Add memory domain VTS validation tests.
Bug: 147777318
Test: 1.3 VTS with sample driver
Change-Id: Ia2097345924726d8fb627845fd7438cc3eb35eb6
diff --git a/neuralnetworks/1.3/vts/functional/Android.bp b/neuralnetworks/1.3/vts/functional/Android.bp
index f936267..545a5be 100644
--- a/neuralnetworks/1.3/vts/functional/Android.bp
+++ b/neuralnetworks/1.3/vts/functional/Android.bp
@@ -40,6 +40,7 @@
"BasicTests.cpp",
"CompilationCachingTests.cpp",
"GeneratedTestHarness.cpp",
+ "MemoryDomainTests.cpp",
"QualityOfServiceTests.cpp",
"TestAssertions.cpp",
"ValidateBurst.cpp",
diff --git a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp
index 5689a39..ff21960 100644
--- a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp
+++ b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp
@@ -72,8 +72,6 @@
namespace {
-enum class Executor { ASYNC, SYNC, BURST, FENCED };
-
enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT, MISSED_DEADLINE };
enum class MemoryType { SHARED, DEVICE };
diff --git a/neuralnetworks/1.3/vts/functional/MemoryDomainTests.cpp b/neuralnetworks/1.3/vts/functional/MemoryDomainTests.cpp
new file mode 100644
index 0000000..08c1b35
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/MemoryDomainTests.cpp
@@ -0,0 +1,1166 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include <android-base/logging.h>
+#include <gtest/gtest.h>
+
+#include "1.3/Callbacks.h"
+#include "1.3/Utils.h"
+#include "GeneratedTestHarness.h"
+#include "MemoryUtils.h"
+#include "TestHarness.h"
+#include "Utils.h"
+#include "VtsHalNeuralnetworks.h"
+
+namespace android::hardware::neuralnetworks::V1_3::vts::functional {
+
+using namespace test_helper;
+using implementation::ExecutionCallback;
+using implementation::PreparedModelCallback;
+using V1_0::RequestArgument;
+using V1_1::ExecutionPreference;
+using V1_2::Constant;
+using V1_2::MeasureTiming;
+using V1_2::OutputShape;
+using V1_2::Timing;
+
+namespace {
+
+const auto kNamedDeviceChoices = testing::ValuesIn(getNamedDevices());
+
+// A 1.3 driver is likely to support at least one of the following operand types.
+const std::vector<TestOperandType> kTestOperandTypeChoicesVector = {
+ TestOperandType::TENSOR_FLOAT32,
+ TestOperandType::TENSOR_FLOAT16,
+ TestOperandType::TENSOR_QUANT8_ASYMM,
+ TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED,
+};
+const auto kTestOperandTypeChoices = testing::ValuesIn(kTestOperandTypeChoicesVector);
+
+bool isInChoices(TestOperandType type) {
+ return std::count(kTestOperandTypeChoicesVector.begin(), kTestOperandTypeChoicesVector.end(),
+ type) > 0;
+}
+
+bool isFloat(TestOperandType type) {
+ CHECK(isInChoices(type));
+ return type == TestOperandType::TENSOR_FLOAT32 || type == TestOperandType::TENSOR_FLOAT16;
+}
+
+// Create dummy buffers for model constants as well as inputs and outputs.
+// We only care about the size here because we will not check accuracy in validation tests.
+void createDummyData(TestModel* testModel) {
+ for (auto& operand : testModel->main.operands) {
+ if (operand.data != nullptr) continue;
+ switch (operand.lifetime) {
+ case TestOperandLifeTime::SUBGRAPH_INPUT:
+ case TestOperandLifeTime::SUBGRAPH_OUTPUT:
+ case TestOperandLifeTime::CONSTANT_COPY:
+ case TestOperandLifeTime::CONSTANT_REFERENCE: {
+ const uint32_t size = nn::nonExtensionOperandSizeOfData(
+ static_cast<OperandType>(operand.type), operand.dimensions);
+ operand.data = TestBuffer(size);
+ } break;
+ default:
+ break;
+ }
+ }
+}
+
+TestOperand createInt32Scalar(int32_t value) {
+ return {
+ .type = TestOperandType::INT32,
+ .dimensions = {},
+ .numberOfConsumers = 1,
+ .scale = 0.0f,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::CONSTANT_COPY,
+ .data = TestBuffer::createFromVector<int32_t>({value}),
+ };
+}
+
+// Construct a test model with multiple CONV_2D operations with the given operand as inputs.
+// The dimensions of the filters are chosen to ensure outputs has the same dimensions as inputs.
+// We choose CONV_2D operation because it is commonly supported by most drivers.
+TestModel createConvModel(const TestOperand& operand, uint32_t numOperations) {
+ CHECK(isInChoices(operand.type));
+
+ TestOperand weight = {.type = operand.type,
+ .dimensions = {operand.dimensions[3], 3, 3, operand.dimensions[3]},
+ .numberOfConsumers = 1,
+ .scale = isFloat(operand.type) ? 0.0f : 1.0f,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::CONSTANT_COPY};
+
+ TestOperand bias = {
+ .type = isFloat(operand.type) ? operand.type : TestOperandType::TENSOR_INT32,
+ .dimensions = {operand.dimensions[3]},
+ .numberOfConsumers = 1,
+ .scale = operand.scale * weight.scale,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::CONSTANT_COPY};
+
+ TestOperand output = operand;
+ output.numberOfConsumers = 0;
+ output.lifetime = TestOperandLifeTime::SUBGRAPH_OUTPUT;
+
+ const std::vector<TestOperand> operands = {
+ operand,
+ std::move(weight),
+ std::move(bias),
+ createInt32Scalar(1), // same padding
+ createInt32Scalar(1), // width stride
+ createInt32Scalar(1), // height stride
+ createInt32Scalar(0), // activation = NONE
+ std::move(output),
+ };
+
+ TestModel model;
+ for (uint32_t i = 0; i < numOperations; i++) {
+ model.main.operands.insert(model.main.operands.end(), operands.begin(), operands.end());
+ const uint32_t inputIndex = operands.size() * i;
+ const uint32_t outputIndex = inputIndex + operands.size() - 1;
+ std::vector<uint32_t> inputs(operands.size() - 1);
+ std::iota(inputs.begin(), inputs.end(), inputIndex);
+ model.main.operations.push_back({.type = TestOperationType::CONV_2D,
+ .inputs = std::move(inputs),
+ .outputs = {outputIndex}});
+ model.main.inputIndexes.push_back(inputIndex);
+ model.main.outputIndexes.push_back(outputIndex);
+ }
+ createDummyData(&model);
+ return model;
+}
+
+// Construct a test model with a single ADD operation with the given operand as input0 and input1.
+// This is to cover additional cases that the CONV_2D model does not support, e.g. arbitrary input
+// operand rank, scalar input operand. We choose ADD operation because it is commonly supported by
+// most drivers.
+TestModel createSingleAddModel(const TestOperand& operand) {
+ CHECK(isInChoices(operand.type));
+
+ TestOperand act = {
+ .type = TestOperandType::INT32,
+ .dimensions = {},
+ .numberOfConsumers = 1,
+ .scale = 0.0f,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::SUBGRAPH_INPUT,
+ };
+
+ TestOperand output = operand;
+ output.numberOfConsumers = 0;
+ output.lifetime = TestOperandLifeTime::SUBGRAPH_OUTPUT;
+
+ TestModel model = {
+ .main =
+ {
+ .operands =
+ {
+ operand,
+ operand,
+ std::move(act),
+ output,
+ },
+ .operations = {{.type = TestOperationType::ADD,
+ .inputs = {0, 1, 2},
+ .outputs = {3}}},
+ .inputIndexes = {0, 1, 2},
+ .outputIndexes = {3},
+ },
+ };
+ createDummyData(&model);
+ return model;
+}
+
+// A dummy invalid IPreparedModel class for MemoryDomainAllocateTest.InvalidPreparedModel
+class InvalidPreparedModel : public IPreparedModel {
+ public:
+ Return<V1_0::ErrorStatus> execute(const V1_0::Request&,
+ const sp<V1_0::IExecutionCallback>&) override {
+ return V1_0::ErrorStatus::GENERAL_FAILURE;
+ }
+ Return<V1_0::ErrorStatus> execute_1_2(const V1_0::Request&, V1_2::MeasureTiming,
+ const sp<V1_2::IExecutionCallback>&) override {
+ return V1_0::ErrorStatus::GENERAL_FAILURE;
+ }
+ Return<V1_3::ErrorStatus> execute_1_3(const V1_3::Request&, V1_2::MeasureTiming,
+ const V1_3::OptionalTimePoint&,
+ const V1_3::OptionalTimeoutDuration&,
+ const sp<V1_3::IExecutionCallback>&) override {
+ return V1_3::ErrorStatus::GENERAL_FAILURE;
+ }
+ Return<void> executeSynchronously(const V1_0::Request&, V1_2::MeasureTiming,
+ executeSynchronously_cb) override {
+ return Void();
+ }
+ Return<void> executeSynchronously_1_3(const V1_3::Request&, V1_2::MeasureTiming,
+ const V1_3::OptionalTimePoint&,
+ const V1_3::OptionalTimeoutDuration&,
+ executeSynchronously_1_3_cb) override {
+ return Void();
+ }
+ Return<void> configureExecutionBurst(const sp<V1_2::IBurstCallback>&,
+ const MQDescriptorSync<V1_2::FmqRequestDatum>&,
+ const MQDescriptorSync<V1_2::FmqResultDatum>&,
+ configureExecutionBurst_cb) override {
+ return Void();
+ }
+ Return<void> executeFenced(const V1_3::Request&, const hidl_vec<hidl_handle>&,
+ V1_2::MeasureTiming, const V1_3::OptionalTimePoint&,
+ const V1_3::OptionalTimeoutDuration&,
+ const V1_3::OptionalTimeoutDuration&, executeFenced_cb) override {
+ return Void();
+ }
+};
+
+} // namespace
+
+class MemoryDomainTestBase : public testing::Test {
+ protected:
+ MemoryDomainTestBase(sp<IDevice> device, TestOperandType type)
+ : kDevice(std::move(device)),
+ kTestOperandType(type),
+ kTestOperand(kTestOperandMap.at(type)),
+ kTestOperandDataSize(nn::nonExtensionOperandSizeOfData(static_cast<OperandType>(type),
+ kTestOperand.dimensions)) {}
+
+ void SetUp() override {
+ testing::Test::SetUp();
+ ASSERT_NE(kDevice, nullptr);
+ }
+
+ sp<IPreparedModel> createConvPreparedModel(const TestOperand& testOperand,
+ uint32_t numOperations = 1) {
+ const TestModel testModel = createConvModel(testOperand, numOperations);
+ const Model model = createModel(testModel);
+ sp<IPreparedModel> preparedModel;
+ createPreparedModel(kDevice, model, &preparedModel, /*reportSkipping=*/false);
+ return preparedModel;
+ }
+
+ sp<IPreparedModel> createAddPreparedModel(const TestOperand& testOperand) {
+ const TestModel testModel = createSingleAddModel(testOperand);
+ const Model model = createModel(testModel);
+ sp<IPreparedModel> preparedModel;
+ createPreparedModel(kDevice, model, &preparedModel, /*reportSkipping=*/false);
+ return preparedModel;
+ }
+
+ static const std::map<TestOperandType, TestOperand> kTestOperandMap;
+
+ const sp<IDevice> kDevice;
+ const TestOperandType kTestOperandType;
+ const TestOperand& kTestOperand;
+ const uint32_t kTestOperandDataSize;
+};
+
+const std::map<TestOperandType, TestOperand> MemoryDomainTestBase::kTestOperandMap = {
+ {TestOperandType::TENSOR_FLOAT32,
+ {
+ .type = TestOperandType::TENSOR_FLOAT32,
+ .dimensions = {1, 32, 32, 8},
+ .numberOfConsumers = 1,
+ .scale = 0.0f,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::SUBGRAPH_INPUT,
+ }},
+ {TestOperandType::TENSOR_FLOAT16,
+ {
+ .type = TestOperandType::TENSOR_FLOAT16,
+ .dimensions = {1, 32, 32, 8},
+ .numberOfConsumers = 1,
+ .scale = 0.0f,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::SUBGRAPH_INPUT,
+ }},
+ {TestOperandType::TENSOR_QUANT8_ASYMM,
+ {
+ .type = TestOperandType::TENSOR_QUANT8_ASYMM,
+ .dimensions = {1, 32, 32, 8},
+ .numberOfConsumers = 1,
+ .scale = 0.5f,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::SUBGRAPH_INPUT,
+ }},
+ {TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED,
+ {
+ .type = TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED,
+ .dimensions = {1, 32, 32, 8},
+ .numberOfConsumers = 1,
+ .scale = 0.5f,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::SUBGRAPH_INPUT,
+ }},
+};
+
+using MemoryDomainAllocateTestParam = std::tuple<NamedDevice, TestOperandType>;
+class MemoryDomainAllocateTest : public MemoryDomainTestBase,
+ public testing::WithParamInterface<MemoryDomainAllocateTestParam> {
+ protected:
+ MemoryDomainAllocateTest()
+ : MemoryDomainTestBase(getData(std::get<NamedDevice>(GetParam())),
+ std::get<TestOperandType>(GetParam())) {}
+
+ struct AllocateTestArgs {
+ hidl_vec<uint32_t> dimensions;
+ hidl_vec<sp<IPreparedModel>> preparedModels;
+ hidl_vec<BufferRole> inputRoles;
+ hidl_vec<BufferRole> outputRoles;
+ };
+
+ // Validation test for IDevice::allocate. The driver is expected to fail with INVALID_ARGUMENT,
+ // or GENERAL_FAILURE if memory domain is not supported.
+ void validateAllocate(AllocateTestArgs args) {
+ const auto ret = kDevice->allocate(
+ {.dimensions = std::move(args.dimensions)}, std::move(args.preparedModels),
+ std::move(args.inputRoles), std::move(args.outputRoles),
+ [](ErrorStatus status, const sp<IBuffer>& buffer, uint32_t token) {
+ EXPECT_TRUE(status == ErrorStatus::INVALID_ARGUMENT ||
+ status == ErrorStatus::GENERAL_FAILURE);
+ EXPECT_EQ(buffer, nullptr);
+ EXPECT_EQ(token, 0);
+ });
+ ASSERT_TRUE(ret.isOk());
+ }
+
+ void testConflictOperands(const sp<IPreparedModel>& model1, const sp<IPreparedModel>& model2) {
+ validateAllocate({
+ .preparedModels = {model1, model2},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f},
+ {.modelIndex = 1, .ioIndex = 0, .frequency = 1.0f}},
+ });
+ validateAllocate({
+ .preparedModels = {model1, model2},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ .outputRoles = {{.modelIndex = 1, .ioIndex = 0, .frequency = 1.0f}},
+ });
+ validateAllocate({
+ .preparedModels = {model1, model2},
+ .outputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f},
+ {.modelIndex = 1, .ioIndex = 0, .frequency = 1.0f}},
+ });
+ }
+};
+
+TEST_P(MemoryDomainAllocateTest, EmptyRole) {
+ // Test with empty prepared models and roles.
+ validateAllocate({});
+
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ if (preparedModel == nullptr) return;
+
+ // Test again with non-empty prepared models but empty roles.
+ validateAllocate({
+ .preparedModels = {preparedModel},
+ });
+}
+
+TEST_P(MemoryDomainAllocateTest, NullptrPreparedModel) {
+ // Test with nullptr prepared model as input role.
+ validateAllocate({
+ .preparedModels = {nullptr},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+
+ // Test with nullptr prepared model as output role.
+ validateAllocate({
+ .preparedModels = {nullptr},
+ .outputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+}
+
+TEST_P(MemoryDomainAllocateTest, InvalidPreparedModel) {
+ sp<InvalidPreparedModel> invalidPreparedModel = new InvalidPreparedModel();
+
+ // Test with invalid prepared model as input role.
+ validateAllocate({
+ .preparedModels = {invalidPreparedModel},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+
+ // Test with invalid prepared model as output role.
+ validateAllocate({
+ .preparedModels = {invalidPreparedModel},
+ .outputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+}
+
+TEST_P(MemoryDomainAllocateTest, InvalidModelIndex) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ if (preparedModel == nullptr) return;
+
+ // This should fail, because the model index is out of bound.
+ validateAllocate({
+ .preparedModels = {preparedModel},
+ .inputRoles = {{.modelIndex = 1, .ioIndex = 0, .frequency = 1.0f}},
+ });
+
+ // This should fail, because the model index is out of bound.
+ validateAllocate({
+ .preparedModels = {preparedModel},
+ .outputRoles = {{.modelIndex = 1, .ioIndex = 0, .frequency = 1.0f}},
+ });
+}
+
+TEST_P(MemoryDomainAllocateTest, InvalidIOIndex) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ if (preparedModel == nullptr) return;
+
+ // This should fail, because the model only has one input.
+ validateAllocate({
+ .preparedModels = {preparedModel},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 1, .frequency = 1.0f}},
+ });
+
+ // This should fail, because the model only has one output.
+ validateAllocate({
+ .preparedModels = {preparedModel},
+ .outputRoles = {{.modelIndex = 0, .ioIndex = 1, .frequency = 1.0f}},
+ });
+}
+
+TEST_P(MemoryDomainAllocateTest, InvalidFrequency) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ if (preparedModel == nullptr) return;
+
+ for (float invalidFreq : {10.0f, 0.0f, -0.5f}) {
+ // Test with invalid frequency for input roles.
+ validateAllocate({
+ .preparedModels = {preparedModel},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = invalidFreq}},
+ });
+ // Test with invalid frequency for output roles.
+ validateAllocate({
+ .preparedModels = {preparedModel},
+ .outputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = invalidFreq}},
+ });
+ }
+}
+
+TEST_P(MemoryDomainAllocateTest, SameRoleSpecifiedTwice) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ if (preparedModel == nullptr) return;
+
+ // Same role with same model index.
+ validateAllocate({
+ .preparedModels = {preparedModel},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f},
+ {.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+ validateAllocate({
+ .preparedModels = {preparedModel},
+ .outputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f},
+ {.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+
+ // Different model indexes, but logically referring to the same role.
+ validateAllocate({
+ .preparedModels = {preparedModel, preparedModel},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f},
+ {.modelIndex = 1, .ioIndex = 0, .frequency = 1.0f}},
+ });
+ validateAllocate({
+ .preparedModels = {preparedModel, preparedModel},
+ .outputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f},
+ {.modelIndex = 1, .ioIndex = 0, .frequency = 1.0f}},
+ });
+}
+
+TEST_P(MemoryDomainAllocateTest, ConflictOperandType) {
+ const std::map<TestOperandType, TestOperandType> conflictTypeMap = {
+ {TestOperandType::TENSOR_FLOAT32, TestOperandType::TENSOR_FLOAT16},
+ {TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_FLOAT32},
+ {TestOperandType::TENSOR_QUANT8_ASYMM, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED},
+ {TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED, TestOperandType::TENSOR_QUANT8_ASYMM},
+ };
+
+ TestOperand conflictTestOperand = kTestOperand;
+ const auto it = conflictTypeMap.find(kTestOperandType);
+ ASSERT_FALSE(it == conflictTypeMap.end());
+ conflictTestOperand.type = it->second;
+
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto conflictPreparedModel = createConvPreparedModel(conflictTestOperand);
+ if (preparedModel == nullptr || conflictPreparedModel == nullptr) return;
+ testConflictOperands(preparedModel, conflictPreparedModel);
+}
+
+TEST_P(MemoryDomainAllocateTest, ConflictScale) {
+ if (isFloat(kTestOperandType)) return;
+
+ TestOperand conflictTestOperand = kTestOperand;
+ ASSERT_NE(conflictTestOperand.scale, 1.0f);
+ conflictTestOperand.scale = 1.0f;
+
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto conflictPreparedModel = createConvPreparedModel(conflictTestOperand);
+ if (preparedModel == nullptr || conflictPreparedModel == nullptr) return;
+ testConflictOperands(preparedModel, conflictPreparedModel);
+}
+
+TEST_P(MemoryDomainAllocateTest, ConflictZeroPoint) {
+ if (isFloat(kTestOperandType)) return;
+
+ TestOperand conflictTestOperand = kTestOperand;
+ ASSERT_NE(conflictTestOperand.zeroPoint, 10);
+ conflictTestOperand.zeroPoint = 10;
+
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto conflictPreparedModel = createConvPreparedModel(conflictTestOperand);
+ if (preparedModel == nullptr || conflictPreparedModel == nullptr) return;
+ testConflictOperands(preparedModel, conflictPreparedModel);
+}
+
+TEST_P(MemoryDomainAllocateTest, ConflictRankBetweenRoles) {
+ TestOperand conflictTestOperand = kTestOperand;
+ conflictTestOperand.dimensions.pop_back();
+
+ auto preparedModel = createAddPreparedModel(kTestOperand);
+ auto conflictPreparedModel = createAddPreparedModel(conflictTestOperand);
+ if (preparedModel == nullptr || conflictPreparedModel == nullptr) return;
+ testConflictOperands(preparedModel, conflictPreparedModel);
+}
+
+TEST_P(MemoryDomainAllocateTest, ConflictDimensionsBetweenRoles) {
+ TestOperand conflictTestOperand = kTestOperand;
+ conflictTestOperand.dimensions[0] = 4;
+
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto conflictPreparedModel = createConvPreparedModel(conflictTestOperand);
+ if (preparedModel == nullptr || conflictPreparedModel == nullptr) return;
+ testConflictOperands(preparedModel, conflictPreparedModel);
+}
+
+TEST_P(MemoryDomainAllocateTest, ConflictRankBetweenRoleAndDesc) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ if (preparedModel == nullptr) return;
+
+ auto badDimensions = kTestOperand.dimensions;
+ badDimensions.pop_back();
+
+ validateAllocate({
+ .dimensions = badDimensions,
+ .preparedModels = {preparedModel},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+ validateAllocate({
+ .dimensions = badDimensions,
+ .preparedModels = {preparedModel},
+ .outputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+}
+
+TEST_P(MemoryDomainAllocateTest, ConflictDimensionsBetweenRoleAndDesc) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ if (preparedModel == nullptr) return;
+
+ auto badDimensions = kTestOperand.dimensions;
+ badDimensions[0] = 4;
+
+ validateAllocate({
+ .dimensions = badDimensions,
+ .preparedModels = {preparedModel},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+ validateAllocate({
+ .dimensions = badDimensions,
+ .preparedModels = {preparedModel},
+ .outputRoles = {{.modelIndex = 0, .ioIndex = 0, .frequency = 1.0f}},
+ });
+}
+
+TEST_P(MemoryDomainAllocateTest, ConflictRankWithScalarRole) {
+ auto preparedModel = createAddPreparedModel(kTestOperand);
+ if (preparedModel == nullptr) return;
+
+ // This should fail, because the target operand is a scalar but a non-empty dimension is
+ // specified.
+ validateAllocate({
+ .dimensions = {1},
+ .preparedModels = {preparedModel},
+ .inputRoles = {{.modelIndex = 0, .ioIndex = 2, .frequency = 1.0f}},
+ });
+}
+
+std::string printMemoryDomainAllocateTest(
+ const testing::TestParamInfo<MemoryDomainAllocateTestParam>& info) {
+ const auto& [namedDevice, operandType] = info.param;
+ const std::string type = toString(static_cast<OperandType>(operandType));
+ return gtestCompliantName(getName(namedDevice) + "_" + type);
+}
+
+INSTANTIATE_TEST_CASE_P(TestMemoryDomain, MemoryDomainAllocateTest,
+ testing::Combine(kNamedDeviceChoices, kTestOperandTypeChoices),
+ printMemoryDomainAllocateTest);
+
+class MemoryDomainCopyTestBase : public MemoryDomainTestBase {
+ protected:
+ MemoryDomainCopyTestBase(sp<IDevice> device, TestOperandType type)
+ : MemoryDomainTestBase(std::move(device), type) {}
+
+ // Allocates device memory for roles of a single prepared model.
+ // Returns {IBuffer, token} if success; returns {nullptr, 0} if not supported.
+ std::pair<sp<IBuffer>, uint32_t> allocateBuffer(const sp<IPreparedModel>& preparedModel,
+ const std::vector<uint32_t>& inputIndexes,
+ const std::vector<uint32_t>& outputIndexes,
+ const std::vector<uint32_t>& dimensions) {
+ if (preparedModel == nullptr) {
+ return {nullptr, 0};
+ }
+
+ hidl_vec<BufferRole> inputRoles(inputIndexes.size()), outputRoles(outputIndexes.size());
+ auto trans = [](uint32_t ind) -> BufferRole {
+ return {.modelIndex = 0, .ioIndex = ind, .frequency = 1.0f};
+ };
+ std::transform(inputIndexes.begin(), inputIndexes.end(), inputRoles.begin(), trans);
+ std::transform(outputIndexes.begin(), outputIndexes.end(), outputRoles.begin(), trans);
+
+ sp<IBuffer> buffer;
+ uint32_t token = 0;
+ const auto ret = kDevice->allocate(
+ {.dimensions = dimensions}, {preparedModel}, std::move(inputRoles),
+ std::move(outputRoles),
+ [&buffer, &token](ErrorStatus err, const sp<IBuffer>& buf, uint32_t tok) {
+ if (err == ErrorStatus::NONE) {
+ EXPECT_NE(buf, nullptr);
+ EXPECT_GT(tok, 0);
+ buffer = buf;
+ token = tok;
+ } else {
+ EXPECT_EQ(err, ErrorStatus::GENERAL_FAILURE);
+ EXPECT_EQ(buf, nullptr);
+ EXPECT_EQ(tok, 0);
+ }
+ });
+ EXPECT_TRUE(ret.isOk());
+ return {std::move(buffer), token};
+ }
+
+ std::pair<sp<IBuffer>, uint32_t> allocateBuffer(const sp<IPreparedModel>& preparedModel,
+ const std::vector<uint32_t>& inputIndexes,
+ const std::vector<uint32_t>& outputIndexes) {
+ return allocateBuffer(preparedModel, inputIndexes, outputIndexes, {});
+ }
+
+ hidl_memory allocateSharedMemory(uint32_t size) {
+ hidl_memory memory = nn::allocateSharedMemory(size);
+ EXPECT_EQ(memory.size(), size);
+ return memory;
+ }
+
+ void testCopyFrom(const sp<IBuffer>& buffer, const hidl_memory& memory,
+ const std::vector<uint32_t>& dimensions, ErrorStatus expectedStatus) {
+ const auto ret = buffer->copyFrom(memory, dimensions);
+ ASSERT_TRUE(ret.isOk());
+ ASSERT_EQ(static_cast<ErrorStatus>(ret), expectedStatus);
+ }
+
+ void testCopyTo(const sp<IBuffer>& buffer, const hidl_memory& memory,
+ ErrorStatus expectedStatus) {
+ const auto ret = buffer->copyTo(memory);
+ ASSERT_TRUE(ret.isOk());
+ ASSERT_EQ(static_cast<ErrorStatus>(ret), expectedStatus);
+ }
+
+ void initializeDeviceMemory(const sp<IBuffer>& buffer) {
+ hidl_memory memory = nn::allocateSharedMemory(kTestOperandDataSize);
+ ASSERT_EQ(memory.size(), kTestOperandDataSize);
+ testCopyFrom(buffer, memory, kTestOperand.dimensions, ErrorStatus::NONE);
+ }
+};
+
+using MemoryDomainCopyTestParam = std::tuple<NamedDevice, TestOperandType>;
+class MemoryDomainCopyTest : public MemoryDomainCopyTestBase,
+ public testing::WithParamInterface<MemoryDomainCopyTestParam> {
+ protected:
+ MemoryDomainCopyTest()
+ : MemoryDomainCopyTestBase(getData(std::get<NamedDevice>(GetParam())),
+ std::get<TestOperandType>(GetParam())) {}
+};
+
+TEST_P(MemoryDomainCopyTest, CopyFrom_InvalidMemorySize) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0});
+ if (buffer == nullptr) return;
+
+ uint32_t badMemorySize1 = kTestOperandDataSize / 2, badMemorySize2 = kTestOperandDataSize * 2;
+ hidl_memory badMemory1 = allocateSharedMemory(badMemorySize1);
+ hidl_memory badMemory2 = allocateSharedMemory(badMemorySize2);
+ testCopyFrom(buffer, badMemory1, {}, ErrorStatus::INVALID_ARGUMENT);
+ testCopyFrom(buffer, badMemory2, {}, ErrorStatus::INVALID_ARGUMENT);
+}
+
+TEST_P(MemoryDomainCopyTest, CopyFrom_InvalidMemorySize_DynamicShape) {
+ TestOperand testOperand = kTestOperand;
+ testOperand.dimensions[0] = 0;
+ auto preparedModel = createConvPreparedModel(testOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0});
+ if (buffer == nullptr) return;
+
+ uint32_t badMemorySize1 = kTestOperandDataSize / 2, badMemorySize2 = kTestOperandDataSize * 2;
+ hidl_memory badMemory1 = allocateSharedMemory(badMemorySize1);
+ hidl_memory badMemory2 = allocateSharedMemory(badMemorySize2);
+ hidl_memory goodMemory = allocateSharedMemory(kTestOperandDataSize);
+
+ auto badDimensions = kTestOperand.dimensions;
+ badDimensions[0] = 2;
+
+ testCopyFrom(buffer, badMemory1, kTestOperand.dimensions, ErrorStatus::INVALID_ARGUMENT);
+ testCopyFrom(buffer, badMemory2, kTestOperand.dimensions, ErrorStatus::INVALID_ARGUMENT);
+ testCopyFrom(buffer, goodMemory, kTestOperand.dimensions, ErrorStatus::NONE);
+ testCopyFrom(buffer, goodMemory, badDimensions, ErrorStatus::INVALID_ARGUMENT);
+}
+
+TEST_P(MemoryDomainCopyTest, CopyFrom_InvalidDimensions) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0});
+ if (buffer == nullptr) return;
+
+ hidl_memory memory = allocateSharedMemory(kTestOperandDataSize);
+
+ std::vector<uint32_t> badDimensions;
+ badDimensions = kTestOperand.dimensions;
+ badDimensions.pop_back();
+ testCopyFrom(buffer, memory, badDimensions, ErrorStatus::INVALID_ARGUMENT);
+
+ badDimensions = kTestOperand.dimensions;
+ badDimensions[0] = 2;
+ testCopyFrom(buffer, memory, badDimensions, ErrorStatus::INVALID_ARGUMENT);
+
+ badDimensions = kTestOperand.dimensions;
+ badDimensions[0] = 0;
+ testCopyFrom(buffer, memory, badDimensions, ErrorStatus::INVALID_ARGUMENT);
+
+ testCopyFrom(buffer, memory, {}, ErrorStatus::NONE);
+ testCopyFrom(buffer, memory, kTestOperand.dimensions, ErrorStatus::NONE);
+}
+
+TEST_P(MemoryDomainCopyTest, CopyFrom_InvalidDimensions_DynamicShape) {
+ TestOperand testOperand = kTestOperand;
+ testOperand.dimensions[0] = 0;
+ auto preparedModel = createConvPreparedModel(testOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0});
+ if (buffer == nullptr) return;
+
+ hidl_memory memory = allocateSharedMemory(kTestOperandDataSize);
+
+ std::vector<uint32_t> badDimensions;
+ badDimensions = kTestOperand.dimensions;
+ badDimensions.pop_back();
+ testCopyFrom(buffer, memory, badDimensions, ErrorStatus::INVALID_ARGUMENT);
+
+ badDimensions = kTestOperand.dimensions;
+ badDimensions[0] = 2;
+ badDimensions[3] = 4;
+ testCopyFrom(buffer, memory, badDimensions, ErrorStatus::INVALID_ARGUMENT);
+
+ badDimensions = kTestOperand.dimensions;
+ badDimensions[0] = 1;
+ badDimensions[3] = 0;
+ testCopyFrom(buffer, memory, badDimensions, ErrorStatus::INVALID_ARGUMENT);
+
+ testCopyFrom(buffer, memory, {}, ErrorStatus::INVALID_ARGUMENT);
+ testCopyFrom(buffer, memory, kTestOperand.dimensions, ErrorStatus::NONE);
+}
+
+TEST_P(MemoryDomainCopyTest, CopyTo_UninitializedMemory) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0});
+ if (buffer == nullptr) return;
+
+ hidl_memory memory = allocateSharedMemory(kTestOperandDataSize);
+ testCopyTo(buffer, memory, ErrorStatus::GENERAL_FAILURE);
+}
+
+TEST_P(MemoryDomainCopyTest, CopyTo_InvalidMemorySize) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0});
+ if (buffer == nullptr) return;
+
+ uint32_t badMemorySize1 = kTestOperandDataSize / 2, badMemorySize2 = kTestOperandDataSize * 2;
+ hidl_memory badMemory1 = allocateSharedMemory(badMemorySize1);
+ hidl_memory badMemory2 = allocateSharedMemory(badMemorySize2);
+ hidl_memory goodMemory = allocateSharedMemory(kTestOperandDataSize);
+
+ initializeDeviceMemory(buffer);
+ testCopyTo(buffer, badMemory1, ErrorStatus::INVALID_ARGUMENT);
+ testCopyTo(buffer, badMemory2, ErrorStatus::INVALID_ARGUMENT);
+ testCopyTo(buffer, goodMemory, ErrorStatus::NONE);
+}
+
+TEST_P(MemoryDomainCopyTest, CopyTo_InvalidMemorySize_DynamicShape) {
+ TestOperand testOperand = kTestOperand;
+ testOperand.dimensions[0] = 0;
+ auto preparedModel = createConvPreparedModel(testOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0});
+ if (buffer == nullptr) return;
+
+ uint32_t badMemorySize1 = kTestOperandDataSize / 2, badMemorySize2 = kTestOperandDataSize * 2;
+ hidl_memory badMemory1 = allocateSharedMemory(badMemorySize1);
+ hidl_memory badMemory2 = allocateSharedMemory(badMemorySize2);
+ hidl_memory goodMemory = allocateSharedMemory(kTestOperandDataSize);
+
+ initializeDeviceMemory(buffer);
+ testCopyTo(buffer, badMemory1, ErrorStatus::INVALID_ARGUMENT);
+ testCopyTo(buffer, badMemory2, ErrorStatus::INVALID_ARGUMENT);
+ testCopyTo(buffer, goodMemory, ErrorStatus::NONE);
+}
+
+std::string printMemoryDomainCopyTest(
+ const testing::TestParamInfo<MemoryDomainCopyTestParam>& info) {
+ const auto& [namedDevice, operandType] = info.param;
+ const std::string type = toString(static_cast<OperandType>(operandType));
+ return gtestCompliantName(getName(namedDevice) + "_" + type);
+}
+
+INSTANTIATE_TEST_CASE_P(TestMemoryDomain, MemoryDomainCopyTest,
+ testing::Combine(kNamedDeviceChoices, kTestOperandTypeChoices),
+ printMemoryDomainCopyTest);
+
+using MemoryDomainExecutionTestParam = std::tuple<NamedDevice, TestOperandType, Executor>;
+class MemoryDomainExecutionTest
+ : public MemoryDomainCopyTestBase,
+ public testing::WithParamInterface<MemoryDomainExecutionTestParam> {
+ protected:
+ MemoryDomainExecutionTest()
+ : MemoryDomainCopyTestBase(getData(std::get<NamedDevice>(GetParam())),
+ std::get<TestOperandType>(GetParam())) {}
+
+ Request::MemoryPool createSharedMemoryPool(uint32_t size) {
+ hidl_memory memory = allocateSharedMemory(size);
+ Request::MemoryPool pool;
+ pool.hidlMemory(memory);
+ return pool;
+ }
+
+ Request::MemoryPool createDeviceMemoryPool(uint32_t token) {
+ Request::MemoryPool pool;
+ pool.token(token);
+ return pool;
+ }
+
+ void testExecution(const sp<IPreparedModel>& preparedModel, const Request& request,
+ ErrorStatus expectedStatus) {
+ switch (kExecutor) {
+ case Executor::ASYNC:
+ EXPECT_EQ(executeAsync(preparedModel, request), expectedStatus);
+ break;
+ case Executor::SYNC:
+ EXPECT_EQ(executeSync(preparedModel, request), expectedStatus);
+ break;
+ default:
+ ASSERT_TRUE(false);
+ }
+ }
+
+ ErrorStatus executeAsync(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ ErrorStatus executionStatus;
+
+ // launch execution
+ sp<ExecutionCallback> executionCallback = new ExecutionCallback();
+ const auto ret =
+ preparedModel->execute_1_3(request, MeasureTiming::NO, {}, {}, executionCallback);
+ EXPECT_TRUE(ret.isOk());
+ executionStatus = static_cast<ErrorStatus>(ret);
+
+ // retrieve execution status
+ executionCallback->wait();
+ if (executionStatus == ErrorStatus::NONE) {
+ executionStatus = executionCallback->getStatus();
+ } else {
+ EXPECT_EQ(executionStatus, executionCallback->getStatus());
+ }
+ const auto timing = executionCallback->getTiming();
+ EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
+ EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
+ if (executionStatus != ErrorStatus::NONE) {
+ EXPECT_EQ(executionCallback->getOutputShapes().size(), 0);
+ }
+ return executionStatus;
+ }
+
+ ErrorStatus executeSync(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ ErrorStatus executionStatus;
+ const auto ret = preparedModel->executeSynchronously_1_3(
+ request, MeasureTiming::NO, {}, {},
+ [&executionStatus](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
+ const Timing& time) {
+ executionStatus = error;
+ EXPECT_EQ(UINT64_MAX, time.timeOnDevice);
+ EXPECT_EQ(UINT64_MAX, time.timeInDriver);
+ if (executionStatus != ErrorStatus::NONE) {
+ EXPECT_EQ(shapes.size(), 0);
+ }
+ });
+ EXPECT_TRUE(ret.isOk());
+ return executionStatus;
+ }
+
+ // TODO(xusongw): Add executeFenced.
+
+ const Executor kExecutor = std::get<Executor>(GetParam());
+};
+
+TEST_P(MemoryDomainExecutionTest, InvalidToken) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ if (preparedModel == nullptr) return;
+
+ Request::MemoryPool sharedMemory = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool badDeviceMemory1 = createDeviceMemoryPool(0); // Invalid token.
+ Request::MemoryPool badDeviceMemory2 = createDeviceMemoryPool(100); // Unknown token.
+ RequestArgument sharedMemoryArg = {
+ .location = {.poolIndex = 0, .offset = 0, .length = kTestOperandDataSize}};
+ RequestArgument deviceMemoryArg = {.location = {.poolIndex = 1}};
+
+ testExecution(preparedModel,
+ {.inputs = {deviceMemoryArg},
+ .outputs = {sharedMemoryArg},
+ .pools = {sharedMemory, badDeviceMemory1}},
+ ErrorStatus::INVALID_ARGUMENT);
+ testExecution(preparedModel,
+ {.inputs = {deviceMemoryArg},
+ .outputs = {sharedMemoryArg},
+ .pools = {sharedMemory, badDeviceMemory2}},
+ ErrorStatus::INVALID_ARGUMENT);
+ testExecution(preparedModel,
+ {.inputs = {sharedMemoryArg},
+ .outputs = {deviceMemoryArg},
+ .pools = {sharedMemory, badDeviceMemory1}},
+ ErrorStatus::INVALID_ARGUMENT);
+ testExecution(preparedModel,
+ {.inputs = {sharedMemoryArg},
+ .outputs = {deviceMemoryArg},
+ .pools = {sharedMemory, badDeviceMemory2}},
+ ErrorStatus::INVALID_ARGUMENT);
+}
+
+TEST_P(MemoryDomainExecutionTest, InvalidPreparedModel) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0});
+ if (buffer == nullptr) return;
+ auto badPreparedModel = createConvPreparedModel(kTestOperand);
+ if (badPreparedModel == nullptr) return;
+
+ Request::MemoryPool sharedMemory = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool deviceMemory = createDeviceMemoryPool(token);
+ RequestArgument sharedMemoryArg = {
+ .location = {.poolIndex = 0, .offset = 0, .length = kTestOperandDataSize}};
+ RequestArgument deviceMemoryArg = {.location = {.poolIndex = 1}};
+
+ // This should fail, because the buffer is not allocated for badPreparedModel.
+ initializeDeviceMemory(buffer);
+ testExecution(badPreparedModel,
+ {.inputs = {deviceMemoryArg},
+ .outputs = {sharedMemoryArg},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+ testExecution(badPreparedModel,
+ {.inputs = {sharedMemoryArg},
+ .outputs = {deviceMemoryArg},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+}
+
+TEST_P(MemoryDomainExecutionTest, InvalidIOIndex) {
+ auto preparedModel = createConvPreparedModel(kTestOperand, 2);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {});
+ if (buffer == nullptr) return;
+
+ Request::MemoryPool sharedMemory1 = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool sharedMemory2 = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool sharedMemory3 = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool deviceMemory = createDeviceMemoryPool(token);
+ RequestArgument sharedMemoryArg1 = {
+ .location = {.poolIndex = 0, .offset = 0, .length = kTestOperandDataSize}};
+ RequestArgument sharedMemoryArg2 = {
+ .location = {.poolIndex = 1, .offset = 0, .length = kTestOperandDataSize}};
+ RequestArgument sharedMemoryArg3 = {
+ .location = {.poolIndex = 2, .offset = 0, .length = kTestOperandDataSize}};
+ RequestArgument deviceMemoryArg = {.location = {.poolIndex = 3}};
+
+ // This should fail, because the device memory is not allocated for input 1.
+ initializeDeviceMemory(buffer);
+ testExecution(preparedModel,
+ {.inputs = {sharedMemoryArg1, deviceMemoryArg},
+ .outputs = {sharedMemoryArg2, sharedMemoryArg3},
+ .pools = {sharedMemory1, sharedMemory2, sharedMemory3, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+
+ // This should fail, because the device memory is not allocated for output 1.
+ testExecution(preparedModel,
+ {.inputs = {sharedMemoryArg1, sharedMemoryArg2},
+ .outputs = {sharedMemoryArg3, deviceMemoryArg},
+ .pools = {sharedMemory1, sharedMemory2, sharedMemory3, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+}
+
+TEST_P(MemoryDomainExecutionTest, InvalidIOType) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto [inputBuffer, inputToken] = allocateBuffer(preparedModel, {0}, {});
+ auto [outputBuffer, outputToken] = allocateBuffer(preparedModel, {}, {0});
+ if (inputBuffer == nullptr || outputBuffer == nullptr) return;
+
+ Request::MemoryPool sharedMemory = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool deviceMemory = createDeviceMemoryPool(inputToken);
+ RequestArgument sharedMemoryArg = {
+ .location = {.poolIndex = 0, .offset = 0, .length = kTestOperandDataSize}};
+ RequestArgument deviceMemoryArg = {.location = {.poolIndex = 1}};
+
+ // This should fail, because the device memory is allocated for input but used as output.
+ testExecution(preparedModel,
+ {.inputs = {sharedMemoryArg},
+ .outputs = {deviceMemoryArg},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+
+ // This should fail, because the device memory is allocated for output but used as input.
+ deviceMemory.token(outputToken);
+ initializeDeviceMemory(outputBuffer);
+ testExecution(preparedModel,
+ {.inputs = {deviceMemoryArg},
+ .outputs = {sharedMemoryArg},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+}
+
+TEST_P(MemoryDomainExecutionTest, UninitializedMemory) {
+ auto preparedModel = createConvPreparedModel(kTestOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0});
+ if (buffer == nullptr) return;
+
+ Request::MemoryPool sharedMemory = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool deviceMemory = createDeviceMemoryPool(token);
+ RequestArgument sharedMemoryArg = {
+ .location = {.poolIndex = 0, .offset = 0, .length = kTestOperandDataSize}};
+ RequestArgument deviceMemoryArg = {.location = {.poolIndex = 1}};
+
+ // This should fail, because the device memory is not initialized.
+ testExecution(preparedModel,
+ {.inputs = {deviceMemoryArg},
+ .outputs = {sharedMemoryArg},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::GENERAL_FAILURE);
+
+ // This should initialize the device memory.
+ testExecution(preparedModel,
+ {.inputs = {sharedMemoryArg},
+ .outputs = {deviceMemoryArg},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::NONE);
+
+ // Test again with initialized device memory.
+ testExecution(preparedModel,
+ {.inputs = {deviceMemoryArg},
+ .outputs = {sharedMemoryArg},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::NONE);
+}
+
+TEST_P(MemoryDomainExecutionTest, SameRequestMultipleRoles) {
+ auto preparedModel = createConvPreparedModel(kTestOperand, 2);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0, 1}, {0, 1});
+ if (buffer == nullptr) return;
+
+ Request::MemoryPool sharedMemory1 = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool sharedMemory2 = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool deviceMemory = createDeviceMemoryPool(token);
+ RequestArgument sharedMemoryArg1 = {
+ .location = {.poolIndex = 0, .offset = 0, .length = kTestOperandDataSize}};
+ RequestArgument sharedMemoryArg2 = {
+ .location = {.poolIndex = 1, .offset = 0, .length = kTestOperandDataSize}};
+ RequestArgument deviceMemoryArg = {.location = {.poolIndex = 2}};
+
+ // This should fail, because the same device memory cannot be used for both input and output.
+ initializeDeviceMemory(buffer);
+ testExecution(preparedModel,
+ {.inputs = {deviceMemoryArg, sharedMemoryArg1},
+ .outputs = {deviceMemoryArg, sharedMemoryArg2},
+ .pools = {sharedMemory1, sharedMemory2, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+
+ // This should fail, because the same device memory cannot be used for multiple outputs.
+ testExecution(preparedModel,
+ {.inputs = {sharedMemoryArg1, sharedMemoryArg2},
+ .outputs = {deviceMemoryArg, deviceMemoryArg},
+ .pools = {sharedMemory1, sharedMemory2, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+
+ // The same device memory can be used for multiple inputs.
+ initializeDeviceMemory(buffer);
+ testExecution(preparedModel,
+ {.inputs = {deviceMemoryArg, deviceMemoryArg},
+ .outputs = {sharedMemoryArg1, sharedMemoryArg2},
+ .pools = {sharedMemory1, sharedMemory2, deviceMemory}},
+ ErrorStatus::NONE);
+}
+
+TEST_P(MemoryDomainExecutionTest, InvalidDimensions) {
+ TestOperand testOperand = kTestOperand;
+ testOperand.dimensions[0] = 0;
+ auto preparedModel = createConvPreparedModel(testOperand);
+ auto [buffer, token] = allocateBuffer(preparedModel, {0}, {0}, kTestOperand.dimensions);
+ if (buffer == nullptr) return;
+
+ Request::MemoryPool sharedMemory = createSharedMemoryPool(kTestOperandDataSize);
+ Request::MemoryPool deviceMemory = createDeviceMemoryPool(token);
+ auto badDimensions = kTestOperand.dimensions;
+ badDimensions[0] = 2;
+ RequestArgument sharedMemoryArg = {
+ .location = {.poolIndex = 0, .offset = 0, .length = kTestOperandDataSize},
+ .dimensions = badDimensions};
+ RequestArgument deviceMemoryArg = {.location = {.poolIndex = 1}};
+ RequestArgument deviceMemoryArgWithBadDimensions = {.location = {.poolIndex = 1},
+ .dimensions = badDimensions};
+
+ initializeDeviceMemory(buffer);
+ testExecution(preparedModel,
+ {.inputs = {deviceMemoryArgWithBadDimensions},
+ .outputs = {sharedMemoryArg},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+
+ testExecution(preparedModel,
+ {.inputs = {sharedMemoryArg},
+ .outputs = {deviceMemoryArgWithBadDimensions},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::INVALID_ARGUMENT);
+
+ testExecution(preparedModel,
+ {.inputs = {sharedMemoryArg},
+ .outputs = {deviceMemoryArg},
+ .pools = {sharedMemory, deviceMemory}},
+ ErrorStatus::GENERAL_FAILURE);
+}
+
+const auto kExecutorChoices = testing::Values(Executor::ASYNC, Executor::SYNC);
+
+std::string printMemoryDomainExecutionTest(
+ const testing::TestParamInfo<MemoryDomainExecutionTestParam>& info) {
+ const auto& [namedDevice, operandType, executor] = info.param;
+ const std::string type = toString(static_cast<OperandType>(operandType));
+ const std::string executorStr = toString(executor);
+ return gtestCompliantName(getName(namedDevice) + "_" + type + "_" + executorStr);
+}
+
+INSTANTIATE_TEST_CASE_P(TestMemoryDomain, MemoryDomainExecutionTest,
+ testing::Combine(kNamedDeviceChoices, kTestOperandTypeChoices,
+ kExecutorChoices),
+ printMemoryDomainExecutionTest);
+
+} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
index 5b07034..60ceb7e 100644
--- a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
+++ b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
@@ -192,4 +192,19 @@
return IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
}
+std::string toString(Executor executor) {
+ switch (executor) {
+ case Executor::ASYNC:
+ return "ASYNC";
+ case Executor::SYNC:
+ return "SYNC";
+ case Executor::BURST:
+ return "BURST";
+ case Executor::FENCED:
+ return "FENCED";
+ default:
+ CHECK(false);
+ }
+}
+
} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h
index 4e51052..de082c3 100644
--- a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h
+++ b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h
@@ -52,6 +52,10 @@
// Utility function to get PreparedModel from callback and downcast to V1_2.
sp<IPreparedModel> getPreparedModel_1_3(const sp<implementation::PreparedModelCallback>& callback);
+enum class Executor { ASYNC, SYNC, BURST, FENCED };
+
+std::string toString(Executor executor);
+
} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
#endif // ANDROID_HARDWARE_NEURALNETWORKS_V1_3_VTS_HAL_NEURALNETWORKS_H