate(ctx.get(), cipherText, &numWritten, (unsigned char*)data.data(), |
| 506 | data.size()) != 1) { |
| 507 | LOG(ERROR) << "EVP_EncryptUpdate: failed"; |
| 508 | return {}; |
| 509 | } |
| 510 | if ((size_t)numWritten != data.size()) { |
| 511 | LOG(ERROR) << "EVP_EncryptUpdate: Unexpected outl=" << numWritten << " (expected " |
| 512 | << data.size() << ")"; |
| 513 | return {}; |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | if (EVP_EncryptFinal_ex(ctx.get(), cipherText + numWritten, &numWritten) != 1) { |
| 518 | LOG(ERROR) << "EVP_EncryptFinal_ex: failed"; |
| 519 | return {}; |
| 520 | } |
| 521 | if (numWritten != 0) { |
| 522 | LOG(ERROR) << "EVP_EncryptFinal_ex: Unexpected non-zero outl=" << numWritten; |
| 523 | return {}; |
| 524 | } |
| 525 | |
| 526 | if (EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_GCM_GET_TAG, kAesGcmTagSize, tag) != 1) { |
| 527 | LOG(ERROR) << "EVP_CIPHER_CTX_ctrl: failed getting tag"; |
| 528 | return {}; |
| 529 | } |
| 530 | |
| 531 | return encryptedData; |
| 532 | } |
| 533 | |
| 534 | struct EC_KEY_Deleter { |
| 535 | void operator()(EC_KEY* key) const { |
| 536 | if (key != nullptr) { |
| 537 | EC_KEY_free(key); |
| 538 | } |
| 539 | } |
| 540 | }; |
| 541 | using EC_KEY_Ptr = unique_ptr<EC_KEY, EC_KEY_Deleter>; |
| 542 | |
| 543 | struct EVP_PKEY_Deleter { |
| 544 | void operator()(EVP_PKEY* key) const { |
| 545 | if (key != nullptr) { |
| 546 | EVP_PKEY_free(key); |
| 547 | } |
| 548 | } |
| 549 | }; |
| 550 | using EVP_PKEY_Ptr = unique_ptr<EVP_PKEY, EVP_PKEY_Deleter>; |
| 551 | |
| 552 | struct EVP_PKEY_CTX_Deleter { |
| 553 | void operator()(EVP_PKEY_CTX* ctx) const { |
| 554 | if (ctx != nullptr) { |
| 555 | EVP_PKEY_CTX_free(ctx); |
| 556 | } |
| 557 | } |
| 558 | }; |
| 559 | using EVP_PKEY_CTX_Ptr = unique_ptr<EVP_PKEY_CTX, EVP_PKEY_CTX_Deleter>; |
| 560 | |
| 561 | struct EC_GROUP_Deleter { |
| 562 | void operator()(EC_GROUP* group) const { |
| 563 | if (group != nullptr) { |
| 564 | EC_GROUP_free(group); |
| 565 | } |
| 566 | } |
| 567 | }; |
| 568 | using EC_GROUP_Ptr = unique_ptr<EC_GROUP, EC_GROUP_Deleter>; |
| 569 | |
| 570 | struct EC_POINT_Deleter { |
| 571 | void operator()(EC_POINT* point) const { |
| 572 | if (point != nullptr) { |
| 573 | EC_POINT_free(point); |
| 574 | } |
| 575 | } |
| 576 | }; |
| 577 | |
| 578 | using EC_POINT_Ptr = unique_ptr<EC_POINT, EC_POINT_Deleter>; |
| 579 | |
| 580 | struct ECDSA_SIG_Deleter { |
| 581 | void operator()(ECDSA_SIG* sig) const { |
| 582 | if (sig != nullptr) { |
| 583 | ECDSA_SIG_free(sig); |
| 584 | } |
| 585 | } |
| 586 | }; |
| 587 | using ECDSA_SIG_Ptr = unique_ptr<ECDSA_SIG, ECDSA_SIG_Deleter>; |
| 588 | |
| 589 | struct X509_Deleter { |
| 590 | void operator()(X509* x509) const { |
| 591 | if (x509 != nullptr) { |
| 592 | X509_free(x509); |
| 593 | } |
| 594 | } |
| 595 | }; |
| 596 | using X509_Ptr = unique_ptr<X509, X509_Deleter>; |
| 597 | |
| 598 | struct PKCS12_Deleter { |
| 599 | void operator()(PKCS12* pkcs12) const { |
| 600 | if (pkcs12 != nullptr) { |
| 601 | PKCS12_free(pkcs12); |
| 602 | } |
| 603 | } |
| 604 | }; |
| 605 | using PKCS12_Ptr = unique_ptr<PKCS12, PKCS12_Deleter>; |
| 606 | |
| 607 | struct BIGNUM_Deleter { |
| 608 | void operator()(BIGNUM* bignum) const { |
| 609 | if (bignum != nullptr) { |
| 610 | BN_free(bignum); |
| 611 | } |
| 612 | } |
| 613 | }; |
| 614 | using BIGNUM_Ptr = unique_ptr<BIGNUM, BIGNUM_Deleter>; |
| 615 | |
| 616 | struct ASN1_INTEGER_Deleter { |
| 617 | void operator()(ASN1_INTEGER* value) const { |
| 618 | if (value != nullptr) { |
| 619 | ASN1_INTEGER_free(value); |
| 620 | } |
| 621 | } |
| 622 | }; |
| 623 | using ASN1_INTEGER_Ptr = unique_ptr<ASN1_INTEGER, ASN1_INTEGER_Deleter>; |
| 624 | |
| 625 | struct ASN1_TIME_Deleter { |
| 626 | void operator()(ASN1_TIME* value) const { |
| 627 | if (value != nullptr) { |
| 628 | ASN1_TIME_free(value); |
| 629 | } |
| 630 | } |
| 631 | }; |
| 632 | using ASN1_TIME_Ptr = unique_ptr<ASN1_TIME, ASN1_TIME_Deleter>; |
| 633 | |
| 634 | struct X509_NAME_Deleter { |
| 635 | void operator()(X509_NAME* value) const { |
| 636 | if (value != nullptr) { |
| 637 | X509_NAME_free(value); |
| 638 | } |
| 639 | } |
| 640 | }; |
| 641 | using X509_NAME_Ptr = unique_ptr<X509_NAME, X509_NAME_Deleter>; |
| 642 | |
| 643 | vector<uint8_t> certificateChainJoin(const vector<vector<uint8_t>>& certificateChain) { |
| 644 | vector<uint8_t> ret; |
| 645 | for (const vector<uint8_t>& certificate : certificateChain) { |
| 646 | ret.insert(ret.end(), certificate.begin(), certificate.end()); |
| 647 | } |
| 648 | return ret; |
| 649 | } |
| 650 | |
| 651 | optional<vector<vector<uint8_t>>> certificateChainSplit(const vector<uint8_t>& certificateChain) { |
| 652 | const unsigned char* pStart = (unsigned char*)certificateChain.data(); |
| 653 | const unsigned char* p = pStart; |
| 654 | const unsigned char* pEnd = p + certificateChain.size(); |
| 655 | vector<vector<uint8_t>> certificates; |
| 656 | while (p < pEnd) { |
| 657 | size_t begin = p - pStart; |
| 658 | auto x509 = X509_Ptr(d2i_X509(nullptr, &p, pEnd - p)); |
| 659 | size_t next = p - pStart; |
| 660 | if (x509 == nullptr) { |
| 661 | LOG(ERROR) << "Error parsing X509 certificate"; |
| 662 | return {}; |
| 663 | } |
| 664 | vector<uint8_t> cert = |
| 665 | vector<uint8_t>(certificateChain.begin() + begin, certificateChain.begin() + next); |
| 666 | certificates.push_back(std::move(cert)); |
| 667 | } |
| 668 | return certificates; |
| 669 | } |
| 670 | |
| 671 | static bool parseX509Certificates(const vector<uint8_t>& certificateChain, |
| 672 | vector<X509_Ptr>& parsedCertificates) { |
| 673 | const unsigned char* p = (unsigned char*)certificateChain.data(); |
| 674 | const unsigned char* pEnd = p + certificateChain.size(); |
| 675 | parsedCertificates.resize(0); |
| 676 | while (p < pEnd) { |
| 677 | auto x509 = X509_Ptr(d2i_X509(nullptr, &p, pEnd - p)); |
| 678 | if (x509 == nullptr) { |
| 679 | LOG(ERROR) << "Error parsing X509 certificate"; |
| 680 | return false; |
| 681 | } |
| 682 | parsedCertificates.push_back(std::move(x509)); |
| 683 | } |
| 684 | return true; |
| 685 | } |
| 686 | |
| 687 | // TODO: Right now the only check we perform is to check that each certificate |
| 688 | // is signed by its successor. We should - but currently don't - also check |
| 689 | // things like valid dates etc. |
| 690 | // |
| 691 | // It would be nice to use X509_verify_cert() instead of doing our own thing. |
| 692 | // |
| 693 | bool certificateChainValidate(const vector<uint8_t>& certificateChain) { |
| 694 | vector<X509_Ptr> certs; |
| 695 | |
| 696 | if (!parseX509Certificates(certificateChain, certs)) { |
| 697 | LOG(ERROR) << "Error parsing X509 certificates"; |
| 698 | return false; |
| 699 | } |
| 700 | |
| 701 | if (certs.size() == 1) { |
| 702 | return true; |
| 703 | } |
| 704 | |
| 705 | for (size_t n = 1; n < certs.size(); n++) { |
| 706 | const X509_Ptr& keyCert = certs[n - 1]; |
| 707 | const X509_Ptr& signingCert = certs[n]; |
| 708 | EVP_PKEY_Ptr signingPubkey(X509_get_pubkey(signingCert.get())); |
| 709 | if (X509_verify(keyCert.get(), signingPubkey.get()) != 1) { |
| 710 | LOG(ERROR) << "Error validating cert at index " << n - 1 |
| 711 | << " is signed by its successor"; |
| 712 | return false; |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | return true; |
| 717 | } |
| 718 | |
| 719 | bool checkEcDsaSignature(const vector<uint8_t>& digest, const vector<uint8_t>& signature, |
| 720 | const vector<uint8_t>& publicKey) { |
| 721 | const unsigned char* p = (unsigned char*)signature.data(); |
| 722 | auto sig = ECDSA_SIG_Ptr(d2i_ECDSA_SIG(nullptr, &p, signature.size())); |
| 723 | if (sig.get() == nullptr) { |
| 724 | LOG(ERROR) << "Error decoding DER encoded signature"; |
| 725 | return false; |
| 726 | } |
| 727 | |
| 728 | auto group = EC_GROUP_Ptr(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| 729 | auto point = EC_POINT_Ptr(EC_POINT_new(group.get())); |
| 730 | if (EC_POINT_oct2point(group.get(), point.get(), publicKey.data(), publicKey.size(), nullptr) != |
| 731 | 1) { |
| 732 | LOG(ERROR) << "Error decoding publicKey"; |
| 733 | return false; |
| 734 | } |
| 735 | auto ecKey = EC_KEY_Ptr(EC_KEY_new()); |
| 736 | auto pkey = EVP_PKEY_Ptr(EVP_PKEY_new()); |
| 737 | if (ecKey.get() == nullptr || pkey.get() == nullptr) { |
| 738 | LOG(ERROR) << "Memory allocation failed"; |
| 739 | return false; |
| 740 | } |
| 741 | if (EC_KEY_set_group(ecKey.get(), group.get()) != 1) { |
| 742 | LOG(ERROR) << "Error setting group"; |
| 743 | return false; |
| 744 | } |
| 745 | if (EC_KEY_set_public_key(ecKey.get(), point.get()) != 1) { |
| 746 | LOG(ERROR) << "Error setting point"; |
| 747 | return false; |
| 748 | } |
| 749 | if (EVP_PKEY_set1_EC_KEY(pkey.get(), ecKey.get()) != 1) { |
| 750 | LOG(ERROR) << "Error setting key"; |
| 751 | return false; |
| 752 | } |
| 753 | |
| 754 | int rc = ECDSA_do_verify(digest.data(), digest.size(), sig.get(), ecKey.get()); |
| 755 | if (rc != 1) { |
| 756 | LOG(ERROR) << "Error verifying signature (rc=" << rc << ")"; |
| 757 | return false; |
| 758 | } |
| 759 | |
| 760 | return true; |
| 761 | } |
| 762 | |
| 763 | vector<uint8_t> sha256(const vector<uint8_t>& data) { |
| 764 | vector<uint8_t> ret; |
| 765 | ret.resize(SHA256_DIGEST_LENGTH); |
| 766 | SHA256_CTX ctx; |
| 767 | SHA256_Init(&ctx); |
| 768 | SHA256_Update(&ctx, data.data(), data.size()); |
| 769 | SHA256_Final((unsigned char*)ret.data(), &ctx); |
| 770 | return ret; |
| 771 | } |
| 772 | |
| 773 | optional<vector<uint8_t>> signEcDsa(const vector<uint8_t>& key, const vector<uint8_t>& data) { |
| 774 | auto bn = BIGNUM_Ptr(BN_bin2bn(key.data(), key.size(), nullptr)); |
| 775 | if (bn.get() == nullptr) { |
| 776 | LOG(ERROR) << "Error creating BIGNUM"; |
| 777 | return {}; |
| 778 | } |
| 779 | |
| 780 | auto ec_key = EC_KEY_Ptr(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
| 781 | if (EC_KEY_set_private_key(ec_key.get(), bn.get()) != 1) { |
| 782 | LOG(ERROR) << "Error setting private key from BIGNUM"; |
| 783 | return {}; |
| 784 | } |
| 785 | |
| 786 | auto digest = sha256(data); |
| 787 | ECDSA_SIG* sig = ECDSA_do_sign(digest.data(), digest.size(), ec_key.get()); |
| 788 | if (sig == nullptr) { |
| 789 | LOG(ERROR) << "Error signing digest"; |
| 790 | return {}; |
| 791 | } |
| 792 | size_t len = i2d_ECDSA_SIG(sig, nullptr); |
| 793 | vector<uint8_t> signature; |
| 794 | signature.resize(len); |
| 795 | unsigned char* p = (unsigned char*)signature.data(); |
| 796 | i2d_ECDSA_SIG(sig, &p); |
| 797 | ECDSA_SIG_free(sig); |
| 798 | return signature; |
| 799 | } |
| 800 | |
| 801 | optional<vector<uint8_t>> hmacSha256(const vector<uint8_t>& key, const vector<uint8_t>& data) { |
| 802 | HMAC_CTX ctx; |
| 803 | HMAC_CTX_init(&ctx); |
| 804 | if (HMAC_Init_ex(&ctx, key.data(), key.size(), EVP_sha256(), nullptr /* impl */) != 1) { |
| 805 | LOG(ERROR) << "Error initializing HMAC_CTX"; |
| 806 | return {}; |
| 807 | } |
| 808 | if (HMAC_Update(&ctx, data.data(), data.size()) != 1) { |
| 809 | LOG(ERROR) << "Error updating HMAC_CTX"; |
| 810 | return {}; |
| 811 | } |
| 812 | vector<uint8_t> hmac; |
| 813 | hmac.resize(32); |
| 814 | unsigned int size = 0; |
| 815 | if (HMAC_Final(&ctx, hmac.data(), &size) != 1) { |
| 816 | LOG(ERROR) << "Error finalizing HMAC_CTX"; |
| 817 | return {}; |
| 818 | } |
| 819 | if (size != 32) { |
| 820 | LOG(ERROR) << "Expected 32 bytes from HMAC_Final, got " << size; |
| 821 | return {}; |
| 822 | } |
| 823 | return hmac; |
| 824 | } |
| 825 | |
Selene Huang | 459cb80 | 2020-01-08 22:59:02 -0800 | [diff] [blame] | 826 | // Generates the attestation certificate with the parameters passed in. Note |
| 827 | // that the passed in |activeTimeMilliSeconds| |expireTimeMilliSeconds| are in |
| 828 | // milli seconds since epoch. We are setting them to milliseconds due to |
| 829 | // requirement in AuthorizationSet KM_DATE fields. The certificate created is |
| 830 | // actually in seconds. |
| 831 | optional<vector<vector<uint8_t>>> createAttestation(const EVP_PKEY* key, |
| 832 | const vector<uint8_t>& applicationId, |
| 833 | const vector<uint8_t>& challenge, |
| 834 | uint64_t activeTimeMilliSeconds, |
| 835 | uint64_t expireTimeMilliSeconds) { |
| 836 | ::keymaster::AuthorizationSet auth_set( |
| 837 | ::keymaster::AuthorizationSetBuilder() |
| 838 | .Authorization(::keymaster::TAG_ATTESTATION_CHALLENGE, challenge.data(), |
| 839 | challenge.size()) |
| 840 | .Authorization(::keymaster::TAG_ACTIVE_DATETIME, activeTimeMilliSeconds) |
| 841 | // Even though identity attestation hal said the application |
| 842 | // id should be in software enforced authentication set, |
| 843 | // keymaster portable lib expect the input in this |
| 844 | // parameter because the software enforced in input to keymaster |
| 845 | // refers to the key software enforced properties. And this |
| 846 | // parameter refers to properties of the attestation which |
| 847 | // includes app id. |
| 848 | .Authorization(::keymaster::TAG_ATTESTATION_APPLICATION_ID, |
| 849 | applicationId.data(), applicationId.size()) |
| 850 | .Authorization(::keymaster::TAG_USAGE_EXPIRE_DATETIME, expireTimeMilliSeconds)); |
| 851 | |
| 852 | // Unique id and device id is not applicable for identity credential attestation, |
| 853 | // so we don't need to set those or application id. |
| 854 | ::keymaster::AuthorizationSet swEnforced(::keymaster::AuthorizationSetBuilder().Authorization( |
| 855 | ::keymaster::TAG_CREATION_DATETIME, activeTimeMilliSeconds)); |
| 856 | |
| 857 | ::keymaster::AuthorizationSet hwEnforced( |
| 858 | ::keymaster::AuthorizationSetBuilder() |
| 859 | .Authorization(::keymaster::TAG_PURPOSE, KM_PURPOSE_SIGN) |
| 860 | .Authorization(::keymaster::TAG_KEY_SIZE, 256) |
| 861 | .Authorization(::keymaster::TAG_ALGORITHM, KM_ALGORITHM_EC) |
| 862 | .Authorization(::keymaster::TAG_NO_AUTH_REQUIRED) |
| 863 | .Authorization(::keymaster::TAG_DIGEST, KM_DIGEST_SHA_2_256) |
| 864 | .Authorization(::keymaster::TAG_EC_CURVE, KM_EC_CURVE_P_256) |
| 865 | .Authorization(::keymaster::TAG_IDENTITY_CREDENTIAL_KEY)); |
| 866 | |
| 867 | const keymaster_cert_chain_t* attestation_chain = |
| 868 | ::keymaster::getAttestationChain(KM_ALGORITHM_EC, nullptr); |
| 869 | |
| 870 | if (attestation_chain == nullptr) { |
| 871 | LOG(ERROR) << "Error getting attestation chain"; |
| 872 | return {}; |
| 873 | } |
| 874 | |
| 875 | const keymaster_key_blob_t* attestation_signing_key = |
| 876 | ::keymaster::getAttestationKey(KM_ALGORITHM_EC, nullptr); |
| 877 | if (attestation_signing_key == nullptr) { |
| 878 | LOG(ERROR) << "Error getting attestation key"; |
| 879 | return {}; |
| 880 | } |
| 881 | |
| 882 | keymaster_error_t error; |
| 883 | ::keymaster::CertChainPtr cert_chain_out; |
| 884 | ::keymaster::PureSoftKeymasterContext context; |
| 885 | |
| 886 | // set identity version to 10 per hal requirements specified in IWriteableCredential.hal |
| 887 | // For now, the identity version in the attestation is set in the keymaster |
| 888 | // version field in the portable keymaster lib, which is a bit misleading. |
| 889 | uint identity_version = 10; |
| 890 | error = generate_attestation_from_EVP(key, swEnforced, hwEnforced, auth_set, context, |
| 891 | identity_version, *attestation_chain, |
| 892 | *attestation_signing_key, &cert_chain_out); |
| 893 | |
| 894 | if (KM_ERROR_OK != error || !cert_chain_out) { |
| 895 | LOG(ERROR) << "Error generate attestation from EVP key" << error; |
| 896 | return {}; |
| 897 | } |
| 898 | |
| 899 | // translate certificate format from keymaster_cert_chain_t to vector<uint8_t>. |
| 900 | vector<vector<uint8_t>> attestationCertificate; |
| 901 | for (int i = 0; i < cert_chain_out->entry_count; i++) { |
| 902 | attestationCertificate.insert( |
| 903 | attestationCertificate.end(), |
| 904 | vector<uint8_t>( |
| 905 | cert_chain_out->entries[i].data, |
| 906 | cert_chain_out->entries[i].data + cert_chain_out->entries[i].data_length)); |
| 907 | } |
| 908 | |
| 909 | return attestationCertificate; |
| 910 | } |
| 911 | |
| 912 | optional<std::pair<vector<uint8_t>, vector<vector<uint8_t>>>> createEcKeyPairAndAttestation( |
| 913 | const vector<uint8_t>& challenge, const vector<uint8_t>& applicationId) { |
| 914 | auto ec_key = ::keymaster::EC_KEY_Ptr(EC_KEY_new()); |
| 915 | auto pkey = ::keymaster::EVP_PKEY_Ptr(EVP_PKEY_new()); |
| 916 | auto group = ::keymaster::EC_GROUP_Ptr(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| 917 | |
| 918 | if (ec_key.get() == nullptr || pkey.get() == nullptr) { |
| 919 | LOG(ERROR) << "Memory allocation failed"; |
| 920 | return {}; |
| 921 | } |
| 922 | |
| 923 | if (EC_KEY_set_group(ec_key.get(), group.get()) != 1 || |
| 924 | EC_KEY_generate_key(ec_key.get()) != 1 || EC_KEY_check_key(ec_key.get()) < 0) { |
| 925 | LOG(ERROR) << "Error generating key"; |
| 926 | return {}; |
| 927 | } |
| 928 | |
| 929 | if (EVP_PKEY_set1_EC_KEY(pkey.get(), ec_key.get()) != 1) { |
| 930 | LOG(ERROR) << "Error getting private key"; |
| 931 | return {}; |
| 932 | } |
| 933 | |
| 934 | uint64_t now = time(nullptr); |
| 935 | uint64_t secondsInOneYear = 365 * 24 * 60 * 60; |
| 936 | uint64_t expireTimeMs = (now + secondsInOneYear) * 1000; |
| 937 | |
| 938 | optional<vector<vector<uint8_t>>> attestationCert = |
| 939 | createAttestation(pkey.get(), applicationId, challenge, now * 1000, expireTimeMs); |
| 940 | if (!attestationCert) { |
| 941 | LOG(ERROR) << "Error create attestation from key and challenge"; |
| 942 | return {}; |
| 943 | } |
| 944 | |
| 945 | int size = i2d_PrivateKey(pkey.get(), nullptr); |
| 946 | if (size == 0) { |
| 947 | LOG(ERROR) << "Error generating public key encoding"; |
| 948 | return {}; |
| 949 | } |
| 950 | |
| 951 | vector<uint8_t> keyPair(size); |
| 952 | unsigned char* p = keyPair.data(); |
| 953 | i2d_PrivateKey(pkey.get(), &p); |
| 954 | |
| 955 | return make_pair(keyPair, attestationCert.value()); |
| 956 | } |
| 957 | |
David Zeuthen | c75ac31 | 2019-10-28 13:16:45 -0400 | [diff] [blame] | 958 | optional<vector<uint8_t>> createEcKeyPair() { |
| 959 | auto ec_key = EC_KEY_Ptr(EC_KEY_new()); |
| 960 | auto pkey = EVP_PKEY_Ptr(EVP_PKEY_new()); |
| 961 | auto group = EC_GROUP_Ptr(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| 962 | if (ec_key.get() == nullptr || pkey.get() == nullptr) { |
| 963 | LOG(ERROR) << "Memory allocation failed"; |
| 964 | return {}; |
| 965 | } |
| 966 | |
| 967 | if (EC_KEY_set_group(ec_key.get(), group.get()) != 1 || |
| 968 | EC_KEY_generate_key(ec_key.get()) != 1 || EC_KEY_check_key(ec_key.get()) < 0) { |
| 969 | LOG(ERROR) << "Error generating key"; |
| 970 | return {}; |
| 971 | } |
| 972 | |
| 973 | if (EVP_PKEY_set1_EC_KEY(pkey.get(), ec_key.get()) != 1) { |
| 974 | LOG(ERROR) << "Error getting private key"; |
| 975 | return {}; |
| 976 | } |
| 977 | |
| 978 | int size = i2d_PrivateKey(pkey.get(), nullptr); |
| 979 | if (size == 0) { |
| 980 | LOG(ERROR) << "Error generating public key encoding"; |
| 981 | return {}; |
| 982 | } |
| 983 | vector<uint8_t> keyPair; |
| 984 | keyPair.resize(size); |
| 985 | unsigned char* p = keyPair.data(); |
| 986 | i2d_PrivateKey(pkey.get(), &p); |
| 987 | return keyPair; |
| 988 | } |
| 989 | |
| 990 | optional<vector<uint8_t>> ecKeyPairGetPublicKey(const vector<uint8_t>& keyPair) { |
| 991 | const unsigned char* p = (const unsigned char*)keyPair.data(); |
| 992 | auto pkey = EVP_PKEY_Ptr(d2i_PrivateKey(EVP_PKEY_EC, nullptr, &p, keyPair.size())); |
| 993 | if (pkey.get() == nullptr) { |
| 994 | LOG(ERROR) << "Error parsing keyPair"; |
| 995 | return {}; |
| 996 | } |
| 997 | |
| 998 | auto ecKey = EC_KEY_Ptr(EVP_PKEY_get1_EC_KEY(pkey.get())); |
| 999 | if (ecKey.get() == nullptr) { |
| 1000 | LOG(ERROR) << "Failed getting EC key"; |
| 1001 | return {}; |
| 1002 | } |
| 1003 | |
| 1004 | auto ecGroup = EC_KEY_get0_group(ecKey.get()); |
| 1005 | auto ecPoint = EC_KEY_get0_public_key(ecKey.get()); |
| 1006 | int size = EC_POINT_point2oct(ecGroup, ecPoint, POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, |
| 1007 | nullptr); |
| 1008 | if (size == 0) { |
| 1009 | LOG(ERROR) << "Error generating public key encoding"; |
| 1010 | return {}; |
| 1011 | } |
| 1012 | |
| 1013 | vector<uint8_t> publicKey; |
| 1014 | publicKey.resize(size); |
| 1015 | EC_POINT_point2oct(ecGroup, ecPoint, POINT_CONVERSION_UNCOMPRESSED, publicKey.data(), |
| 1016 | publicKey.size(), nullptr); |
| 1017 | return publicKey; |
| 1018 | } |
| 1019 | |
| 1020 | optional<vector<uint8_t>> ecKeyPairGetPrivateKey(const vector<uint8_t>& keyPair) { |
| 1021 | const unsigned char* p = (const unsigned char*)keyPair.data(); |
| 1022 | auto pkey = EVP_PKEY_Ptr(d2i_PrivateKey(EVP_PKEY_EC, nullptr, &p, keyPair.size())); |
| 1023 | if (pkey.get() == nullptr) { |
| 1024 | LOG(ERROR) << "Error parsing keyPair"; |
| 1025 | return {}; |
| 1026 | } |
| 1027 | |
| 1028 | auto ecKey = EC_KEY_Ptr(EVP_PKEY_get1_EC_KEY(pkey.get())); |
| 1029 | if (ecKey.get() == nullptr) { |
| 1030 | LOG(ERROR) << "Failed getting EC key"; |
| 1031 | return {}; |
| 1032 | } |
| 1033 | |
| 1034 | const BIGNUM* bignum = EC_KEY_get0_private_key(ecKey.get()); |
| 1035 | if (bignum == nullptr) { |
| 1036 | LOG(ERROR) << "Error getting bignum from private key"; |
| 1037 | return {}; |
| 1038 | } |
| 1039 | vector<uint8_t> privateKey; |
| 1040 | privateKey.resize(BN_num_bytes(bignum)); |
| 1041 | BN_bn2bin(bignum, privateKey.data()); |
| 1042 | return privateKey; |
| 1043 | } |
| 1044 | |
| 1045 | optional<vector<uint8_t>> ecKeyPairGetPkcs12(const vector<uint8_t>& keyPair, const string& name, |
| 1046 | const string& serialDecimal, const string& issuer, |
| 1047 | const string& subject, time_t validityNotBefore, |
| 1048 | time_t validityNotAfter) { |
| 1049 | const unsigned char* p = (const unsigned char*)keyPair.data(); |
| 1050 | auto pkey = EVP_PKEY_Ptr(d2i_PrivateKey(EVP_PKEY_EC, nullptr, &p, keyPair.size())); |
| 1051 | if (pkey.get() == nullptr) { |
| 1052 | LOG(ERROR) << "Error parsing keyPair"; |
| 1053 | return {}; |
| 1054 | } |
| 1055 | |
| 1056 | auto x509 = X509_Ptr(X509_new()); |
| 1057 | if (!x509.get()) { |
| 1058 | LOG(ERROR) << "Error creating X509 certificate"; |
| 1059 | return {}; |
| 1060 | } |
| 1061 | |
| 1062 | if (!X509_set_version(x509.get(), 2 /* version 3, but zero-based */)) { |
| 1063 | LOG(ERROR) << "Error setting version to 3"; |
| 1064 | return {}; |
| 1065 | } |
| 1066 | |
| 1067 | if (X509_set_pubkey(x509.get(), pkey.get()) != 1) { |
| 1068 | LOG(ERROR) << "Error setting public key"; |
| 1069 | return {}; |
| 1070 | } |
| 1071 | |
| 1072 | BIGNUM* bignumSerial = nullptr; |
| 1073 | if (BN_dec2bn(&bignumSerial, serialDecimal.c_str()) == 0) { |
| 1074 | LOG(ERROR) << "Error parsing serial"; |
| 1075 | return {}; |
| 1076 | } |
| 1077 | auto bignumSerialPtr = BIGNUM_Ptr(bignumSerial); |
| 1078 | auto asnSerial = ASN1_INTEGER_Ptr(BN_to_ASN1_INTEGER(bignumSerial, nullptr)); |
| 1079 | if (X509_set_serialNumber(x509.get(), asnSerial.get()) != 1) { |
| 1080 | LOG(ERROR) << "Error setting serial"; |
| 1081 | return {}; |
| 1082 | } |
| 1083 | |
| 1084 | auto x509Issuer = X509_NAME_Ptr(X509_NAME_new()); |
| 1085 | if (x509Issuer.get() == nullptr || |
| 1086 | X509_NAME_add_entry_by_txt(x509Issuer.get(), "CN", MBSTRING_ASC, |
| 1087 | (const uint8_t*)issuer.c_str(), issuer.size(), -1 /* loc */, |
| 1088 | 0 /* set */) != 1 || |
| 1089 | X509_set_issuer_name(x509.get(), x509Issuer.get()) != 1) { |
| 1090 | LOG(ERROR) << "Error setting issuer"; |
| 1091 | return {}; |
| 1092 | } |
| 1093 | |
| 1094 | auto x509Subject = X509_NAME_Ptr(X509_NAME_new()); |
| 1095 | if (x509Subject.get() == nullptr || |
| 1096 | X509_NAME_add_entry_by_txt(x509Subject.get(), "CN", MBSTRING_ASC, |
| 1097 | (const uint8_t*)subject.c_str(), subject.size(), -1 /* loc */, |
| 1098 | 0 /* set */) != 1 || |
| 1099 | X509_set_subject_name(x509.get(), x509Subject.get()) != 1) { |
| 1100 | LOG(ERROR) << "Error setting subject"; |
| 1101 | return {}; |
| 1102 | } |
| 1103 | |
| 1104 | auto asnNotBefore = ASN1_TIME_Ptr(ASN1_TIME_set(nullptr, validityNotBefore)); |
| 1105 | if (asnNotBefore.get() == nullptr || X509_set_notBefore(x509.get(), asnNotBefore.get()) != 1) { |
| 1106 | LOG(ERROR) << "Error setting notBefore"; |
| 1107 | return {}; |
| 1108 | } |
| 1109 | |
| 1110 | auto asnNotAfter = ASN1_TIME_Ptr(ASN1_TIME_set(nullptr, validityNotAfter)); |
| 1111 | if (asnNotAfter.get() == nullptr || X509_set_notAfter(x509.get(), asnNotAfter.get()) != 1) { |
| 1112 | LOG(ERROR) << "Error setting notAfter"; |
| 1113 | return {}; |
| 1114 | } |
| 1115 | |
| 1116 | if (X509_sign(x509.get(), pkey.get(), EVP_sha256()) == 0) { |
| 1117 | LOG(ERROR) << "Error signing X509 certificate"; |
| 1118 | return {}; |
| 1119 | } |
| 1120 | |
| 1121 | // Ideally we wouldn't encrypt it (we're only using this function for |
| 1122 | // sending a key-pair over binder to the Android app) but BoringSSL does not |
| 1123 | // support this: from pkcs8_x509.c in BoringSSL: "In OpenSSL, -1 here means |
| 1124 | // to use no encryption, which we do not currently support." |
| 1125 | // |
| 1126 | // Passing nullptr as |pass|, though, means "no password". So we'll do that. |
| 1127 | // Compare with the receiving side - CredstoreIdentityCredential.java - where |
| 1128 | // an empty char[] is passed as the password. |
| 1129 | // |
| 1130 | auto pkcs12 = PKCS12_Ptr(PKCS12_create(nullptr, name.c_str(), pkey.get(), x509.get(), |
| 1131 | nullptr, // ca |
| 1132 | 0, // nid_key |
| 1133 | 0, // nid_cert |
| 1134 | 0, // iter, |
| 1135 | 0, // mac_iter, |
| 1136 | 0)); // keytype |
| 1137 | if (pkcs12.get() == nullptr) { |
| 1138 | char buf[128]; |
| 1139 | long errCode = ERR_get_error(); |
| 1140 | ERR_error_string_n(errCode, buf, sizeof buf); |
| 1141 | LOG(ERROR) << "Error creating PKCS12, code " << errCode << ": " << buf; |
| 1142 | return {}; |
| 1143 | } |
| 1144 | |
| 1145 | unsigned char* buffer = nullptr; |
| 1146 | int length = i2d_PKCS12(pkcs12.get(), &buffer); |
| 1147 | if (length < 0) { |
| 1148 | LOG(ERROR) << "Error encoding PKCS12"; |
| 1149 | return {}; |
| 1150 | } |
| 1151 | vector<uint8_t> pkcs12Bytes; |
| 1152 | pkcs12Bytes.resize(length); |
| 1153 | memcpy(pkcs12Bytes.data(), buffer, length); |
| 1154 | OPENSSL_free(buffer); |
| 1155 | |
| 1156 | return pkcs12Bytes; |
| 1157 | } |
| 1158 | |
| 1159 | optional<vector<uint8_t>> ecPublicKeyGenerateCertificate( |
| 1160 | const vector<uint8_t>& publicKey, const vector<uint8_t>& signingKey, |
| 1161 | const string& serialDecimal, const string& issuer, const string& subject, |
| 1162 | time_t validityNotBefore, time_t validityNotAfter) { |
| 1163 | auto group = EC_GROUP_Ptr(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| 1164 | auto point = EC_POINT_Ptr(EC_POINT_new(group.get())); |
| 1165 | if (EC_POINT_oct2point(group.get(), point.get(), publicKey.data(), publicKey.size(), nullptr) != |
| 1166 | 1) { |
| 1167 | LOG(ERROR) << "Error decoding publicKey"; |
| 1168 | return {}; |
| 1169 | } |
| 1170 | auto ecKey = EC_KEY_Ptr(EC_KEY_new()); |
| 1171 | auto pkey = EVP_PKEY_Ptr(EVP_PKEY_new()); |
| 1172 | if (ecKey.get() == nullptr || pkey.get() == nullptr) { |
| 1173 | LOG(ERROR) << "Memory allocation failed"; |
| 1174 | return {}; |
| 1175 | } |
| 1176 | if (EC_KEY_set_group(ecKey.get(), group.get()) != 1) { |
| 1177 | LOG(ERROR) << "Error setting group"; |
| 1178 | return {}; |
| 1179 | } |
| 1180 | if (EC_KEY_set_public_key(ecKey.get(), point.get()) != 1) { |
| 1181 | LOG(ERROR) << "Error setting point"; |
| 1182 | return {}; |
| 1183 | } |
| 1184 | if (EVP_PKEY_set1_EC_KEY(pkey.get(), ecKey.get()) != 1) { |
| 1185 | LOG(ERROR) << "Error setting key"; |
| 1186 | return {}; |
| 1187 | } |
| 1188 | |
| 1189 | auto bn = BIGNUM_Ptr(BN_bin2bn(signingKey.data(), signingKey.size(), nullptr)); |
| 1190 | if (bn.get() == nullptr) { |
| 1191 | LOG(ERROR) << "Error creating BIGNUM for private key"; |
| 1192 | return {}; |
| 1193 | } |
| 1194 | auto privEcKey = EC_KEY_Ptr(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
| 1195 | if (EC_KEY_set_private_key(privEcKey.get(), bn.get()) != 1) { |
| 1196 | LOG(ERROR) << "Error setting private key from BIGNUM"; |
| 1197 | return {}; |
| 1198 | } |
| 1199 | auto privPkey = EVP_PKEY_Ptr(EVP_PKEY_new()); |
| 1200 | if (EVP_PKEY_set1_EC_KEY(privPkey.get(), privEcKey.get()) != 1) { |
| 1201 | LOG(ERROR) << "Error setting private key"; |
| 1202 | return {}; |
| 1203 | } |
| 1204 | |
| 1205 | auto x509 = X509_Ptr(X509_new()); |
| 1206 | if (!x509.get()) { |
| 1207 | LOG(ERROR) << "Error creating X509 certificate"; |
| 1208 | return {}; |
| 1209 | } |
| 1210 | |
| 1211 | if (!X509_set_version(x509.get(), 2 /* version 3, but zero-based */)) { |
| 1212 | LOG(ERROR) << "Error setting version to 3"; |
| 1213 | return {}; |
| 1214 | } |
| 1215 | |
| 1216 | if (X509_set_pubkey(x509.get(), pkey.get()) != 1) { |
| 1217 | LOG(ERROR) << "Error setting public key"; |
| 1218 | return {}; |
| 1219 | } |
| 1220 | |
| 1221 | BIGNUM* bignumSerial = nullptr; |
| 1222 | if (BN_dec2bn(&bignumSerial, serialDecimal.c_str()) == 0) { |
| 1223 | LOG(ERROR) << "Error parsing serial"; |
| 1224 | return {}; |
| 1225 | } |
| 1226 | auto bignumSerialPtr = BIGNUM_Ptr(bignumSerial); |
| 1227 | auto asnSerial = ASN1_INTEGER_Ptr(BN_to_ASN1_INTEGER(bignumSerial, nullptr)); |
| 1228 | if (X509_set_serialNumber(x509.get(), asnSerial.get()) != 1) { |
| 1229 | LOG(ERROR) << "Error setting serial"; |
| 1230 | return {}; |
| 1231 | } |
| 1232 | |
| 1233 | auto x509Issuer = X509_NAME_Ptr(X509_NAME_new()); |
| 1234 | if (x509Issuer.get() == nullptr || |
| 1235 | X509_NAME_add_entry_by_txt(x509Issuer.get(), "CN", MBSTRING_ASC, |
| 1236 | (const uint8_t*)issuer.c_str(), issuer.size(), -1 /* loc */, |
| 1237 | 0 /* set */) != 1 || |
| 1238 | X509_set_issuer_name(x509.get(), x509Issuer.get()) != 1) { |
| 1239 | LOG(ERROR) << "Error setting issuer"; |
| 1240 | return {}; |
| 1241 | } |
| 1242 | |
| 1243 | auto x509Subject = X509_NAME_Ptr(X509_NAME_new()); |
| 1244 | if (x509Subject.get() == nullptr || |
| 1245 | X509_NAME_add_entry_by_txt(x509Subject.get(), "CN", MBSTRING_ASC, |
| 1246 | (const uint8_t*)subject.c_str(), subject.size(), -1 /* loc */, |
| 1247 | 0 /* set */) != 1 || |
| 1248 | X509_set_subject_name(x509.get(), x509Subject.get()) != 1) { |
| 1249 | LOG(ERROR) << "Error setting subject"; |
| 1250 | return {}; |
| 1251 | } |
| 1252 | |
| 1253 | auto asnNotBefore = ASN1_TIME_Ptr(ASN1_TIME_set(nullptr, validityNotBefore)); |
| 1254 | if (asnNotBefore.get() == nullptr || X509_set_notBefore(x509.get(), asnNotBefore.get()) != 1) { |
| 1255 | LOG(ERROR) << "Error setting notBefore"; |
| 1256 | return {}; |
| 1257 | } |
| 1258 | |
| 1259 | auto asnNotAfter = ASN1_TIME_Ptr(ASN1_TIME_set(nullptr, validityNotAfter)); |
| 1260 | if (asnNotAfter.get() == nullptr || X509_set_notAfter(x509.get(), asnNotAfter.get()) != 1) { |
| 1261 | LOG(ERROR) << "Error setting notAfter"; |
| 1262 | return {}; |
| 1263 | } |
| 1264 | |
| 1265 | if (X509_sign(x509.get(), privPkey.get(), EVP_sha256()) == 0) { |
| 1266 | LOG(ERROR) << "Error signing X509 certificate"; |
| 1267 | return {}; |
| 1268 | } |
| 1269 | |
| 1270 | unsigned char* buffer = nullptr; |
| 1271 | int length = i2d_X509(x509.get(), &buffer); |
| 1272 | if (length < 0) { |
| 1273 | LOG(ERROR) << "Error DER encoding X509 certificate"; |
| 1274 | return {}; |
| 1275 | } |
| 1276 | |
| 1277 | vector<uint8_t> certificate; |
| 1278 | certificate.resize(length); |
| 1279 | memcpy(certificate.data(), buffer, length); |
| 1280 | OPENSSL_free(buffer); |
| 1281 | return certificate; |
| 1282 | } |
| 1283 | |
| 1284 | optional<vector<uint8_t>> ecdh(const vector<uint8_t>& publicKey, |
| 1285 | const vector<uint8_t>& privateKey) { |
| 1286 | auto group = EC_GROUP_Ptr(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| 1287 | auto point = EC_POINT_Ptr(EC_POINT_new(group.get())); |
| 1288 | if (EC_POINT_oct2point(group.get(), point.get(), publicKey.data(), publicKey.size(), nullptr) != |
| 1289 | 1) { |
| 1290 | LOG(ERROR) << "Error decoding publicKey"; |
| 1291 | return {}; |
| 1292 | } |
| 1293 | auto ecKey = EC_KEY_Ptr(EC_KEY_new()); |
| 1294 | auto pkey = EVP_PKEY_Ptr(EVP_PKEY_new()); |
| 1295 | if (ecKey.get() == nullptr || pkey.get() == nullptr) { |
| 1296 | LOG(ERROR) << "Memory allocation failed"; |
| 1297 | return {}; |
| 1298 | } |
| 1299 | if (EC_KEY_set_group(ecKey.get(), group.get()) != 1) { |
| 1300 | LOG(ERROR) << "Error setting group"; |
| 1301 | return {}; |
| 1302 | } |
| 1303 | if (EC_KEY_set_public_key(ecKey.get(), point.get()) != 1) { |
| 1304 | LOG(ERROR) << "Error setting point"; |
| 1305 | return {}; |
| 1306 | } |
| 1307 | if (EVP_PKEY_set1_EC_KEY(pkey.get(), ecKey.get()) != 1) { |
| 1308 | LOG(ERROR) << "Error setting key"; |
| 1309 | return {}; |
| 1310 | } |
| 1311 | |
| 1312 | auto bn = BIGNUM_Ptr(BN_bin2bn(privateKey.data(), privateKey.size(), nullptr)); |
| 1313 | if (bn.get() == nullptr) { |
| 1314 | LOG(ERROR) << "Error creating BIGNUM for private key"; |
| 1315 | return {}; |
| 1316 | } |
| 1317 | auto privEcKey = EC_KEY_Ptr(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
| 1318 | if (EC_KEY_set_private_key(privEcKey.get(), bn.get()) != 1) { |
| 1319 | LOG(ERROR) << "Error setting private key from BIGNUM"; |
| 1320 | return {}; |
| 1321 | } |
| 1322 | auto privPkey = EVP_PKEY_Ptr(EVP_PKEY_new()); |
| 1323 | if (EVP_PKEY_set1_EC_KEY(privPkey.get(), privEcKey.get()) != 1) { |
| 1324 | LOG(ERROR) << "Error setting private key"; |
| 1325 | return {}; |
| 1326 | } |
| 1327 | |
| 1328 | auto ctx = EVP_PKEY_CTX_Ptr(EVP_PKEY_CTX_new(privPkey.get(), NULL)); |
| 1329 | if (ctx.get() == nullptr) { |
| 1330 | LOG(ERROR) << "Error creating context"; |
| 1331 | return {}; |
| 1332 | } |
| 1333 | |
| 1334 | if (EVP_PKEY_derive_init(ctx.get()) != 1) { |
| 1335 | LOG(ERROR) << "Error initializing context"; |
| 1336 | return {}; |
| 1337 | } |
| 1338 | |
| 1339 | if (EVP_PKEY_derive_set_peer(ctx.get(), pkey.get()) != 1) { |
| 1340 | LOG(ERROR) << "Error setting peer"; |
| 1341 | return {}; |
| 1342 | } |
| 1343 | |
| 1344 | /* Determine buffer length for shared secret */ |
| 1345 | size_t secretLen = 0; |
| 1346 | if (EVP_PKEY_derive(ctx.get(), NULL, &secretLen) != 1) { |
| 1347 | LOG(ERROR) << "Error determing length of shared secret"; |
| 1348 | return {}; |
| 1349 | } |
| 1350 | vector<uint8_t> sharedSecret; |
| 1351 | sharedSecret.resize(secretLen); |
| 1352 | |
| 1353 | if (EVP_PKEY_derive(ctx.get(), sharedSecret.data(), &secretLen) != 1) { |
| 1354 | LOG(ERROR) << "Error deriving shared secret"; |
| 1355 | return {}; |
| 1356 | } |
| 1357 | return sharedSecret; |
| 1358 | } |
| 1359 | |
| 1360 | optional<vector<uint8_t>> hkdf(const vector<uint8_t>& sharedSecret, const vector<uint8_t>& salt, |
| 1361 | const vector<uint8_t>& info, size_t size) { |
| 1362 | vector<uint8_t> derivedKey; |
| 1363 | derivedKey.resize(size); |
| 1364 | if (HKDF(derivedKey.data(), derivedKey.size(), EVP_sha256(), sharedSecret.data(), |
| 1365 | sharedSecret.size(), salt.data(), salt.size(), info.data(), info.size()) != 1) { |
| 1366 | LOG(ERROR) << "Error deriving key"; |
| 1367 | return {}; |
| 1368 | } |
| 1369 | return derivedKey; |
| 1370 | } |
| 1371 | |
| 1372 | void removeLeadingZeroes(vector<uint8_t>& vec) { |
| 1373 | while (vec.size() >= 1 && vec[0] == 0x00) { |
| 1374 | vec.erase(vec.begin()); |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | tuple<bool, vector<uint8_t>, vector<uint8_t>> ecPublicKeyGetXandY( |
| 1379 | const vector<uint8_t>& publicKey) { |
| 1380 | if (publicKey.size() != 65 || publicKey[0] != 0x04) { |
| 1381 | LOG(ERROR) << "publicKey is not in the expected format"; |
| 1382 | return std::make_tuple(false, vector<uint8_t>(), vector<uint8_t>()); |
| 1383 | } |
| 1384 | vector<uint8_t> x, y; |
| 1385 | x.resize(32); |
| 1386 | y.resize(32); |
| 1387 | memcpy(x.data(), publicKey.data() + 1, 32); |
| 1388 | memcpy(y.data(), publicKey.data() + 33, 32); |
| 1389 | |
| 1390 | removeLeadingZeroes(x); |
| 1391 | removeLeadingZeroes(y); |
| 1392 | |
| 1393 | return std::make_tuple(true, x, y); |
| 1394 | } |
| 1395 | |
| 1396 | optional<vector<uint8_t>> certificateChainGetTopMostKey(const vector<uint8_t>& certificateChain) { |
| 1397 | vector<X509_Ptr> certs; |
| 1398 | if (!parseX509Certificates(certificateChain, certs)) { |
| 1399 | return {}; |
| 1400 | } |
| 1401 | if (certs.size() < 1) { |
| 1402 | LOG(ERROR) << "No certificates in chain"; |
| 1403 | return {}; |
| 1404 | } |
| 1405 | |
| 1406 | int algoId = OBJ_obj2nid(certs[0]->cert_info->key->algor->algorithm); |
| 1407 | if (algoId != NID_X9_62_id_ecPublicKey) { |
| 1408 | LOG(ERROR) << "Expected NID_X9_62_id_ecPublicKey, got " << OBJ_nid2ln(algoId); |
| 1409 | return {}; |
| 1410 | } |
| 1411 | |
| 1412 | auto pkey = EVP_PKEY_Ptr(X509_get_pubkey(certs[0].get())); |
| 1413 | if (pkey.get() == nullptr) { |
| 1414 | LOG(ERROR) << "No public key"; |
| 1415 | return {}; |
| 1416 | } |
| 1417 | |
| 1418 | auto ecKey = EC_KEY_Ptr(EVP_PKEY_get1_EC_KEY(pkey.get())); |
| 1419 | if (ecKey.get() == nullptr) { |
| 1420 | LOG(ERROR) << "Failed getting EC key"; |
| 1421 | return {}; |
| 1422 | } |
| 1423 | |
| 1424 | auto ecGroup = EC_KEY_get0_group(ecKey.get()); |
| 1425 | auto ecPoint = EC_KEY_get0_public_key(ecKey.get()); |
| 1426 | int size = EC_POINT_point2oct(ecGroup, ecPoint, POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, |
| 1427 | nullptr); |
| 1428 | if (size == 0) { |
| 1429 | LOG(ERROR) << "Error generating public key encoding"; |
| 1430 | return {}; |
| 1431 | } |
| 1432 | vector<uint8_t> publicKey; |
| 1433 | publicKey.resize(size); |
| 1434 | EC_POINT_point2oct(ecGroup, ecPoint, POINT_CONVERSION_UNCOMPRESSED, publicKey.data(), |
| 1435 | publicKey.size(), nullptr); |
| 1436 | return publicKey; |
| 1437 | } |
| 1438 | |
| 1439 | // --------------------------------------------------------------------------- |
| 1440 | // COSE Utility Functions |
| 1441 | // --------------------------------------------------------------------------- |
| 1442 | |
| 1443 | vector<uint8_t> coseBuildToBeSigned(const vector<uint8_t>& encodedProtectedHeaders, |
| 1444 | const vector<uint8_t>& data, |
| 1445 | const vector<uint8_t>& detachedContent) { |
| 1446 | cppbor::Array sigStructure; |
| 1447 | sigStructure.add("Signature1"); |
| 1448 | sigStructure.add(encodedProtectedHeaders); |
| 1449 | |
| 1450 | // We currently don't support Externally Supplied Data (RFC 8152 section 4.3) |
| 1451 | // so external_aad is the empty bstr |
| 1452 | vector<uint8_t> emptyExternalAad; |
| 1453 | sigStructure.add(emptyExternalAad); |
| 1454 | |
| 1455 | // Next field is the payload, independently of how it's transported (RFC |
| 1456 | // 8152 section 4.4). Since our API specifies only one of |data| and |
| 1457 | // |detachedContent| can be non-empty, it's simply just the non-empty one. |
| 1458 | if (data.size() > 0) { |
| 1459 | sigStructure.add(data); |
| 1460 | } else { |
| 1461 | sigStructure.add(detachedContent); |
| 1462 | } |
| 1463 | return sigStructure.encode(); |
| 1464 | } |
| 1465 | |
| 1466 | vector<uint8_t> coseEncodeHeaders(const cppbor::Map& protectedHeaders) { |
| 1467 | if (protectedHeaders.size() == 0) { |
| 1468 | cppbor::Bstr emptyBstr(vector<uint8_t>({})); |
| 1469 | return emptyBstr.encode(); |
| 1470 | } |
| 1471 | return protectedHeaders.encode(); |
| 1472 | } |
| 1473 | |
| 1474 | // From https://tools.ietf.org/html/rfc8152 |
| 1475 | const int COSE_LABEL_ALG = 1; |
| 1476 | const int COSE_LABEL_X5CHAIN = 33; // temporary identifier |
| 1477 | |
| 1478 | // From "COSE Algorithms" registry |
| 1479 | const int COSE_ALG_ECDSA_256 = -7; |
| 1480 | const int COSE_ALG_HMAC_256_256 = 5; |
| 1481 | |
| 1482 | bool ecdsaSignatureCoseToDer(const vector<uint8_t>& ecdsaCoseSignature, |
| 1483 | vector<uint8_t>& ecdsaDerSignature) { |
| 1484 | if (ecdsaCoseSignature.size() != 64) { |
| 1485 | LOG(ERROR) << "COSE signature length is " << ecdsaCoseSignature.size() << ", expected 64"; |
| 1486 | return false; |
| 1487 | } |
| 1488 | |
| 1489 | auto rBn = BIGNUM_Ptr(BN_bin2bn(ecdsaCoseSignature.data(), 32, nullptr)); |
| 1490 | if (rBn.get() == nullptr) { |
| 1491 | LOG(ERROR) << "Error creating BIGNUM for r"; |
| 1492 | return false; |
| 1493 | } |
| 1494 | |
| 1495 | auto sBn = BIGNUM_Ptr(BN_bin2bn(ecdsaCoseSignature.data() + 32, 32, nullptr)); |
| 1496 | if (sBn.get() == nullptr) { |
| 1497 | LOG(ERROR) << "Error creating BIGNUM for s"; |
| 1498 | return false; |
| 1499 | } |
| 1500 | |
| 1501 | ECDSA_SIG sig; |
| 1502 | sig.r = rBn.get(); |
| 1503 | sig.s = sBn.get(); |
| 1504 | |
| 1505 | size_t len = i2d_ECDSA_SIG(&sig, nullptr); |
| 1506 | ecdsaDerSignature.resize(len); |
| 1507 | unsigned char* p = (unsigned char*)ecdsaDerSignature.data(); |
| 1508 | i2d_ECDSA_SIG(&sig, &p); |
| 1509 | |
| 1510 | return true; |
| 1511 | } |
| 1512 | |
| 1513 | bool ecdsaSignatureDerToCose(const vector<uint8_t>& ecdsaDerSignature, |
| 1514 | vector<uint8_t>& ecdsaCoseSignature) { |
| 1515 | ECDSA_SIG* sig; |
| 1516 | const unsigned char* p = ecdsaDerSignature.data(); |
| 1517 | sig = d2i_ECDSA_SIG(nullptr, &p, ecdsaDerSignature.size()); |
| 1518 | if (sig == nullptr) { |
| 1519 | LOG(ERROR) << "Error decoding DER signature"; |
| 1520 | return false; |
| 1521 | } |
| 1522 | |
| 1523 | ecdsaCoseSignature.clear(); |
| 1524 | ecdsaCoseSignature.resize(64); |
| 1525 | if (BN_bn2binpad(sig->r, ecdsaCoseSignature.data(), 32) != 32) { |
| 1526 | LOG(ERROR) << "Error encoding r"; |
| 1527 | return false; |
| 1528 | } |
| 1529 | if (BN_bn2binpad(sig->s, ecdsaCoseSignature.data() + 32, 32) != 32) { |
| 1530 | LOG(ERROR) << "Error encoding s"; |
| 1531 | return false; |
| 1532 | } |
| 1533 | return true; |
| 1534 | } |
| 1535 | |
| 1536 | optional<vector<uint8_t>> coseSignEcDsa(const vector<uint8_t>& key, const vector<uint8_t>& data, |
| 1537 | const vector<uint8_t>& detachedContent, |
| 1538 | const vector<uint8_t>& certificateChain) { |
| 1539 | cppbor::Map unprotectedHeaders; |
| 1540 | cppbor::Map protectedHeaders; |
| 1541 | |
| 1542 | if (data.size() > 0 && detachedContent.size() > 0) { |
| 1543 | LOG(ERROR) << "data and detachedContent cannot both be non-empty"; |
| 1544 | return {}; |
| 1545 | } |
| 1546 | |
| 1547 | protectedHeaders.add(COSE_LABEL_ALG, COSE_ALG_ECDSA_256); |
| 1548 | |
| 1549 | if (certificateChain.size() != 0) { |
| 1550 | optional<vector<vector<uint8_t>>> certs = support::certificateChainSplit(certificateChain); |
| 1551 | if (!certs) { |
| 1552 | LOG(ERROR) << "Error splitting certificate chain"; |
| 1553 | return {}; |
| 1554 | } |
| 1555 | if (certs.value().size() == 1) { |
| 1556 | unprotectedHeaders.add(COSE_LABEL_X5CHAIN, certs.value()[0]); |
| 1557 | } else { |
| 1558 | cppbor::Array certArray; |
| 1559 | for (const vector<uint8_t>& cert : certs.value()) { |
| 1560 | certArray.add(cert); |
| 1561 | } |
| 1562 | unprotectedHeaders.add(COSE_LABEL_X5CHAIN, std::move(certArray)); |
| 1563 | } |
| 1564 | } |
| 1565 | |
| 1566 | vector<uint8_t> encodedProtectedHeaders = coseEncodeHeaders(protectedHeaders); |
| 1567 | vector<uint8_t> toBeSigned = |
| 1568 | coseBuildToBeSigned(encodedProtectedHeaders, data, detachedContent); |
| 1569 | |
| 1570 | optional<vector<uint8_t>> derSignature = signEcDsa(key, toBeSigned); |
| 1571 | if (!derSignature) { |
| 1572 | LOG(ERROR) << "Error signing toBeSigned data"; |
| 1573 | return {}; |
| 1574 | } |
| 1575 | vector<uint8_t> coseSignature; |
| 1576 | if (!ecdsaSignatureDerToCose(derSignature.value(), coseSignature)) { |
| 1577 | LOG(ERROR) << "Error converting ECDSA signature from DER to COSE format"; |
| 1578 | return {}; |
| 1579 | } |
| 1580 | |
| 1581 | cppbor::Array coseSign1; |
| 1582 | coseSign1.add(encodedProtectedHeaders); |
| 1583 | coseSign1.add(std::move(unprotectedHeaders)); |
| 1584 | if (data.size() == 0) { |
| 1585 | cppbor::Null nullValue; |
| 1586 | coseSign1.add(std::move(nullValue)); |
| 1587 | } else { |
| 1588 | coseSign1.add(data); |
| 1589 | } |
| 1590 | coseSign1.add(coseSignature); |
| 1591 | vector<uint8_t> signatureCoseSign1; |
| 1592 | signatureCoseSign1 = coseSign1.encode(); |
| 1593 | return signatureCoseSign1; |
| 1594 | } |
| 1595 | |
| 1596 | bool coseCheckEcDsaSignature(const vector<uint8_t>& signatureCoseSign1, |
| 1597 | const vector<uint8_t>& detachedContent, |
| 1598 | const vector<uint8_t>& publicKey) { |
| 1599 | auto [item, _, message] = cppbor::parse(signatureCoseSign1); |
| 1600 | if (item == nullptr) { |
| 1601 | LOG(ERROR) << "Passed-in COSE_Sign1 is not valid CBOR: " << message; |
| 1602 | return false; |
| 1603 | } |
| 1604 | const cppbor::Array* array = item->asArray(); |
| 1605 | if (array == nullptr) { |
| 1606 | LOG(ERROR) << "Value for COSE_Sign1 is not an array"; |
| 1607 | return false; |
| 1608 | } |
| 1609 | if (array->size() != 4) { |
| 1610 | LOG(ERROR) << "Value for COSE_Sign1 is not an array of size 4"; |
| 1611 | return false; |
| 1612 | } |
| 1613 | |
| 1614 | const cppbor::Bstr* encodedProtectedHeadersBstr = (*array)[0]->asBstr(); |
| 1615 | ; |
| 1616 | if (encodedProtectedHeadersBstr == nullptr) { |
| 1617 | LOG(ERROR) << "Value for encodedProtectedHeaders is not a bstr"; |
| 1618 | return false; |
| 1619 | } |
| 1620 | const vector<uint8_t> encodedProtectedHeaders = encodedProtectedHeadersBstr->value(); |
| 1621 | |
| 1622 | const cppbor::Map* unprotectedHeaders = (*array)[1]->asMap(); |
| 1623 | if (unprotectedHeaders == nullptr) { |
| 1624 | LOG(ERROR) << "Value for unprotectedHeaders is not a map"; |
| 1625 | return false; |
| 1626 | } |
| 1627 | |
| 1628 | vector<uint8_t> data; |
| 1629 | const cppbor::Simple* payloadAsSimple = (*array)[2]->asSimple(); |
| 1630 | if (payloadAsSimple != nullptr) { |
| 1631 | if (payloadAsSimple->asNull() == nullptr) { |
| 1632 | LOG(ERROR) << "Value for payload is not null or a bstr"; |
| 1633 | return false; |
| 1634 | } |
| 1635 | } else { |
| 1636 | const cppbor::Bstr* payloadAsBstr = (*array)[2]->asBstr(); |
| 1637 | if (payloadAsBstr == nullptr) { |
| 1638 | LOG(ERROR) << "Value for payload is not null or a bstr"; |
| 1639 | return false; |
| 1640 | } |
| 1641 | data = payloadAsBstr->value(); // TODO: avoid copy |
| 1642 | } |
| 1643 | |
| 1644 | if (data.size() > 0 && detachedContent.size() > 0) { |
| 1645 | LOG(ERROR) << "data and detachedContent cannot both be non-empty"; |
| 1646 | return false; |
| 1647 | } |
| 1648 | |
| 1649 | const cppbor::Bstr* signatureBstr = (*array)[3]->asBstr(); |
| 1650 | if (signatureBstr == nullptr) { |
| 1651 | LOG(ERROR) << "Value for signature is a bstr"; |
| 1652 | return false; |
| 1653 | } |
| 1654 | const vector<uint8_t>& coseSignature = signatureBstr->value(); |
| 1655 | |
| 1656 | vector<uint8_t> derSignature; |
| 1657 | if (!ecdsaSignatureCoseToDer(coseSignature, derSignature)) { |
| 1658 | LOG(ERROR) << "Error converting ECDSA signature from COSE to DER format"; |
| 1659 | return false; |
| 1660 | } |
| 1661 | |
| 1662 | vector<uint8_t> toBeSigned = |
| 1663 | coseBuildToBeSigned(encodedProtectedHeaders, data, detachedContent); |
| 1664 | if (!checkEcDsaSignature(support::sha256(toBeSigned), derSignature, publicKey)) { |
| 1665 | LOG(ERROR) << "Signature check failed"; |
| 1666 | return false; |
| 1667 | } |
| 1668 | return true; |
| 1669 | } |
| 1670 | |
| 1671 | optional<vector<uint8_t>> coseSignGetPayload(const vector<uint8_t>& signatureCoseSign1) { |
| 1672 | auto [item, _, message] = cppbor::parse(signatureCoseSign1); |
| 1673 | if (item == nullptr) { |
| 1674 | LOG(ERROR) << "Passed-in COSE_Sign1 is not valid CBOR: " << message; |
| 1675 | return {}; |
| 1676 | } |
| 1677 | const cppbor::Array* array = item->asArray(); |
| 1678 | if (array == nullptr) { |
| 1679 | LOG(ERROR) << "Value for COSE_Sign1 is not an array"; |
| 1680 | return {}; |
| 1681 | } |
| 1682 | if (array->size() != 4) { |
| 1683 | LOG(ERROR) << "Value for COSE_Sign1 is not an array of size 4"; |
| 1684 | return {}; |
| 1685 | } |
| 1686 | |
| 1687 | vector<uint8_t> data; |
| 1688 | const cppbor::Simple* payloadAsSimple = (*array)[2]->asSimple(); |
| 1689 | if (payloadAsSimple != nullptr) { |
| 1690 | if (payloadAsSimple->asNull() == nullptr) { |
| 1691 | LOG(ERROR) << "Value for payload is not null or a bstr"; |
| 1692 | return {}; |
| 1693 | } |
| 1694 | // payload is null, so |data| should be empty (as it is) |
| 1695 | } else { |
| 1696 | const cppbor::Bstr* payloadAsBstr = (*array)[2]->asBstr(); |
| 1697 | if (payloadAsBstr == nullptr) { |
| 1698 | LOG(ERROR) << "Value for payload is not null or a bstr"; |
| 1699 | return {}; |
| 1700 | } |
| 1701 | // Copy payload into |data| |
| 1702 | data = payloadAsBstr->value(); |
| 1703 | } |
| 1704 | |
| 1705 | return data; |
| 1706 | } |
| 1707 | |
| 1708 | optional<vector<uint8_t>> coseSignGetX5Chain(const vector<uint8_t>& signatureCoseSign1) { |
| 1709 | auto [item, _, message] = cppbor::parse(signatureCoseSign1); |
| 1710 | if (item == nullptr) { |
| 1711 | LOG(ERROR) << "Passed-in COSE_Sign1 is not valid CBOR: " << message; |
| 1712 | return {}; |
| 1713 | } |
| 1714 | const cppbor::Array* array = item->asArray(); |
| 1715 | if (array == nullptr) { |
| 1716 | LOG(ERROR) << "Value for COSE_Sign1 is not an array"; |
| 1717 | return {}; |
| 1718 | } |
| 1719 | if (array->size() != 4) { |
| 1720 | LOG(ERROR) << "Value for COSE_Sign1 is not an array of size 4"; |
| 1721 | return {}; |
| 1722 | } |
| 1723 | |
| 1724 | const cppbor::Map* unprotectedHeaders = (*array)[1]->asMap(); |
| 1725 | if (unprotectedHeaders == nullptr) { |
| 1726 | LOG(ERROR) << "Value for unprotectedHeaders is not a map"; |
| 1727 | return {}; |
| 1728 | } |
| 1729 | |
| 1730 | for (size_t n = 0; n < unprotectedHeaders->size(); n++) { |
| 1731 | auto [keyItem, valueItem] = (*unprotectedHeaders)[n]; |
| 1732 | const cppbor::Int* number = keyItem->asInt(); |
| 1733 | if (number == nullptr) { |
| 1734 | LOG(ERROR) << "Key item in top-level map is not a number"; |
| 1735 | return {}; |
| 1736 | } |
| 1737 | int label = number->value(); |
| 1738 | if (label == COSE_LABEL_X5CHAIN) { |
| 1739 | const cppbor::Bstr* bstr = valueItem->asBstr(); |
| 1740 | if (bstr != nullptr) { |
| 1741 | return bstr->value(); |
| 1742 | } |
| 1743 | const cppbor::Array* array = valueItem->asArray(); |
| 1744 | if (array != nullptr) { |
| 1745 | vector<uint8_t> certs; |
| 1746 | for (size_t m = 0; m < array->size(); m++) { |
| 1747 | const cppbor::Bstr* bstr = ((*array)[m])->asBstr(); |
| 1748 | if (bstr == nullptr) { |
| 1749 | LOG(ERROR) << "Item in x5chain array is not a bstr"; |
| 1750 | return {}; |
| 1751 | } |
| 1752 | const vector<uint8_t>& certValue = bstr->value(); |
| 1753 | certs.insert(certs.end(), certValue.begin(), certValue.end()); |
| 1754 | } |
| 1755 | return certs; |
| 1756 | } |
| 1757 | LOG(ERROR) << "Value for x5chain label is not a bstr or array"; |
| 1758 | return {}; |
| 1759 | } |
| 1760 | } |
| 1761 | LOG(ERROR) << "Did not find x5chain label in unprotected headers"; |
| 1762 | return {}; |
| 1763 | } |
| 1764 | |
| 1765 | vector<uint8_t> coseBuildToBeMACed(const vector<uint8_t>& encodedProtectedHeaders, |
| 1766 | const vector<uint8_t>& data, |
| 1767 | const vector<uint8_t>& detachedContent) { |
| 1768 | cppbor::Array macStructure; |
| 1769 | macStructure.add("MAC0"); |
| 1770 | macStructure.add(encodedProtectedHeaders); |
| 1771 | |
| 1772 | // We currently don't support Externally Supplied Data (RFC 8152 section 4.3) |
| 1773 | // so external_aad is the empty bstr |
| 1774 | vector<uint8_t> emptyExternalAad; |
| 1775 | macStructure.add(emptyExternalAad); |
| 1776 | |
| 1777 | // Next field is the payload, independently of how it's transported (RFC |
| 1778 | // 8152 section 4.4). Since our API specifies only one of |data| and |
| 1779 | // |detachedContent| can be non-empty, it's simply just the non-empty one. |
| 1780 | if (data.size() > 0) { |
| 1781 | macStructure.add(data); |
| 1782 | } else { |
| 1783 | macStructure.add(detachedContent); |
| 1784 | } |
| 1785 | |
| 1786 | return macStructure.encode(); |
| 1787 | } |
| 1788 | |
| 1789 | optional<vector<uint8_t>> coseMac0(const vector<uint8_t>& key, const vector<uint8_t>& data, |
| 1790 | const vector<uint8_t>& detachedContent) { |
| 1791 | cppbor::Map unprotectedHeaders; |
| 1792 | cppbor::Map protectedHeaders; |
| 1793 | |
| 1794 | if (data.size() > 0 && detachedContent.size() > 0) { |
| 1795 | LOG(ERROR) << "data and detachedContent cannot both be non-empty"; |
| 1796 | return {}; |
| 1797 | } |
| 1798 | |
| 1799 | protectedHeaders.add(COSE_LABEL_ALG, COSE_ALG_HMAC_256_256); |
| 1800 | |
| 1801 | vector<uint8_t> encodedProtectedHeaders = coseEncodeHeaders(protectedHeaders); |
| 1802 | vector<uint8_t> toBeMACed = coseBuildToBeMACed(encodedProtectedHeaders, data, detachedContent); |
| 1803 | |
| 1804 | optional<vector<uint8_t>> mac = hmacSha256(key, toBeMACed); |
| 1805 | if (!mac) { |
| 1806 | LOG(ERROR) << "Error MACing toBeMACed data"; |
| 1807 | return {}; |
| 1808 | } |
| 1809 | |
| 1810 | cppbor::Array array; |
| 1811 | array.add(encodedProtectedHeaders); |
| 1812 | array.add(std::move(unprotectedHeaders)); |
| 1813 | if (data.size() == 0) { |
| 1814 | cppbor::Null nullValue; |
| 1815 | array.add(std::move(nullValue)); |
| 1816 | } else { |
| 1817 | array.add(data); |
| 1818 | } |
| 1819 | array.add(mac.value()); |
| 1820 | return array.encode(); |
| 1821 | } |
| 1822 | |
| 1823 | // --------------------------------------------------------------------------- |
David Zeuthen | c75ac31 | 2019-10-28 13:16:45 -0400 | [diff] [blame] | 1824 | // Utility functions specific to IdentityCredential. |
| 1825 | // --------------------------------------------------------------------------- |
| 1826 | |
David Zeuthen | c75ac31 | 2019-10-28 13:16:45 -0400 | [diff] [blame] | 1827 | vector<vector<uint8_t>> chunkVector(const vector<uint8_t>& content, size_t maxChunkSize) { |
| 1828 | vector<vector<uint8_t>> ret; |
| 1829 | |
| 1830 | size_t contentSize = content.size(); |
| 1831 | if (contentSize <= maxChunkSize) { |
| 1832 | ret.push_back(content); |
| 1833 | return ret; |
| 1834 | } |
| 1835 | |
| 1836 | size_t numChunks = (contentSize + maxChunkSize - 1) / maxChunkSize; |
| 1837 | |
| 1838 | size_t pos = 0; |
| 1839 | for (size_t n = 0; n < numChunks; n++) { |
| 1840 | size_t size = contentSize - pos; |
| 1841 | if (size > maxChunkSize) { |
| 1842 | size = maxChunkSize; |
| 1843 | } |
| 1844 | auto begin = content.begin() + pos; |
| 1845 | auto end = content.begin() + pos + size; |
| 1846 | ret.emplace_back(vector<uint8_t>(begin, end)); |
| 1847 | pos += maxChunkSize; |
| 1848 | } |
| 1849 | |
| 1850 | return ret; |
| 1851 | } |
| 1852 | |
David Zeuthen | c75ac31 | 2019-10-28 13:16:45 -0400 | [diff] [blame] | 1853 | |
| 1854 | vector<uint8_t> testHardwareBoundKey = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| 1855 | |
| 1856 | const vector<uint8_t>& getTestHardwareBoundKey() { |
| 1857 | return testHardwareBoundKey; |
| 1858 | } |
| 1859 | |
David Zeuthen | c75ac31 | 2019-10-28 13:16:45 -0400 | [diff] [blame] | 1860 | } // namespace support |
| 1861 | } // namespace identity |
| 1862 | } // namespace hardware |
| 1863 | } // namespace android |