Revert "Copy VTS tests from v1.2 to v1.3" am: 9613b4649b
am: 432f6d1609

Change-Id: I1725a29dfff75400345573abd808273f72fda1ae
diff --git a/neuralnetworks/1.3/vts/OWNERS b/neuralnetworks/1.3/vts/OWNERS
deleted file mode 100644
index b5a8e1f..0000000
--- a/neuralnetworks/1.3/vts/OWNERS
+++ /dev/null
@@ -1,16 +0,0 @@
-# Neuralnetworks team
-butlermichael@google.com
-dgross@google.com
-jeanluc@google.com
-levp@google.com
-miaowang@google.com
-mikie@google.com
-mks@google.com
-pszczepaniak@google.com
-slavash@google.com
-vddang@google.com
-xusongw@google.com
-
-# VTS team
-yim@google.com
-yuexima@google.com
diff --git a/neuralnetworks/1.3/vts/functional/BasicTests.cpp b/neuralnetworks/1.3/vts/functional/BasicTests.cpp
deleted file mode 100644
index 8e82c53..0000000
--- a/neuralnetworks/1.3/vts/functional/BasicTests.cpp
+++ /dev/null
@@ -1,114 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_2::vts::functional {
-
-using V1_0::DeviceStatus;
-using V1_0::ErrorStatus;
-using V1_0::PerformanceInfo;
-
-// create device test
-TEST_P(NeuralnetworksHidlTest, CreateDevice) {}
-
-// status test
-TEST_P(NeuralnetworksHidlTest, StatusTest) {
-    Return<DeviceStatus> status = kDevice->getStatus();
-    ASSERT_TRUE(status.isOk());
-    EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
-}
-
-// initialization
-TEST_P(NeuralnetworksHidlTest, GetCapabilitiesTest) {
-    using OperandPerformance = Capabilities::OperandPerformance;
-    Return<void> ret = kDevice->getCapabilities_1_2([](ErrorStatus status,
-                                                       const Capabilities& capabilities) {
-        EXPECT_EQ(ErrorStatus::NONE, status);
-
-        auto isPositive = [](const PerformanceInfo& perf) {
-            return perf.execTime > 0.0f && perf.powerUsage > 0.0f;
-        };
-
-        EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceScalar));
-        EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceTensor));
-        const auto& opPerf = capabilities.operandPerformance;
-        EXPECT_TRUE(std::all_of(
-                opPerf.begin(), opPerf.end(),
-                [isPositive](const OperandPerformance& a) { return isPositive(a.info); }));
-        EXPECT_TRUE(std::is_sorted(opPerf.begin(), opPerf.end(),
-                                   [](const OperandPerformance& a, const OperandPerformance& b) {
-                                       return a.type < b.type;
-                                   }));
-    });
-    EXPECT_TRUE(ret.isOk());
-}
-
-// device version test
-TEST_P(NeuralnetworksHidlTest, GetDeviceVersionStringTest) {
-    Return<void> ret =
-            kDevice->getVersionString([](ErrorStatus status, const hidl_string& version) {
-                EXPECT_EQ(ErrorStatus::NONE, status);
-                EXPECT_LT(0, version.size());
-            });
-    EXPECT_TRUE(ret.isOk());
-}
-
-// device type test
-TEST_P(NeuralnetworksHidlTest, GetDeviceTypeTest) {
-    Return<void> ret = kDevice->getType([](ErrorStatus status, DeviceType type) {
-        EXPECT_EQ(ErrorStatus::NONE, status);
-        EXPECT_TRUE(type == DeviceType::OTHER || type == DeviceType::CPU ||
-                    type == DeviceType::GPU || type == DeviceType::ACCELERATOR);
-    });
-    EXPECT_TRUE(ret.isOk());
-}
-
-// device supported extensions test
-TEST_P(NeuralnetworksHidlTest, GetDeviceSupportedExtensionsTest) {
-    Return<void> ret = kDevice->getSupportedExtensions(
-            [](ErrorStatus status, const hidl_vec<Extension>& extensions) {
-                EXPECT_EQ(ErrorStatus::NONE, status);
-                for (auto& extension : extensions) {
-                    std::string extensionName = extension.name;
-                    EXPECT_FALSE(extensionName.empty());
-                    for (char c : extensionName) {
-                        EXPECT_TRUE(('a' <= c && c <= 'z') || ('0' <= c && c <= '9') || c == '_' ||
-                                    c == '.')
-                                << "Extension name contains an illegal character: " << c;
-                    }
-                    EXPECT_NE(extensionName.find('.'), std::string::npos)
-                            << "Extension name must start with the reverse domain name of the "
-                               "vendor";
-                }
-            });
-    EXPECT_TRUE(ret.isOk());
-}
-
-// getNumberOfCacheFilesNeeded test
-TEST_P(NeuralnetworksHidlTest, getNumberOfCacheFilesNeeded) {
-    Return<void> ret = kDevice->getNumberOfCacheFilesNeeded(
-            [](ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache) {
-                EXPECT_EQ(ErrorStatus::NONE, status);
-                EXPECT_LE(numModelCache,
-                          static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES));
-                EXPECT_LE(numDataCache, static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES));
-            });
-    EXPECT_TRUE(ret.isOk());
-}
-}  // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/Callbacks.cpp b/neuralnetworks/1.3/vts/functional/Callbacks.cpp
deleted file mode 100644
index 3972ad6..0000000
--- a/neuralnetworks/1.3/vts/functional/Callbacks.cpp
+++ /dev/null
@@ -1,143 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "Callbacks"
-
-#include "1.2/Callbacks.h"
-
-#include <android-base/logging.h>
-
-#include <limits>
-
-namespace android::hardware::neuralnetworks::V1_2::implementation {
-
-using V1_0::ErrorStatus;
-
-constexpr Timing kNoTiming = {.timeOnDevice = std::numeric_limits<uint64_t>::max(),
-                              .timeInDriver = std::numeric_limits<uint64_t>::max()};
-
-// PreparedModelCallback methods begin here
-
-Return<void> PreparedModelCallback::notify(ErrorStatus errorStatus,
-                                           const sp<V1_0::IPreparedModel>& preparedModel) {
-    {
-        std::lock_guard<std::mutex> hold(mMutex);
-
-        // quick-return if object has already been notified
-        if (mNotified) {
-            return Void();
-        }
-
-        // store results and mark as notified
-        mErrorStatus = errorStatus;
-        mPreparedModel = preparedModel;
-        mNotified = true;
-    }
-
-    mCondition.notify_all();
-    return Void();
-}
-
-Return<void> PreparedModelCallback::notify_1_2(ErrorStatus errorStatus,
-                                               const sp<V1_2::IPreparedModel>& preparedModel) {
-    return notify(errorStatus, preparedModel);
-}
-
-void PreparedModelCallback::wait() const {
-    std::unique_lock<std::mutex> lock(mMutex);
-    mCondition.wait(lock, [this] { return mNotified; });
-}
-
-ErrorStatus PreparedModelCallback::getStatus() const {
-    wait();
-    return mErrorStatus;
-}
-
-sp<V1_0::IPreparedModel> PreparedModelCallback::getPreparedModel() const {
-    wait();
-    return mPreparedModel;
-}
-
-// ExecutionCallback methods begin here
-
-Return<void> ExecutionCallback::notify(ErrorStatus errorStatus) {
-    notifyInternal(errorStatus, {}, kNoTiming);
-    return Void();
-}
-
-Return<void> ExecutionCallback::notify_1_2(ErrorStatus errorStatus,
-                                           const hidl_vec<OutputShape>& outputShapes,
-                                           const Timing& timing) {
-    if (errorStatus == ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
-        // outputShapes must not be empty if OUTPUT_INSUFFICIENT_SIZE.
-        if (outputShapes.size() == 0) {
-            LOG(ERROR) << "Notified with empty output shape vector when OUTPUT_INSUFFICIENT_SIZE";
-            notifyInternal(ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
-            return Void();
-        }
-    } else if (errorStatus != ErrorStatus::NONE) {
-        // outputShapes must be empty if errorStatus is neither NONE nor OUTPUT_INSUFFICIENT_SIZE.
-        if (outputShapes.size() != 0) {
-            LOG(ERROR) << "Notified with non-empty output shape vector when error status is "
-                          "neither NONE nor OUTPUT_INSUFFICIENT_SIZE";
-            notifyInternal(ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
-            return Void();
-        }
-    }
-    notifyInternal(errorStatus, outputShapes, timing);
-    return Void();
-}
-
-void ExecutionCallback::wait() const {
-    std::unique_lock<std::mutex> lock(mMutex);
-    mCondition.wait(lock, [this] { return mNotified; });
-}
-
-ErrorStatus ExecutionCallback::getStatus() const {
-    wait();
-    return mErrorStatus;
-}
-
-const std::vector<OutputShape>& ExecutionCallback::getOutputShapes() const {
-    wait();
-    return mOutputShapes;
-}
-
-Timing ExecutionCallback::getTiming() const {
-    wait();
-    return mTiming;
-}
-
-void ExecutionCallback::notifyInternal(ErrorStatus errorStatus,
-                                       const hidl_vec<OutputShape>& outputShapes,
-                                       const Timing& timing) {
-    {
-        std::lock_guard<std::mutex> hold(mMutex);
-
-        // quick-return if object has already been notified
-        if (mNotified) {
-            return;
-        }
-
-        mErrorStatus = errorStatus;
-        mOutputShapes = outputShapes;
-        mTiming = timing;
-        mNotified = true;
-    }
-    mCondition.notify_all();
-}
-
-}  // namespace android::hardware::neuralnetworks::V1_2::implementation
diff --git a/neuralnetworks/1.3/vts/functional/CompilationCachingTests.cpp b/neuralnetworks/1.3/vts/functional/CompilationCachingTests.cpp
deleted file mode 100644
index 2130a76..0000000
--- a/neuralnetworks/1.3/vts/functional/CompilationCachingTests.cpp
+++ /dev/null
@@ -1,1374 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include <android-base/logging.h>
-#include <fcntl.h>
-#include <ftw.h>
-#include <gtest/gtest.h>
-#include <hidlmemory/mapping.h>
-#include <unistd.h>
-
-#include <cstdio>
-#include <cstdlib>
-#include <random>
-#include <thread>
-
-#include "1.2/Callbacks.h"
-#include "GeneratedTestHarness.h"
-#include "MemoryUtils.h"
-#include "TestHarness.h"
-#include "Utils.h"
-#include "VtsHalNeuralnetworks.h"
-
-// Forward declaration of the mobilenet generated test models in
-// frameworks/ml/nn/runtime/test/generated/.
-namespace generated_tests::mobilenet_224_gender_basic_fixed {
-const test_helper::TestModel& get_test_model();
-}  // namespace generated_tests::mobilenet_224_gender_basic_fixed
-
-namespace generated_tests::mobilenet_quantized {
-const test_helper::TestModel& get_test_model();
-}  // namespace generated_tests::mobilenet_quantized
-
-namespace android::hardware::neuralnetworks::V1_2::vts::functional {
-
-using namespace test_helper;
-using implementation::PreparedModelCallback;
-using V1_0::ErrorStatus;
-using V1_1::ExecutionPreference;
-
-namespace float32_model {
-
-constexpr auto get_test_model = generated_tests::mobilenet_224_gender_basic_fixed::get_test_model;
-
-}  // namespace float32_model
-
-namespace quant8_model {
-
-constexpr auto get_test_model = generated_tests::mobilenet_quantized::get_test_model;
-
-}  // namespace quant8_model
-
-namespace {
-
-enum class AccessMode { READ_WRITE, READ_ONLY, WRITE_ONLY };
-
-// Creates cache handles based on provided file groups.
-// The outer vector corresponds to handles and the inner vector is for fds held by each handle.
-void createCacheHandles(const std::vector<std::vector<std::string>>& fileGroups,
-                        const std::vector<AccessMode>& mode, hidl_vec<hidl_handle>* handles) {
-    handles->resize(fileGroups.size());
-    for (uint32_t i = 0; i < fileGroups.size(); i++) {
-        std::vector<int> fds;
-        for (const auto& file : fileGroups[i]) {
-            int fd;
-            if (mode[i] == AccessMode::READ_ONLY) {
-                fd = open(file.c_str(), O_RDONLY);
-            } else if (mode[i] == AccessMode::WRITE_ONLY) {
-                fd = open(file.c_str(), O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
-            } else if (mode[i] == AccessMode::READ_WRITE) {
-                fd = open(file.c_str(), O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
-            } else {
-                FAIL();
-            }
-            ASSERT_GE(fd, 0);
-            fds.push_back(fd);
-        }
-        native_handle_t* cacheNativeHandle = native_handle_create(fds.size(), 0);
-        ASSERT_NE(cacheNativeHandle, nullptr);
-        std::copy(fds.begin(), fds.end(), &cacheNativeHandle->data[0]);
-        (*handles)[i].setTo(cacheNativeHandle, /*shouldOwn=*/true);
-    }
-}
-
-void createCacheHandles(const std::vector<std::vector<std::string>>& fileGroups, AccessMode mode,
-                        hidl_vec<hidl_handle>* handles) {
-    createCacheHandles(fileGroups, std::vector<AccessMode>(fileGroups.size(), mode), handles);
-}
-
-// Create a chain of broadcast operations. The second operand is always constant tensor [1].
-// For simplicity, activation scalar is shared. The second operand is not shared
-// in the model to let driver maintain a non-trivial size of constant data and the corresponding
-// data locations in cache.
-//
-//                --------- activation --------
-//                ↓      ↓      ↓             ↓
-// E.g. input -> ADD -> ADD -> ADD -> ... -> ADD -> output
-//                ↑      ↑      ↑             ↑
-//               [1]    [1]    [1]           [1]
-//
-// This function assumes the operation is either ADD or MUL.
-template <typename CppType, TestOperandType operandType>
-TestModel createLargeTestModelImpl(TestOperationType op, uint32_t len) {
-    EXPECT_TRUE(op == TestOperationType::ADD || op == TestOperationType::MUL);
-
-    // Model operations and operands.
-    std::vector<TestOperation> operations(len);
-    std::vector<TestOperand> operands(len * 2 + 2);
-
-    // The activation scalar, value = 0.
-    operands[0] = {
-            .type = TestOperandType::INT32,
-            .dimensions = {},
-            .numberOfConsumers = len,
-            .scale = 0.0f,
-            .zeroPoint = 0,
-            .lifetime = TestOperandLifeTime::CONSTANT_COPY,
-            .data = TestBuffer::createFromVector<int32_t>({0}),
-    };
-
-    // The buffer value of the constant second operand. The logical value is always 1.0f.
-    CppType bufferValue;
-    // The scale of the first and second operand.
-    float scale1, scale2;
-    if (operandType == TestOperandType::TENSOR_FLOAT32) {
-        bufferValue = 1.0f;
-        scale1 = 0.0f;
-        scale2 = 0.0f;
-    } else if (op == TestOperationType::ADD) {
-        bufferValue = 1;
-        scale1 = 1.0f;
-        scale2 = 1.0f;
-    } else {
-        // To satisfy the constraint on quant8 MUL: input0.scale * input1.scale < output.scale,
-        // set input1 to have scale = 0.5f and bufferValue = 2, i.e. 1.0f in floating point.
-        bufferValue = 2;
-        scale1 = 1.0f;
-        scale2 = 0.5f;
-    }
-
-    for (uint32_t i = 0; i < len; i++) {
-        const uint32_t firstInputIndex = i * 2 + 1;
-        const uint32_t secondInputIndex = firstInputIndex + 1;
-        const uint32_t outputIndex = secondInputIndex + 1;
-
-        // The first operation input.
-        operands[firstInputIndex] = {
-                .type = operandType,
-                .dimensions = {1},
-                .numberOfConsumers = 1,
-                .scale = scale1,
-                .zeroPoint = 0,
-                .lifetime = (i == 0 ? TestOperandLifeTime::MODEL_INPUT
-                                    : TestOperandLifeTime::TEMPORARY_VARIABLE),
-                .data = (i == 0 ? TestBuffer::createFromVector<CppType>({1}) : TestBuffer()),
-        };
-
-        // The second operation input, value = 1.
-        operands[secondInputIndex] = {
-                .type = operandType,
-                .dimensions = {1},
-                .numberOfConsumers = 1,
-                .scale = scale2,
-                .zeroPoint = 0,
-                .lifetime = TestOperandLifeTime::CONSTANT_COPY,
-                .data = TestBuffer::createFromVector<CppType>({bufferValue}),
-        };
-
-        // The operation. All operations share the same activation scalar.
-        // The output operand is created as an input in the next iteration of the loop, in the case
-        // of all but the last member of the chain; and after the loop as a model output, in the
-        // case of the last member of the chain.
-        operations[i] = {
-                .type = op,
-                .inputs = {firstInputIndex, secondInputIndex, /*activation scalar*/ 0},
-                .outputs = {outputIndex},
-        };
-    }
-
-    // For TestOperationType::ADD, output = 1 + 1 * len = len + 1
-    // For TestOperationType::MUL, output = 1 * 1 ^ len = 1
-    CppType outputResult = static_cast<CppType>(op == TestOperationType::ADD ? len + 1u : 1u);
-
-    // The model output.
-    operands.back() = {
-            .type = operandType,
-            .dimensions = {1},
-            .numberOfConsumers = 0,
-            .scale = scale1,
-            .zeroPoint = 0,
-            .lifetime = TestOperandLifeTime::MODEL_OUTPUT,
-            .data = TestBuffer::createFromVector<CppType>({outputResult}),
-    };
-
-    return {
-            .operands = std::move(operands),
-            .operations = std::move(operations),
-            .inputIndexes = {1},
-            .outputIndexes = {len * 2 + 1},
-            .isRelaxed = false,
-    };
-}
-
-}  // namespace
-
-// Tag for the compilation caching tests.
-class CompilationCachingTestBase : public testing::Test {
-  protected:
-    CompilationCachingTestBase(sp<IDevice> device, OperandType type)
-        : kDevice(std::move(device)), kOperandType(type) {}
-
-    void SetUp() override {
-        testing::Test::SetUp();
-        ASSERT_NE(kDevice.get(), nullptr);
-
-        // Create cache directory. The cache directory and a temporary cache file is always created
-        // to test the behavior of prepareModelFromCache, even when caching is not supported.
-        char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX";
-        char* cacheDir = mkdtemp(cacheDirTemp);
-        ASSERT_NE(cacheDir, nullptr);
-        mCacheDir = cacheDir;
-        mCacheDir.push_back('/');
-
-        Return<void> ret = kDevice->getNumberOfCacheFilesNeeded(
-                [this](ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache) {
-                    EXPECT_EQ(ErrorStatus::NONE, status);
-                    mNumModelCache = numModelCache;
-                    mNumDataCache = numDataCache;
-                });
-        EXPECT_TRUE(ret.isOk());
-        mIsCachingSupported = mNumModelCache > 0 || mNumDataCache > 0;
-
-        // Create empty cache files.
-        mTmpCache = mCacheDir + "tmp";
-        for (uint32_t i = 0; i < mNumModelCache; i++) {
-            mModelCache.push_back({mCacheDir + "model" + std::to_string(i)});
-        }
-        for (uint32_t i = 0; i < mNumDataCache; i++) {
-            mDataCache.push_back({mCacheDir + "data" + std::to_string(i)});
-        }
-        // Dummy handles, use AccessMode::WRITE_ONLY for createCacheHandles to create files.
-        hidl_vec<hidl_handle> modelHandle, dataHandle, tmpHandle;
-        createCacheHandles(mModelCache, AccessMode::WRITE_ONLY, &modelHandle);
-        createCacheHandles(mDataCache, AccessMode::WRITE_ONLY, &dataHandle);
-        createCacheHandles({{mTmpCache}}, AccessMode::WRITE_ONLY, &tmpHandle);
-
-        if (!mIsCachingSupported) {
-            LOG(INFO) << "NN VTS: Early termination of test because vendor service does not "
-                         "support compilation caching.";
-            std::cout << "[          ]   Early termination of test because vendor service does not "
-                         "support compilation caching."
-                      << std::endl;
-        }
-    }
-
-    void TearDown() override {
-        // If the test passes, remove the tmp directory.  Otherwise, keep it for debugging purposes.
-        if (!testing::Test::HasFailure()) {
-            // Recursively remove the cache directory specified by mCacheDir.
-            auto callback = [](const char* entry, const struct stat*, int, struct FTW*) {
-                return remove(entry);
-            };
-            nftw(mCacheDir.c_str(), callback, 128, FTW_DEPTH | FTW_MOUNT | FTW_PHYS);
-        }
-        testing::Test::TearDown();
-    }
-
-    // Model and examples creators. According to kOperandType, the following methods will return
-    // either float32 model/examples or the quant8 variant.
-    TestModel createTestModel() {
-        if (kOperandType == OperandType::TENSOR_FLOAT32) {
-            return float32_model::get_test_model();
-        } else {
-            return quant8_model::get_test_model();
-        }
-    }
-
-    TestModel createLargeTestModel(OperationType op, uint32_t len) {
-        if (kOperandType == OperandType::TENSOR_FLOAT32) {
-            return createLargeTestModelImpl<float, TestOperandType::TENSOR_FLOAT32>(
-                    static_cast<TestOperationType>(op), len);
-        } else {
-            return createLargeTestModelImpl<uint8_t, TestOperandType::TENSOR_QUANT8_ASYMM>(
-                    static_cast<TestOperationType>(op), len);
-        }
-    }
-
-    // See if the service can handle the model.
-    bool isModelFullySupported(const Model& model) {
-        bool fullySupportsModel = false;
-        Return<void> supportedCall = kDevice->getSupportedOperations_1_2(
-                model,
-                [&fullySupportsModel, &model](ErrorStatus status, const hidl_vec<bool>& supported) {
-                    ASSERT_EQ(ErrorStatus::NONE, status);
-                    ASSERT_EQ(supported.size(), model.operations.size());
-                    fullySupportsModel = std::all_of(supported.begin(), supported.end(),
-                                                     [](bool valid) { return valid; });
-                });
-        EXPECT_TRUE(supportedCall.isOk());
-        return fullySupportsModel;
-    }
-
-    void saveModelToCache(const Model& model, const hidl_vec<hidl_handle>& modelCache,
-                          const hidl_vec<hidl_handle>& dataCache,
-                          sp<IPreparedModel>* preparedModel = nullptr) {
-        if (preparedModel != nullptr) *preparedModel = nullptr;
-
-        // Launch prepare model.
-        sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
-        hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
-        Return<ErrorStatus> prepareLaunchStatus =
-                kDevice->prepareModel_1_2(model, ExecutionPreference::FAST_SINGLE_ANSWER,
-                                          modelCache, dataCache, cacheToken, preparedModelCallback);
-        ASSERT_TRUE(prepareLaunchStatus.isOk());
-        ASSERT_EQ(static_cast<ErrorStatus>(prepareLaunchStatus), ErrorStatus::NONE);
-
-        // Retrieve prepared model.
-        preparedModelCallback->wait();
-        ASSERT_EQ(preparedModelCallback->getStatus(), ErrorStatus::NONE);
-        if (preparedModel != nullptr) {
-            *preparedModel = IPreparedModel::castFrom(preparedModelCallback->getPreparedModel())
-                                     .withDefault(nullptr);
-        }
-    }
-
-    bool checkEarlyTermination(ErrorStatus status) {
-        if (status == ErrorStatus::GENERAL_FAILURE) {
-            LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
-                         "save the prepared model that it does not support.";
-            std::cout << "[          ]   Early termination of test because vendor service cannot "
-                         "save the prepared model that it does not support."
-                      << std::endl;
-            return true;
-        }
-        return false;
-    }
-
-    bool checkEarlyTermination(const Model& model) {
-        if (!isModelFullySupported(model)) {
-            LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
-                         "prepare model that it does not support.";
-            std::cout << "[          ]   Early termination of test because vendor service cannot "
-                         "prepare model that it does not support."
-                      << std::endl;
-            return true;
-        }
-        return false;
-    }
-
-    void prepareModelFromCache(const hidl_vec<hidl_handle>& modelCache,
-                               const hidl_vec<hidl_handle>& dataCache,
-                               sp<IPreparedModel>* preparedModel, ErrorStatus* status) {
-        // Launch prepare model from cache.
-        sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
-        hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
-        Return<ErrorStatus> prepareLaunchStatus = kDevice->prepareModelFromCache(
-                modelCache, dataCache, cacheToken, preparedModelCallback);
-        ASSERT_TRUE(prepareLaunchStatus.isOk());
-        if (static_cast<ErrorStatus>(prepareLaunchStatus) != ErrorStatus::NONE) {
-            *preparedModel = nullptr;
-            *status = static_cast<ErrorStatus>(prepareLaunchStatus);
-            return;
-        }
-
-        // Retrieve prepared model.
-        preparedModelCallback->wait();
-        *status = preparedModelCallback->getStatus();
-        *preparedModel = IPreparedModel::castFrom(preparedModelCallback->getPreparedModel())
-                                 .withDefault(nullptr);
-    }
-
-    // Absolute path to the temporary cache directory.
-    std::string mCacheDir;
-
-    // Groups of file paths for model and data cache in the tmp cache directory, initialized with
-    // outer_size = mNum{Model|Data}Cache, inner_size = 1. The outer vector corresponds to handles
-    // and the inner vector is for fds held by each handle.
-    std::vector<std::vector<std::string>> mModelCache;
-    std::vector<std::vector<std::string>> mDataCache;
-
-    // A separate temporary file path in the tmp cache directory.
-    std::string mTmpCache;
-
-    uint8_t mToken[static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)] = {};
-    uint32_t mNumModelCache;
-    uint32_t mNumDataCache;
-    uint32_t mIsCachingSupported;
-
-    const sp<IDevice> kDevice;
-    // The primary data type of the testModel.
-    const OperandType kOperandType;
-};
-
-using CompilationCachingTestParam = std::tuple<NamedDevice, OperandType>;
-
-// A parameterized fixture of CompilationCachingTestBase. Every test will run twice, with the first
-// pass running with float32 models and the second pass running with quant8 models.
-class CompilationCachingTest : public CompilationCachingTestBase,
-                               public testing::WithParamInterface<CompilationCachingTestParam> {
-  protected:
-    CompilationCachingTest()
-        : CompilationCachingTestBase(getData(std::get<NamedDevice>(GetParam())),
-                                     std::get<OperandType>(GetParam())) {}
-};
-
-TEST_P(CompilationCachingTest, CacheSavingAndRetrieval) {
-    // Create test HIDL model and compile.
-    const TestModel& testModel = createTestModel();
-    const Model model = createModel(testModel);
-    if (checkEarlyTermination(model)) return;
-    sp<IPreparedModel> preparedModel = nullptr;
-
-    // Save the compilation to cache.
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        saveModelToCache(model, modelCache, dataCache);
-    }
-
-    // Retrieve preparedModel from cache.
-    {
-        preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (!mIsCachingSupported) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-            ASSERT_EQ(preparedModel, nullptr);
-            return;
-        } else if (checkEarlyTermination(status)) {
-            ASSERT_EQ(preparedModel, nullptr);
-            return;
-        } else {
-            ASSERT_EQ(status, ErrorStatus::NONE);
-            ASSERT_NE(preparedModel, nullptr);
-        }
-    }
-
-    // Execute and verify results.
-    EvaluatePreparedModel(preparedModel, testModel,
-                          /*testDynamicOutputShape=*/false);
-}
-
-TEST_P(CompilationCachingTest, CacheSavingAndRetrievalNonZeroOffset) {
-    // Create test HIDL model and compile.
-    const TestModel& testModel = createTestModel();
-    const Model model = createModel(testModel);
-    if (checkEarlyTermination(model)) return;
-    sp<IPreparedModel> preparedModel = nullptr;
-
-    // Save the compilation to cache.
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        uint8_t dummyBytes[] = {0, 0};
-        // Write a dummy integer to the cache.
-        // The driver should be able to handle non-empty cache and non-zero fd offset.
-        for (uint32_t i = 0; i < modelCache.size(); i++) {
-            ASSERT_EQ(write(modelCache[i].getNativeHandle()->data[0], &dummyBytes,
-                            sizeof(dummyBytes)),
-                      sizeof(dummyBytes));
-        }
-        for (uint32_t i = 0; i < dataCache.size(); i++) {
-            ASSERT_EQ(
-                    write(dataCache[i].getNativeHandle()->data[0], &dummyBytes, sizeof(dummyBytes)),
-                    sizeof(dummyBytes));
-        }
-        saveModelToCache(model, modelCache, dataCache);
-    }
-
-    // Retrieve preparedModel from cache.
-    {
-        preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        uint8_t dummyByte = 0;
-        // Advance the offset of each handle by one byte.
-        // The driver should be able to handle non-zero fd offset.
-        for (uint32_t i = 0; i < modelCache.size(); i++) {
-            ASSERT_GE(read(modelCache[i].getNativeHandle()->data[0], &dummyByte, 1), 0);
-        }
-        for (uint32_t i = 0; i < dataCache.size(); i++) {
-            ASSERT_GE(read(dataCache[i].getNativeHandle()->data[0], &dummyByte, 1), 0);
-        }
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (!mIsCachingSupported) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-            ASSERT_EQ(preparedModel, nullptr);
-            return;
-        } else if (checkEarlyTermination(status)) {
-            ASSERT_EQ(preparedModel, nullptr);
-            return;
-        } else {
-            ASSERT_EQ(status, ErrorStatus::NONE);
-            ASSERT_NE(preparedModel, nullptr);
-        }
-    }
-
-    // Execute and verify results.
-    EvaluatePreparedModel(preparedModel, testModel,
-                          /*testDynamicOutputShape=*/false);
-}
-
-TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
-    // Create test HIDL model and compile.
-    const TestModel& testModel = createTestModel();
-    const Model model = createModel(testModel);
-    if (checkEarlyTermination(model)) return;
-
-    // Test with number of model cache files greater than mNumModelCache.
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        // Pass an additional cache file for model cache.
-        mModelCache.push_back({mTmpCache});
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mModelCache.pop_back();
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Test with number of model cache files smaller than mNumModelCache.
-    if (mModelCache.size() > 0) {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        // Pop out the last cache file.
-        auto tmp = mModelCache.back();
-        mModelCache.pop_back();
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mModelCache.push_back(tmp);
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Test with number of data cache files greater than mNumDataCache.
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        // Pass an additional cache file for data cache.
-        mDataCache.push_back({mTmpCache});
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mDataCache.pop_back();
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Test with number of data cache files smaller than mNumDataCache.
-    if (mDataCache.size() > 0) {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        // Pop out the last cache file.
-        auto tmp = mDataCache.back();
-        mDataCache.pop_back();
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mDataCache.push_back(tmp);
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-}
-
-TEST_P(CompilationCachingTest, PrepareModelFromCacheInvalidNumCache) {
-    // Create test HIDL model and compile.
-    const TestModel& testModel = createTestModel();
-    const Model model = createModel(testModel);
-    if (checkEarlyTermination(model)) return;
-
-    // Save the compilation to cache.
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        saveModelToCache(model, modelCache, dataCache);
-    }
-
-    // Test with number of model cache files greater than mNumModelCache.
-    {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        mModelCache.push_back({mTmpCache});
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mModelCache.pop_back();
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Test with number of model cache files smaller than mNumModelCache.
-    if (mModelCache.size() > 0) {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        auto tmp = mModelCache.back();
-        mModelCache.pop_back();
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mModelCache.push_back(tmp);
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Test with number of data cache files greater than mNumDataCache.
-    {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        mDataCache.push_back({mTmpCache});
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mDataCache.pop_back();
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Test with number of data cache files smaller than mNumDataCache.
-    if (mDataCache.size() > 0) {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        auto tmp = mDataCache.back();
-        mDataCache.pop_back();
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mDataCache.push_back(tmp);
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-}
-
-TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
-    // Create test HIDL model and compile.
-    const TestModel& testModel = createTestModel();
-    const Model model = createModel(testModel);
-    if (checkEarlyTermination(model)) return;
-
-    // Go through each handle in model cache, test with NumFd greater than 1.
-    for (uint32_t i = 0; i < mNumModelCache; i++) {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        // Pass an invalid number of fds for handle i.
-        mModelCache[i].push_back(mTmpCache);
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mModelCache[i].pop_back();
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Go through each handle in model cache, test with NumFd equal to 0.
-    for (uint32_t i = 0; i < mNumModelCache; i++) {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        // Pass an invalid number of fds for handle i.
-        auto tmp = mModelCache[i].back();
-        mModelCache[i].pop_back();
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mModelCache[i].push_back(tmp);
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Go through each handle in data cache, test with NumFd greater than 1.
-    for (uint32_t i = 0; i < mNumDataCache; i++) {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        // Pass an invalid number of fds for handle i.
-        mDataCache[i].push_back(mTmpCache);
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mDataCache[i].pop_back();
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Go through each handle in data cache, test with NumFd equal to 0.
-    for (uint32_t i = 0; i < mNumDataCache; i++) {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        // Pass an invalid number of fds for handle i.
-        auto tmp = mDataCache[i].back();
-        mDataCache[i].pop_back();
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mDataCache[i].push_back(tmp);
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-}
-
-TEST_P(CompilationCachingTest, PrepareModelFromCacheInvalidNumFd) {
-    // Create test HIDL model and compile.
-    const TestModel& testModel = createTestModel();
-    const Model model = createModel(testModel);
-    if (checkEarlyTermination(model)) return;
-
-    // Save the compilation to cache.
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        saveModelToCache(model, modelCache, dataCache);
-    }
-
-    // Go through each handle in model cache, test with NumFd greater than 1.
-    for (uint32_t i = 0; i < mNumModelCache; i++) {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        mModelCache[i].push_back(mTmpCache);
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mModelCache[i].pop_back();
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Go through each handle in model cache, test with NumFd equal to 0.
-    for (uint32_t i = 0; i < mNumModelCache; i++) {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        auto tmp = mModelCache[i].back();
-        mModelCache[i].pop_back();
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mModelCache[i].push_back(tmp);
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Go through each handle in data cache, test with NumFd greater than 1.
-    for (uint32_t i = 0; i < mNumDataCache; i++) {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        mDataCache[i].push_back(mTmpCache);
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mDataCache[i].pop_back();
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Go through each handle in data cache, test with NumFd equal to 0.
-    for (uint32_t i = 0; i < mNumDataCache; i++) {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        auto tmp = mDataCache[i].back();
-        mDataCache[i].pop_back();
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        mDataCache[i].push_back(tmp);
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-}
-
-TEST_P(CompilationCachingTest, SaveToCacheInvalidAccessMode) {
-    // Create test HIDL model and compile.
-    const TestModel& testModel = createTestModel();
-    const Model model = createModel(testModel);
-    if (checkEarlyTermination(model)) return;
-    std::vector<AccessMode> modelCacheMode(mNumModelCache, AccessMode::READ_WRITE);
-    std::vector<AccessMode> dataCacheMode(mNumDataCache, AccessMode::READ_WRITE);
-
-    // Go through each handle in model cache, test with invalid access mode.
-    for (uint32_t i = 0; i < mNumModelCache; i++) {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        modelCacheMode[i] = AccessMode::READ_ONLY;
-        createCacheHandles(mModelCache, modelCacheMode, &modelCache);
-        createCacheHandles(mDataCache, dataCacheMode, &dataCache);
-        modelCacheMode[i] = AccessMode::READ_WRITE;
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Go through each handle in data cache, test with invalid access mode.
-    for (uint32_t i = 0; i < mNumDataCache; i++) {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        dataCacheMode[i] = AccessMode::READ_ONLY;
-        createCacheHandles(mModelCache, modelCacheMode, &modelCache);
-        createCacheHandles(mDataCache, dataCacheMode, &dataCache);
-        dataCacheMode[i] = AccessMode::READ_WRITE;
-        sp<IPreparedModel> preparedModel = nullptr;
-        saveModelToCache(model, modelCache, dataCache, &preparedModel);
-        ASSERT_NE(preparedModel, nullptr);
-        // Execute and verify results.
-        EvaluatePreparedModel(preparedModel, testModel,
-                              /*testDynamicOutputShape=*/false);
-        // Check if prepareModelFromCache fails.
-        preparedModel = nullptr;
-        ErrorStatus status;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        if (status != ErrorStatus::INVALID_ARGUMENT) {
-            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        }
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-}
-
-TEST_P(CompilationCachingTest, PrepareModelFromCacheInvalidAccessMode) {
-    // Create test HIDL model and compile.
-    const TestModel& testModel = createTestModel();
-    const Model model = createModel(testModel);
-    if (checkEarlyTermination(model)) return;
-    std::vector<AccessMode> modelCacheMode(mNumModelCache, AccessMode::READ_WRITE);
-    std::vector<AccessMode> dataCacheMode(mNumDataCache, AccessMode::READ_WRITE);
-
-    // Save the compilation to cache.
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        saveModelToCache(model, modelCache, dataCache);
-    }
-
-    // Go through each handle in model cache, test with invalid access mode.
-    for (uint32_t i = 0; i < mNumModelCache; i++) {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        modelCacheMode[i] = AccessMode::WRITE_ONLY;
-        createCacheHandles(mModelCache, modelCacheMode, &modelCache);
-        createCacheHandles(mDataCache, dataCacheMode, &dataCache);
-        modelCacheMode[i] = AccessMode::READ_WRITE;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-
-    // Go through each handle in data cache, test with invalid access mode.
-    for (uint32_t i = 0; i < mNumDataCache; i++) {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        dataCacheMode[i] = AccessMode::WRITE_ONLY;
-        createCacheHandles(mModelCache, modelCacheMode, &modelCache);
-        createCacheHandles(mDataCache, dataCacheMode, &dataCache);
-        dataCacheMode[i] = AccessMode::READ_WRITE;
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-}
-
-// Copy file contents between file groups.
-// The outer vector corresponds to handles and the inner vector is for fds held by each handle.
-// The outer vector sizes must match and the inner vectors must have size = 1.
-static void copyCacheFiles(const std::vector<std::vector<std::string>>& from,
-                           const std::vector<std::vector<std::string>>& to) {
-    constexpr size_t kBufferSize = 1000000;
-    uint8_t buffer[kBufferSize];
-
-    ASSERT_EQ(from.size(), to.size());
-    for (uint32_t i = 0; i < from.size(); i++) {
-        ASSERT_EQ(from[i].size(), 1u);
-        ASSERT_EQ(to[i].size(), 1u);
-        int fromFd = open(from[i][0].c_str(), O_RDONLY);
-        int toFd = open(to[i][0].c_str(), O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
-        ASSERT_GE(fromFd, 0);
-        ASSERT_GE(toFd, 0);
-
-        ssize_t readBytes;
-        while ((readBytes = read(fromFd, &buffer, kBufferSize)) > 0) {
-            ASSERT_EQ(write(toFd, &buffer, readBytes), readBytes);
-        }
-        ASSERT_GE(readBytes, 0);
-
-        close(fromFd);
-        close(toFd);
-    }
-}
-
-// Number of operations in the large test model.
-constexpr uint32_t kLargeModelSize = 100;
-constexpr uint32_t kNumIterationsTOCTOU = 100;
-
-TEST_P(CompilationCachingTest, SaveToCache_TOCTOU) {
-    if (!mIsCachingSupported) return;
-
-    // Create test models and check if fully supported by the service.
-    const TestModel testModelMul = createLargeTestModel(OperationType::MUL, kLargeModelSize);
-    const Model modelMul = createModel(testModelMul);
-    if (checkEarlyTermination(modelMul)) return;
-    const TestModel testModelAdd = createLargeTestModel(OperationType::ADD, kLargeModelSize);
-    const Model modelAdd = createModel(testModelAdd);
-    if (checkEarlyTermination(modelAdd)) return;
-
-    // Save the modelMul compilation to cache.
-    auto modelCacheMul = mModelCache;
-    for (auto& cache : modelCacheMul) {
-        cache[0].append("_mul");
-    }
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(modelCacheMul, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        saveModelToCache(modelMul, modelCache, dataCache);
-    }
-
-    // Use a different token for modelAdd.
-    mToken[0]++;
-
-    // This test is probabilistic, so we run it multiple times.
-    for (uint32_t i = 0; i < kNumIterationsTOCTOU; i++) {
-        // Save the modelAdd compilation to cache.
-        {
-            hidl_vec<hidl_handle> modelCache, dataCache;
-            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-
-            // Spawn a thread to copy the cache content concurrently while saving to cache.
-            std::thread thread(copyCacheFiles, std::cref(modelCacheMul), std::cref(mModelCache));
-            saveModelToCache(modelAdd, modelCache, dataCache);
-            thread.join();
-        }
-
-        // Retrieve preparedModel from cache.
-        {
-            sp<IPreparedModel> preparedModel = nullptr;
-            ErrorStatus status;
-            hidl_vec<hidl_handle> modelCache, dataCache;
-            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-            prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-
-            // The preparation may fail or succeed, but must not crash. If the preparation succeeds,
-            // the prepared model must be executed with the correct result and not crash.
-            if (status != ErrorStatus::NONE) {
-                ASSERT_EQ(preparedModel, nullptr);
-            } else {
-                ASSERT_NE(preparedModel, nullptr);
-                EvaluatePreparedModel(preparedModel, testModelAdd,
-                                      /*testDynamicOutputShape=*/false);
-            }
-        }
-    }
-}
-
-TEST_P(CompilationCachingTest, PrepareFromCache_TOCTOU) {
-    if (!mIsCachingSupported) return;
-
-    // Create test models and check if fully supported by the service.
-    const TestModel testModelMul = createLargeTestModel(OperationType::MUL, kLargeModelSize);
-    const Model modelMul = createModel(testModelMul);
-    if (checkEarlyTermination(modelMul)) return;
-    const TestModel testModelAdd = createLargeTestModel(OperationType::ADD, kLargeModelSize);
-    const Model modelAdd = createModel(testModelAdd);
-    if (checkEarlyTermination(modelAdd)) return;
-
-    // Save the modelMul compilation to cache.
-    auto modelCacheMul = mModelCache;
-    for (auto& cache : modelCacheMul) {
-        cache[0].append("_mul");
-    }
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(modelCacheMul, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        saveModelToCache(modelMul, modelCache, dataCache);
-    }
-
-    // Use a different token for modelAdd.
-    mToken[0]++;
-
-    // This test is probabilistic, so we run it multiple times.
-    for (uint32_t i = 0; i < kNumIterationsTOCTOU; i++) {
-        // Save the modelAdd compilation to cache.
-        {
-            hidl_vec<hidl_handle> modelCache, dataCache;
-            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-            saveModelToCache(modelAdd, modelCache, dataCache);
-        }
-
-        // Retrieve preparedModel from cache.
-        {
-            sp<IPreparedModel> preparedModel = nullptr;
-            ErrorStatus status;
-            hidl_vec<hidl_handle> modelCache, dataCache;
-            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-
-            // Spawn a thread to copy the cache content concurrently while preparing from cache.
-            std::thread thread(copyCacheFiles, std::cref(modelCacheMul), std::cref(mModelCache));
-            prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-            thread.join();
-
-            // The preparation may fail or succeed, but must not crash. If the preparation succeeds,
-            // the prepared model must be executed with the correct result and not crash.
-            if (status != ErrorStatus::NONE) {
-                ASSERT_EQ(preparedModel, nullptr);
-            } else {
-                ASSERT_NE(preparedModel, nullptr);
-                EvaluatePreparedModel(preparedModel, testModelAdd,
-                                      /*testDynamicOutputShape=*/false);
-            }
-        }
-    }
-}
-
-TEST_P(CompilationCachingTest, ReplaceSecuritySensitiveCache) {
-    if (!mIsCachingSupported) return;
-
-    // Create test models and check if fully supported by the service.
-    const TestModel testModelMul = createLargeTestModel(OperationType::MUL, kLargeModelSize);
-    const Model modelMul = createModel(testModelMul);
-    if (checkEarlyTermination(modelMul)) return;
-    const TestModel testModelAdd = createLargeTestModel(OperationType::ADD, kLargeModelSize);
-    const Model modelAdd = createModel(testModelAdd);
-    if (checkEarlyTermination(modelAdd)) return;
-
-    // Save the modelMul compilation to cache.
-    auto modelCacheMul = mModelCache;
-    for (auto& cache : modelCacheMul) {
-        cache[0].append("_mul");
-    }
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(modelCacheMul, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        saveModelToCache(modelMul, modelCache, dataCache);
-    }
-
-    // Use a different token for modelAdd.
-    mToken[0]++;
-
-    // Save the modelAdd compilation to cache.
-    {
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        saveModelToCache(modelAdd, modelCache, dataCache);
-    }
-
-    // Replace the model cache of modelAdd with modelMul.
-    copyCacheFiles(modelCacheMul, mModelCache);
-
-    // Retrieve the preparedModel from cache, expect failure.
-    {
-        sp<IPreparedModel> preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_vec<hidl_handle> modelCache, dataCache;
-        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        ASSERT_EQ(preparedModel, nullptr);
-    }
-}
-
-static const auto kNamedDeviceChoices = testing::ValuesIn(getNamedDevices());
-static const auto kOperandTypeChoices =
-        testing::Values(OperandType::TENSOR_FLOAT32, OperandType::TENSOR_QUANT8_ASYMM);
-
-std::string printCompilationCachingTest(
-        const testing::TestParamInfo<CompilationCachingTestParam>& info) {
-    const auto& [namedDevice, operandType] = info.param;
-    const std::string type = (operandType == OperandType::TENSOR_FLOAT32 ? "float32" : "quant8");
-    return gtestCompliantName(getName(namedDevice) + "_" + type);
-}
-
-INSTANTIATE_TEST_CASE_P(TestCompilationCaching, CompilationCachingTest,
-                        testing::Combine(kNamedDeviceChoices, kOperandTypeChoices),
-                        printCompilationCachingTest);
-
-using CompilationCachingSecurityTestParam = std::tuple<NamedDevice, OperandType, uint32_t>;
-
-class CompilationCachingSecurityTest
-    : public CompilationCachingTestBase,
-      public testing::WithParamInterface<CompilationCachingSecurityTestParam> {
-  protected:
-    CompilationCachingSecurityTest()
-        : CompilationCachingTestBase(getData(std::get<NamedDevice>(GetParam())),
-                                     std::get<OperandType>(GetParam())) {}
-
-    void SetUp() {
-        CompilationCachingTestBase::SetUp();
-        generator.seed(kSeed);
-    }
-
-    // Get a random integer within a closed range [lower, upper].
-    template <typename T>
-    T getRandomInt(T lower, T upper) {
-        std::uniform_int_distribution<T> dis(lower, upper);
-        return dis(generator);
-    }
-
-    // Randomly flip one single bit of the cache entry.
-    void flipOneBitOfCache(const std::string& filename, bool* skip) {
-        FILE* pFile = fopen(filename.c_str(), "r+");
-        ASSERT_EQ(fseek(pFile, 0, SEEK_END), 0);
-        long int fileSize = ftell(pFile);
-        if (fileSize == 0) {
-            fclose(pFile);
-            *skip = true;
-            return;
-        }
-        ASSERT_EQ(fseek(pFile, getRandomInt(0l, fileSize - 1), SEEK_SET), 0);
-        int readByte = fgetc(pFile);
-        ASSERT_NE(readByte, EOF);
-        ASSERT_EQ(fseek(pFile, -1, SEEK_CUR), 0);
-        ASSERT_NE(fputc(static_cast<uint8_t>(readByte) ^ (1U << getRandomInt(0, 7)), pFile), EOF);
-        fclose(pFile);
-        *skip = false;
-    }
-
-    // Randomly append bytes to the cache entry.
-    void appendBytesToCache(const std::string& filename, bool* skip) {
-        FILE* pFile = fopen(filename.c_str(), "a");
-        uint32_t appendLength = getRandomInt(1, 256);
-        for (uint32_t i = 0; i < appendLength; i++) {
-            ASSERT_NE(fputc(getRandomInt<uint8_t>(0, 255), pFile), EOF);
-        }
-        fclose(pFile);
-        *skip = false;
-    }
-
-    enum class ExpectedResult { GENERAL_FAILURE, NOT_CRASH };
-
-    // Test if the driver behaves as expected when given corrupted cache or token.
-    // The modifier will be invoked after save to cache but before prepare from cache.
-    // The modifier accepts one pointer argument "skip" as the returning value, indicating
-    // whether the test should be skipped or not.
-    void testCorruptedCache(ExpectedResult expected, std::function<void(bool*)> modifier) {
-        const TestModel& testModel = createTestModel();
-        const Model model = createModel(testModel);
-        if (checkEarlyTermination(model)) return;
-
-        // Save the compilation to cache.
-        {
-            hidl_vec<hidl_handle> modelCache, dataCache;
-            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-            saveModelToCache(model, modelCache, dataCache);
-        }
-
-        bool skip = false;
-        modifier(&skip);
-        if (skip) return;
-
-        // Retrieve preparedModel from cache.
-        {
-            sp<IPreparedModel> preparedModel = nullptr;
-            ErrorStatus status;
-            hidl_vec<hidl_handle> modelCache, dataCache;
-            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
-            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-            prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-
-            switch (expected) {
-                case ExpectedResult::GENERAL_FAILURE:
-                    ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-                    ASSERT_EQ(preparedModel, nullptr);
-                    break;
-                case ExpectedResult::NOT_CRASH:
-                    ASSERT_EQ(preparedModel == nullptr, status != ErrorStatus::NONE);
-                    break;
-                default:
-                    FAIL();
-            }
-        }
-    }
-
-    const uint32_t kSeed = std::get<uint32_t>(GetParam());
-    std::mt19937 generator;
-};
-
-TEST_P(CompilationCachingSecurityTest, CorruptedModelCache) {
-    if (!mIsCachingSupported) return;
-    for (uint32_t i = 0; i < mNumModelCache; i++) {
-        testCorruptedCache(ExpectedResult::GENERAL_FAILURE,
-                           [this, i](bool* skip) { flipOneBitOfCache(mModelCache[i][0], skip); });
-    }
-}
-
-TEST_P(CompilationCachingSecurityTest, WrongLengthModelCache) {
-    if (!mIsCachingSupported) return;
-    for (uint32_t i = 0; i < mNumModelCache; i++) {
-        testCorruptedCache(ExpectedResult::GENERAL_FAILURE,
-                           [this, i](bool* skip) { appendBytesToCache(mModelCache[i][0], skip); });
-    }
-}
-
-TEST_P(CompilationCachingSecurityTest, CorruptedDataCache) {
-    if (!mIsCachingSupported) return;
-    for (uint32_t i = 0; i < mNumDataCache; i++) {
-        testCorruptedCache(ExpectedResult::NOT_CRASH,
-                           [this, i](bool* skip) { flipOneBitOfCache(mDataCache[i][0], skip); });
-    }
-}
-
-TEST_P(CompilationCachingSecurityTest, WrongLengthDataCache) {
-    if (!mIsCachingSupported) return;
-    for (uint32_t i = 0; i < mNumDataCache; i++) {
-        testCorruptedCache(ExpectedResult::NOT_CRASH,
-                           [this, i](bool* skip) { appendBytesToCache(mDataCache[i][0], skip); });
-    }
-}
-
-TEST_P(CompilationCachingSecurityTest, WrongToken) {
-    if (!mIsCachingSupported) return;
-    testCorruptedCache(ExpectedResult::GENERAL_FAILURE, [this](bool* skip) {
-        // Randomly flip one single bit in mToken.
-        uint32_t ind =
-                getRandomInt(0u, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN) - 1);
-        mToken[ind] ^= (1U << getRandomInt(0, 7));
-        *skip = false;
-    });
-}
-
-std::string printCompilationCachingSecurityTest(
-        const testing::TestParamInfo<CompilationCachingSecurityTestParam>& info) {
-    const auto& [namedDevice, operandType, seed] = info.param;
-    const std::string type = (operandType == OperandType::TENSOR_FLOAT32 ? "float32" : "quant8");
-    return gtestCompliantName(getName(namedDevice) + "_" + type + "_" + std::to_string(seed));
-}
-
-INSTANTIATE_TEST_CASE_P(TestCompilationCaching, CompilationCachingSecurityTest,
-                        testing::Combine(kNamedDeviceChoices, kOperandTypeChoices,
-                                         testing::Range(0U, 10U)),
-                        printCompilationCachingSecurityTest);
-
-}  // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp
deleted file mode 100644
index 2beec98..0000000
--- a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp
+++ /dev/null
@@ -1,408 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "GeneratedTestHarness.h"
-
-#include <android-base/logging.h>
-#include <android/hardware/neuralnetworks/1.0/IDevice.h>
-#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
-#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
-#include <android/hardware/neuralnetworks/1.0/types.h>
-#include <android/hardware/neuralnetworks/1.1/IDevice.h>
-#include <android/hardware/neuralnetworks/1.2/IDevice.h>
-#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
-#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
-#include <android/hidl/allocator/1.0/IAllocator.h>
-#include <android/hidl/memory/1.0/IMemory.h>
-#include <hidlmemory/mapping.h>
-
-#include <gtest/gtest.h>
-#include <algorithm>
-#include <iostream>
-#include <numeric>
-
-#include "1.0/Utils.h"
-#include "1.2/Callbacks.h"
-#include "ExecutionBurstController.h"
-#include "MemoryUtils.h"
-#include "TestHarness.h"
-#include "Utils.h"
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_2::vts::functional {
-
-using namespace test_helper;
-using hidl::memory::V1_0::IMemory;
-using implementation::ExecutionCallback;
-using implementation::PreparedModelCallback;
-using V1_0::DataLocation;
-using V1_0::ErrorStatus;
-using V1_0::OperandLifeTime;
-using V1_0::Request;
-using V1_1::ExecutionPreference;
-using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
-
-enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
-
-Model createModel(const TestModel& testModel) {
-    // Model operands.
-    hidl_vec<Operand> operands(testModel.operands.size());
-    size_t constCopySize = 0, constRefSize = 0;
-    for (uint32_t i = 0; i < testModel.operands.size(); i++) {
-        const auto& op = testModel.operands[i];
-
-        DataLocation loc = {};
-        if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
-            loc = {.poolIndex = 0,
-                   .offset = static_cast<uint32_t>(constCopySize),
-                   .length = static_cast<uint32_t>(op.data.size())};
-            constCopySize += op.data.alignedSize();
-        } else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
-            loc = {.poolIndex = 0,
-                   .offset = static_cast<uint32_t>(constRefSize),
-                   .length = static_cast<uint32_t>(op.data.size())};
-            constRefSize += op.data.alignedSize();
-        }
-
-        Operand::ExtraParams extraParams;
-        if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
-            extraParams.channelQuant(SymmPerChannelQuantParams{
-                    .scales = op.channelQuant.scales, .channelDim = op.channelQuant.channelDim});
-        }
-
-        operands[i] = {.type = static_cast<OperandType>(op.type),
-                       .dimensions = op.dimensions,
-                       .numberOfConsumers = op.numberOfConsumers,
-                       .scale = op.scale,
-                       .zeroPoint = op.zeroPoint,
-                       .lifetime = static_cast<OperandLifeTime>(op.lifetime),
-                       .location = loc,
-                       .extraParams = std::move(extraParams)};
-    }
-
-    // Model operations.
-    hidl_vec<Operation> operations(testModel.operations.size());
-    std::transform(testModel.operations.begin(), testModel.operations.end(), operations.begin(),
-                   [](const TestOperation& op) -> Operation {
-                       return {.type = static_cast<OperationType>(op.type),
-                               .inputs = op.inputs,
-                               .outputs = op.outputs};
-                   });
-
-    // Constant copies.
-    hidl_vec<uint8_t> operandValues(constCopySize);
-    for (uint32_t i = 0; i < testModel.operands.size(); i++) {
-        const auto& op = testModel.operands[i];
-        if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
-            const uint8_t* begin = op.data.get<uint8_t>();
-            const uint8_t* end = begin + op.data.size();
-            std::copy(begin, end, operandValues.data() + operands[i].location.offset);
-        }
-    }
-
-    // Shared memory.
-    hidl_vec<hidl_memory> pools = {};
-    if (constRefSize > 0) {
-        hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize));
-        CHECK_NE(pools[0].size(), 0u);
-
-        // load data
-        sp<IMemory> mappedMemory = mapMemory(pools[0]);
-        CHECK(mappedMemory.get() != nullptr);
-        uint8_t* mappedPtr =
-                reinterpret_cast<uint8_t*>(static_cast<void*>(mappedMemory->getPointer()));
-        CHECK(mappedPtr != nullptr);
-
-        for (uint32_t i = 0; i < testModel.operands.size(); i++) {
-            const auto& op = testModel.operands[i];
-            if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
-                const uint8_t* begin = op.data.get<uint8_t>();
-                const uint8_t* end = begin + op.data.size();
-                std::copy(begin, end, mappedPtr + operands[i].location.offset);
-            }
-        }
-    }
-
-    return {.operands = std::move(operands),
-            .operations = std::move(operations),
-            .inputIndexes = testModel.inputIndexes,
-            .outputIndexes = testModel.outputIndexes,
-            .operandValues = std::move(operandValues),
-            .pools = std::move(pools),
-            .relaxComputationFloat32toFloat16 = testModel.isRelaxed};
-}
-
-static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) {
-    const auto byteSize = testModel.operands[testModel.outputIndexes[index]].data.size();
-    return byteSize > 1u;
-}
-
-static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
-    auto& length = request->outputs[outputIndex].location.length;
-    ASSERT_GT(length, 1u);
-    length -= 1u;
-}
-
-static void makeOutputDimensionsUnspecified(Model* model) {
-    for (auto i : model->outputIndexes) {
-        auto& dims = model->operands[i].dimensions;
-        std::fill(dims.begin(), dims.end(), 0);
-    }
-}
-
-static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
-                                                const Request& request, MeasureTiming measure,
-                                                sp<ExecutionCallback>& callback) {
-    return preparedModel->execute_1_2(request, measure, callback);
-}
-static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
-                                                const Request& request, MeasureTiming measure,
-                                                hidl_vec<OutputShape>* outputShapes,
-                                                Timing* timing) {
-    ErrorStatus result;
-    Return<void> ret = preparedModel->executeSynchronously(
-            request, measure,
-            [&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
-                                            const Timing& time) {
-                result = error;
-                *outputShapes = shapes;
-                *timing = time;
-            });
-    if (!ret.isOk()) {
-        return ErrorStatus::GENERAL_FAILURE;
-    }
-    return result;
-}
-static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
-        const sp<IPreparedModel>& preparedModel) {
-    return android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true);
-}
-enum class Executor { ASYNC, SYNC, BURST };
-
-void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
-                           Executor executor, MeasureTiming measure, OutputType outputType) {
-    // If output0 does not have size larger than one byte, we can not test with insufficient buffer.
-    if (outputType == OutputType::INSUFFICIENT && !isOutputSizeGreaterThanOne(testModel, 0)) {
-        return;
-    }
-
-    Request request = createRequest(testModel);
-    if (outputType == OutputType::INSUFFICIENT) {
-        makeOutputInsufficientSize(/*outputIndex=*/0, &request);
-    }
-
-    ErrorStatus executionStatus;
-    hidl_vec<OutputShape> outputShapes;
-    Timing timing;
-    switch (executor) {
-        case Executor::ASYNC: {
-            SCOPED_TRACE("asynchronous");
-
-            // launch execution
-            sp<ExecutionCallback> executionCallback = new ExecutionCallback();
-            Return<ErrorStatus> executionLaunchStatus =
-                    ExecutePreparedModel(preparedModel, request, measure, executionCallback);
-            ASSERT_TRUE(executionLaunchStatus.isOk());
-            EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
-
-            // retrieve execution status
-            executionCallback->wait();
-            executionStatus = executionCallback->getStatus();
-            outputShapes = executionCallback->getOutputShapes();
-            timing = executionCallback->getTiming();
-
-            break;
-        }
-        case Executor::SYNC: {
-            SCOPED_TRACE("synchronous");
-
-            // execute
-            Return<ErrorStatus> executionReturnStatus =
-                    ExecutePreparedModel(preparedModel, request, measure, &outputShapes, &timing);
-            ASSERT_TRUE(executionReturnStatus.isOk());
-            executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
-
-            break;
-        }
-        case Executor::BURST: {
-            SCOPED_TRACE("burst");
-
-            // create burst
-            const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
-                    CreateBurst(preparedModel);
-            ASSERT_NE(nullptr, controller.get());
-
-            // create memory keys
-            std::vector<intptr_t> keys(request.pools.size());
-            for (size_t i = 0; i < keys.size(); ++i) {
-                keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
-            }
-
-            // execute burst
-            std::tie(executionStatus, outputShapes, timing) =
-                    controller->compute(request, measure, keys);
-
-            break;
-        }
-    }
-
-    if (outputType != OutputType::FULLY_SPECIFIED &&
-        executionStatus == ErrorStatus::GENERAL_FAILURE) {
-        LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
-                     "execute model that it does not support.";
-        std::cout << "[          ]   Early termination of test because vendor service cannot "
-                     "execute model that it does not support."
-                  << std::endl;
-        GTEST_SKIP();
-    }
-    if (measure == MeasureTiming::NO) {
-        EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
-        EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
-    } else {
-        if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
-            EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
-        }
-    }
-
-    switch (outputType) {
-        case OutputType::FULLY_SPECIFIED:
-            // If the model output operands are fully specified, outputShapes must be either
-            // either empty, or have the same number of elements as the number of outputs.
-            ASSERT_EQ(ErrorStatus::NONE, executionStatus);
-            ASSERT_TRUE(outputShapes.size() == 0 ||
-                        outputShapes.size() == testModel.outputIndexes.size());
-            break;
-        case OutputType::UNSPECIFIED:
-            // If the model output operands are not fully specified, outputShapes must have
-            // the same number of elements as the number of outputs.
-            ASSERT_EQ(ErrorStatus::NONE, executionStatus);
-            ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
-            break;
-        case OutputType::INSUFFICIENT:
-            ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
-            ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
-            ASSERT_FALSE(outputShapes[0].isSufficient);
-            return;
-    }
-
-    // Go through all outputs, check returned output shapes.
-    for (uint32_t i = 0; i < outputShapes.size(); i++) {
-        EXPECT_TRUE(outputShapes[i].isSufficient);
-        const auto& expect = testModel.operands[testModel.outputIndexes[i]].dimensions;
-        const std::vector<uint32_t> actual = outputShapes[i].dimensions;
-        EXPECT_EQ(expect, actual);
-    }
-
-    // Retrieve execution results.
-    const std::vector<TestBuffer> outputs = getOutputBuffers(request);
-
-    // We want "close-enough" results.
-    checkResults(testModel, outputs);
-}
-
-void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
-                           bool testDynamicOutputShape) {
-    if (testDynamicOutputShape) {
-        EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
-                              OutputType::UNSPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
-                              OutputType::UNSPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
-                              OutputType::UNSPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
-                              OutputType::UNSPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
-                              OutputType::UNSPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
-                              OutputType::UNSPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
-                              OutputType::INSUFFICIENT);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
-                              OutputType::INSUFFICIENT);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
-                              OutputType::INSUFFICIENT);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
-                              OutputType::INSUFFICIENT);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
-                              OutputType::INSUFFICIENT);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
-                              OutputType::INSUFFICIENT);
-    } else {
-        EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
-                              OutputType::FULLY_SPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
-                              OutputType::FULLY_SPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
-                              OutputType::FULLY_SPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
-                              OutputType::FULLY_SPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
-                              OutputType::FULLY_SPECIFIED);
-        EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
-                              OutputType::FULLY_SPECIFIED);
-    }
-}
-
-void Execute(const sp<IDevice>& device, const TestModel& testModel, bool testDynamicOutputShape) {
-    Model model = createModel(testModel);
-    if (testDynamicOutputShape) {
-        makeOutputDimensionsUnspecified(&model);
-    }
-
-    sp<IPreparedModel> preparedModel;
-    createPreparedModel(device, model, &preparedModel);
-    if (preparedModel == nullptr) return;
-
-    EvaluatePreparedModel(preparedModel, testModel, testDynamicOutputShape);
-}
-
-void GeneratedTestBase::SetUp() {
-    testing::TestWithParam<GeneratedTestParam>::SetUp();
-    ASSERT_NE(kDevice, nullptr);
-}
-
-std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
-    return TestModelManager::get().getTestModels(filter);
-}
-
-std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
-    const auto& [namedDevice, namedModel] = info.param;
-    return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
-}
-
-// Tag for the generated tests
-class GeneratedTest : public GeneratedTestBase {};
-
-// Tag for the dynamic output shape tests
-class DynamicOutputShapeTest : public GeneratedTest {};
-
-TEST_P(GeneratedTest, Test) {
-    Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/false);
-}
-
-TEST_P(DynamicOutputShapeTest, Test) {
-    Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/true);
-}
-
-INSTANTIATE_GENERATED_TEST(GeneratedTest,
-                           [](const TestModel& testModel) { return !testModel.expectFailure; });
-
-INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest,
-                           [](const TestModel& testModel) { return !testModel.expectFailure; });
-
-}  // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.h b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.h
deleted file mode 100644
index dfc980c..0000000
--- a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.h
+++ /dev/null
@@ -1,65 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#ifndef ANDROID_HARDWARE_NEURALNETWORKS_V1_2_GENERATED_TEST_HARNESS_H
-#define ANDROID_HARDWARE_NEURALNETWORKS_V1_2_GENERATED_TEST_HARNESS_H
-
-#include <android/hardware/neuralnetworks/1.2/IDevice.h>
-#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.2/types.h>
-#include <functional>
-#include <vector>
-#include "1.0/Utils.h"
-#include "TestHarness.h"
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_2::vts::functional {
-
-using NamedModel = Named<const test_helper::TestModel*>;
-using GeneratedTestParam = std::tuple<NamedDevice, NamedModel>;
-
-class GeneratedTestBase : public testing::TestWithParam<GeneratedTestParam> {
-  protected:
-    void SetUp() override;
-    const sp<IDevice> kDevice = getData(std::get<NamedDevice>(GetParam()));
-    const test_helper::TestModel& kTestModel = *getData(std::get<NamedModel>(GetParam()));
-};
-
-using FilterFn = std::function<bool(const test_helper::TestModel&)>;
-std::vector<NamedModel> getNamedModels(const FilterFn& filter);
-
-std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info);
-
-#define INSTANTIATE_GENERATED_TEST(TestSuite, filter)                                     \
-    INSTANTIATE_TEST_SUITE_P(TestGenerated, TestSuite,                                    \
-                             testing::Combine(testing::ValuesIn(getNamedDevices()),       \
-                                              testing::ValuesIn(getNamedModels(filter))), \
-                             printGeneratedTest)
-
-// Tag for the validation tests, instantiated in VtsHalNeuralnetworks.cpp.
-// TODO: Clean up the hierarchy for ValidationTest.
-class ValidationTest : public GeneratedTestBase {};
-
-Model createModel(const test_helper::TestModel& testModel);
-
-void PrepareModel(const sp<IDevice>& device, const Model& model, sp<IPreparedModel>* preparedModel);
-
-void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel,
-                           const test_helper::TestModel& testModel, bool testDynamicOutputShape);
-
-}  // namespace android::hardware::neuralnetworks::V1_2::vts::functional
-
-#endif  // ANDROID_HARDWARE_NEURALNETWORKS_V1_2_GENERATED_TEST_HARNESS_H
diff --git a/neuralnetworks/1.3/vts/functional/TestAssertions.cpp b/neuralnetworks/1.3/vts/functional/TestAssertions.cpp
deleted file mode 100644
index a0aa3c3..0000000
--- a/neuralnetworks/1.3/vts/functional/TestAssertions.cpp
+++ /dev/null
@@ -1,141 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include <android/hardware/neuralnetworks/1.2/types.h>
-#include "TestHarness.h"
-
-namespace android::hardware::neuralnetworks::V1_2 {
-
-// Make sure that the HIDL enums are compatible with the values defined in
-// frameworks/ml/nn/tools/test_generator/test_harness/include/TestHarness.h.
-using namespace test_helper;
-#define CHECK_TEST_ENUM(EnumType, enumValue) \
-    static_assert(static_cast<EnumType>(Test##EnumType::enumValue) == EnumType::enumValue)
-
-CHECK_TEST_ENUM(OperandType, FLOAT32);
-CHECK_TEST_ENUM(OperandType, INT32);
-CHECK_TEST_ENUM(OperandType, UINT32);
-CHECK_TEST_ENUM(OperandType, TENSOR_FLOAT32);
-CHECK_TEST_ENUM(OperandType, TENSOR_INT32);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_ASYMM);
-CHECK_TEST_ENUM(OperandType, BOOL);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT16_SYMM);
-CHECK_TEST_ENUM(OperandType, TENSOR_FLOAT16);
-CHECK_TEST_ENUM(OperandType, TENSOR_BOOL8);
-CHECK_TEST_ENUM(OperandType, FLOAT16);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_SYMM_PER_CHANNEL);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT16_ASYMM);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_SYMM);
-
-CHECK_TEST_ENUM(OperationType, ADD);
-CHECK_TEST_ENUM(OperationType, AVERAGE_POOL_2D);
-CHECK_TEST_ENUM(OperationType, CONCATENATION);
-CHECK_TEST_ENUM(OperationType, CONV_2D);
-CHECK_TEST_ENUM(OperationType, DEPTHWISE_CONV_2D);
-CHECK_TEST_ENUM(OperationType, DEPTH_TO_SPACE);
-CHECK_TEST_ENUM(OperationType, DEQUANTIZE);
-CHECK_TEST_ENUM(OperationType, EMBEDDING_LOOKUP);
-CHECK_TEST_ENUM(OperationType, FLOOR);
-CHECK_TEST_ENUM(OperationType, FULLY_CONNECTED);
-CHECK_TEST_ENUM(OperationType, HASHTABLE_LOOKUP);
-CHECK_TEST_ENUM(OperationType, L2_NORMALIZATION);
-CHECK_TEST_ENUM(OperationType, L2_POOL_2D);
-CHECK_TEST_ENUM(OperationType, LOCAL_RESPONSE_NORMALIZATION);
-CHECK_TEST_ENUM(OperationType, LOGISTIC);
-CHECK_TEST_ENUM(OperationType, LSH_PROJECTION);
-CHECK_TEST_ENUM(OperationType, LSTM);
-CHECK_TEST_ENUM(OperationType, MAX_POOL_2D);
-CHECK_TEST_ENUM(OperationType, MUL);
-CHECK_TEST_ENUM(OperationType, RELU);
-CHECK_TEST_ENUM(OperationType, RELU1);
-CHECK_TEST_ENUM(OperationType, RELU6);
-CHECK_TEST_ENUM(OperationType, RESHAPE);
-CHECK_TEST_ENUM(OperationType, RESIZE_BILINEAR);
-CHECK_TEST_ENUM(OperationType, RNN);
-CHECK_TEST_ENUM(OperationType, SOFTMAX);
-CHECK_TEST_ENUM(OperationType, SPACE_TO_DEPTH);
-CHECK_TEST_ENUM(OperationType, SVDF);
-CHECK_TEST_ENUM(OperationType, TANH);
-CHECK_TEST_ENUM(OperationType, BATCH_TO_SPACE_ND);
-CHECK_TEST_ENUM(OperationType, DIV);
-CHECK_TEST_ENUM(OperationType, MEAN);
-CHECK_TEST_ENUM(OperationType, PAD);
-CHECK_TEST_ENUM(OperationType, SPACE_TO_BATCH_ND);
-CHECK_TEST_ENUM(OperationType, SQUEEZE);
-CHECK_TEST_ENUM(OperationType, STRIDED_SLICE);
-CHECK_TEST_ENUM(OperationType, SUB);
-CHECK_TEST_ENUM(OperationType, TRANSPOSE);
-CHECK_TEST_ENUM(OperationType, ABS);
-CHECK_TEST_ENUM(OperationType, ARGMAX);
-CHECK_TEST_ENUM(OperationType, ARGMIN);
-CHECK_TEST_ENUM(OperationType, AXIS_ALIGNED_BBOX_TRANSFORM);
-CHECK_TEST_ENUM(OperationType, BIDIRECTIONAL_SEQUENCE_LSTM);
-CHECK_TEST_ENUM(OperationType, BIDIRECTIONAL_SEQUENCE_RNN);
-CHECK_TEST_ENUM(OperationType, BOX_WITH_NMS_LIMIT);
-CHECK_TEST_ENUM(OperationType, CAST);
-CHECK_TEST_ENUM(OperationType, CHANNEL_SHUFFLE);
-CHECK_TEST_ENUM(OperationType, DETECTION_POSTPROCESSING);
-CHECK_TEST_ENUM(OperationType, EQUAL);
-CHECK_TEST_ENUM(OperationType, EXP);
-CHECK_TEST_ENUM(OperationType, EXPAND_DIMS);
-CHECK_TEST_ENUM(OperationType, GATHER);
-CHECK_TEST_ENUM(OperationType, GENERATE_PROPOSALS);
-CHECK_TEST_ENUM(OperationType, GREATER);
-CHECK_TEST_ENUM(OperationType, GREATER_EQUAL);
-CHECK_TEST_ENUM(OperationType, GROUPED_CONV_2D);
-CHECK_TEST_ENUM(OperationType, HEATMAP_MAX_KEYPOINT);
-CHECK_TEST_ENUM(OperationType, INSTANCE_NORMALIZATION);
-CHECK_TEST_ENUM(OperationType, LESS);
-CHECK_TEST_ENUM(OperationType, LESS_EQUAL);
-CHECK_TEST_ENUM(OperationType, LOG);
-CHECK_TEST_ENUM(OperationType, LOGICAL_AND);
-CHECK_TEST_ENUM(OperationType, LOGICAL_NOT);
-CHECK_TEST_ENUM(OperationType, LOGICAL_OR);
-CHECK_TEST_ENUM(OperationType, LOG_SOFTMAX);
-CHECK_TEST_ENUM(OperationType, MAXIMUM);
-CHECK_TEST_ENUM(OperationType, MINIMUM);
-CHECK_TEST_ENUM(OperationType, NEG);
-CHECK_TEST_ENUM(OperationType, NOT_EQUAL);
-CHECK_TEST_ENUM(OperationType, PAD_V2);
-CHECK_TEST_ENUM(OperationType, POW);
-CHECK_TEST_ENUM(OperationType, PRELU);
-CHECK_TEST_ENUM(OperationType, QUANTIZE);
-CHECK_TEST_ENUM(OperationType, QUANTIZED_16BIT_LSTM);
-CHECK_TEST_ENUM(OperationType, RANDOM_MULTINOMIAL);
-CHECK_TEST_ENUM(OperationType, REDUCE_ALL);
-CHECK_TEST_ENUM(OperationType, REDUCE_ANY);
-CHECK_TEST_ENUM(OperationType, REDUCE_MAX);
-CHECK_TEST_ENUM(OperationType, REDUCE_MIN);
-CHECK_TEST_ENUM(OperationType, REDUCE_PROD);
-CHECK_TEST_ENUM(OperationType, REDUCE_SUM);
-CHECK_TEST_ENUM(OperationType, ROI_ALIGN);
-CHECK_TEST_ENUM(OperationType, ROI_POOLING);
-CHECK_TEST_ENUM(OperationType, RSQRT);
-CHECK_TEST_ENUM(OperationType, SELECT);
-CHECK_TEST_ENUM(OperationType, SIN);
-CHECK_TEST_ENUM(OperationType, SLICE);
-CHECK_TEST_ENUM(OperationType, SPLIT);
-CHECK_TEST_ENUM(OperationType, SQRT);
-CHECK_TEST_ENUM(OperationType, TILE);
-CHECK_TEST_ENUM(OperationType, TOPK_V2);
-CHECK_TEST_ENUM(OperationType, TRANSPOSE_CONV_2D);
-CHECK_TEST_ENUM(OperationType, UNIDIRECTIONAL_SEQUENCE_LSTM);
-CHECK_TEST_ENUM(OperationType, UNIDIRECTIONAL_SEQUENCE_RNN);
-CHECK_TEST_ENUM(OperationType, RESIZE_NEAREST_NEIGHBOR);
-
-#undef CHECK_TEST_ENUM
-
-}  // namespace android::hardware::neuralnetworks::V1_2
diff --git a/neuralnetworks/1.3/vts/functional/ValidateBurst.cpp b/neuralnetworks/1.3/vts/functional/ValidateBurst.cpp
deleted file mode 100644
index 1d4493d..0000000
--- a/neuralnetworks/1.3/vts/functional/ValidateBurst.cpp
+++ /dev/null
@@ -1,400 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "VtsHalNeuralnetworks.h"
-
-#include "1.2/Callbacks.h"
-#include "ExecutionBurstController.h"
-#include "ExecutionBurstServer.h"
-#include "GeneratedTestHarness.h"
-#include "TestHarness.h"
-#include "Utils.h"
-
-#include <android-base/logging.h>
-#include <cstring>
-
-namespace android::hardware::neuralnetworks::V1_2::vts::functional {
-
-using nn::ExecutionBurstController;
-using nn::RequestChannelSender;
-using nn::ResultChannelReceiver;
-using V1_0::ErrorStatus;
-using V1_0::Request;
-using ExecutionBurstCallback = ExecutionBurstController::ExecutionBurstCallback;
-
-// This constant value represents the length of an FMQ that is large enough to
-// return a result from a burst execution for all of the generated test cases.
-constexpr size_t kExecutionBurstChannelLength = 1024;
-
-// This constant value represents a length of an FMQ that is not large enough
-// to return a result from a burst execution for some of the generated test
-// cases.
-constexpr size_t kExecutionBurstChannelSmallLength = 8;
-
-///////////////////////// UTILITY FUNCTIONS /////////////////////////
-
-static bool badTiming(Timing timing) {
-    return timing.timeOnDevice == UINT64_MAX && timing.timeInDriver == UINT64_MAX;
-}
-
-static void createBurst(const sp<IPreparedModel>& preparedModel, const sp<IBurstCallback>& callback,
-                        std::unique_ptr<RequestChannelSender>* sender,
-                        std::unique_ptr<ResultChannelReceiver>* receiver,
-                        sp<IBurstContext>* context,
-                        size_t resultChannelLength = kExecutionBurstChannelLength) {
-    ASSERT_NE(nullptr, preparedModel.get());
-    ASSERT_NE(nullptr, sender);
-    ASSERT_NE(nullptr, receiver);
-    ASSERT_NE(nullptr, context);
-
-    // create FMQ objects
-    auto [fmqRequestChannel, fmqRequestDescriptor] =
-            RequestChannelSender::create(kExecutionBurstChannelLength, /*blocking=*/true);
-    auto [fmqResultChannel, fmqResultDescriptor] =
-            ResultChannelReceiver::create(resultChannelLength, /*blocking=*/true);
-    ASSERT_NE(nullptr, fmqRequestChannel.get());
-    ASSERT_NE(nullptr, fmqResultChannel.get());
-    ASSERT_NE(nullptr, fmqRequestDescriptor);
-    ASSERT_NE(nullptr, fmqResultDescriptor);
-
-    // configure burst
-    ErrorStatus errorStatus;
-    sp<IBurstContext> burstContext;
-    const Return<void> ret = preparedModel->configureExecutionBurst(
-            callback, *fmqRequestDescriptor, *fmqResultDescriptor,
-            [&errorStatus, &burstContext](ErrorStatus status, const sp<IBurstContext>& context) {
-                errorStatus = status;
-                burstContext = context;
-            });
-    ASSERT_TRUE(ret.isOk());
-    ASSERT_EQ(ErrorStatus::NONE, errorStatus);
-    ASSERT_NE(nullptr, burstContext.get());
-
-    // return values
-    *sender = std::move(fmqRequestChannel);
-    *receiver = std::move(fmqResultChannel);
-    *context = burstContext;
-}
-
-static void createBurstWithResultChannelLength(
-        const sp<IPreparedModel>& preparedModel, size_t resultChannelLength,
-        std::shared_ptr<ExecutionBurstController>* controller) {
-    ASSERT_NE(nullptr, preparedModel.get());
-    ASSERT_NE(nullptr, controller);
-
-    // create FMQ objects
-    std::unique_ptr<RequestChannelSender> sender;
-    std::unique_ptr<ResultChannelReceiver> receiver;
-    sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
-    sp<IBurstContext> context;
-    ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context,
-                                        resultChannelLength));
-    ASSERT_NE(nullptr, sender.get());
-    ASSERT_NE(nullptr, receiver.get());
-    ASSERT_NE(nullptr, context.get());
-
-    // return values
-    *controller = std::make_shared<ExecutionBurstController>(std::move(sender), std::move(receiver),
-                                                             context, callback);
-}
-
-// Primary validation function. This function will take a valid serialized
-// request, apply a mutation to it to invalidate the serialized request, then
-// pass it to interface calls that use the serialized request. Note that the
-// serialized request here is passed by value, and any mutation to the
-// serialized request does not leave this function.
-static void validate(RequestChannelSender* sender, ResultChannelReceiver* receiver,
-                     const std::string& message, std::vector<FmqRequestDatum> serialized,
-                     const std::function<void(std::vector<FmqRequestDatum>*)>& mutation) {
-    mutation(&serialized);
-
-    // skip if packet is too large to send
-    if (serialized.size() > kExecutionBurstChannelLength) {
-        return;
-    }
-
-    SCOPED_TRACE(message);
-
-    // send invalid packet
-    ASSERT_TRUE(sender->sendPacket(serialized));
-
-    // receive error
-    auto results = receiver->getBlocking();
-    ASSERT_TRUE(results.has_value());
-    const auto [status, outputShapes, timing] = std::move(*results);
-    EXPECT_NE(ErrorStatus::NONE, status);
-    EXPECT_EQ(0u, outputShapes.size());
-    EXPECT_TRUE(badTiming(timing));
-}
-
-// For validation, valid packet entries are mutated to invalid packet entries,
-// or invalid packet entries are inserted into valid packets. This function
-// creates pre-set invalid packet entries for convenience.
-static std::vector<FmqRequestDatum> createBadRequestPacketEntries() {
-    const FmqRequestDatum::PacketInformation packetInformation = {
-            /*.packetSize=*/10, /*.numberOfInputOperands=*/10, /*.numberOfOutputOperands=*/10,
-            /*.numberOfPools=*/10};
-    const FmqRequestDatum::OperandInformation operandInformation = {
-            /*.hasNoValue=*/false, /*.location=*/{}, /*.numberOfDimensions=*/10};
-    const int32_t invalidPoolIdentifier = std::numeric_limits<int32_t>::max();
-    std::vector<FmqRequestDatum> bad(7);
-    bad[0].packetInformation(packetInformation);
-    bad[1].inputOperandInformation(operandInformation);
-    bad[2].inputOperandDimensionValue(0);
-    bad[3].outputOperandInformation(operandInformation);
-    bad[4].outputOperandDimensionValue(0);
-    bad[5].poolIdentifier(invalidPoolIdentifier);
-    bad[6].measureTiming(MeasureTiming::YES);
-    return bad;
-}
-
-// For validation, valid packet entries are mutated to invalid packet entries,
-// or invalid packet entries are inserted into valid packets. This function
-// retrieves pre-set invalid packet entries for convenience. This function
-// caches these data so they can be reused on subsequent validation checks.
-static const std::vector<FmqRequestDatum>& getBadRequestPacketEntries() {
-    static const std::vector<FmqRequestDatum> bad = createBadRequestPacketEntries();
-    return bad;
-}
-
-///////////////////////// REMOVE DATUM ////////////////////////////////////
-
-static void removeDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
-                            const std::vector<FmqRequestDatum>& serialized) {
-    for (size_t index = 0; index < serialized.size(); ++index) {
-        const std::string message = "removeDatum: removed datum at index " + std::to_string(index);
-        validate(sender, receiver, message, serialized,
-                 [index](std::vector<FmqRequestDatum>* serialized) {
-                     serialized->erase(serialized->begin() + index);
-                 });
-    }
-}
-
-///////////////////////// ADD DATUM ////////////////////////////////////
-
-static void addDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
-                         const std::vector<FmqRequestDatum>& serialized) {
-    const std::vector<FmqRequestDatum>& extra = getBadRequestPacketEntries();
-    for (size_t index = 0; index <= serialized.size(); ++index) {
-        for (size_t type = 0; type < extra.size(); ++type) {
-            const std::string message = "addDatum: added datum type " + std::to_string(type) +
-                                        " at index " + std::to_string(index);
-            validate(sender, receiver, message, serialized,
-                     [index, type, &extra](std::vector<FmqRequestDatum>* serialized) {
-                         serialized->insert(serialized->begin() + index, extra[type]);
-                     });
-        }
-    }
-}
-
-///////////////////////// MUTATE DATUM ////////////////////////////////////
-
-static bool interestingCase(const FmqRequestDatum& lhs, const FmqRequestDatum& rhs) {
-    using Discriminator = FmqRequestDatum::hidl_discriminator;
-
-    const bool differentValues = (lhs != rhs);
-    const bool sameDiscriminator = (lhs.getDiscriminator() == rhs.getDiscriminator());
-    const auto discriminator = rhs.getDiscriminator();
-    const bool isDimensionValue = (discriminator == Discriminator::inputOperandDimensionValue ||
-                                   discriminator == Discriminator::outputOperandDimensionValue);
-
-    return differentValues && !(sameDiscriminator && isDimensionValue);
-}
-
-static void mutateDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
-                            const std::vector<FmqRequestDatum>& serialized) {
-    const std::vector<FmqRequestDatum>& change = getBadRequestPacketEntries();
-    for (size_t index = 0; index < serialized.size(); ++index) {
-        for (size_t type = 0; type < change.size(); ++type) {
-            if (interestingCase(serialized[index], change[type])) {
-                const std::string message = "mutateDatum: changed datum at index " +
-                                            std::to_string(index) + " to datum type " +
-                                            std::to_string(type);
-                validate(sender, receiver, message, serialized,
-                         [index, type, &change](std::vector<FmqRequestDatum>* serialized) {
-                             (*serialized)[index] = change[type];
-                         });
-            }
-        }
-    }
-}
-
-///////////////////////// BURST VALIATION TESTS ////////////////////////////////////
-
-static void validateBurstSerialization(const sp<IPreparedModel>& preparedModel,
-                                       const Request& request) {
-    // create burst
-    std::unique_ptr<RequestChannelSender> sender;
-    std::unique_ptr<ResultChannelReceiver> receiver;
-    sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
-    sp<IBurstContext> context;
-    ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context));
-    ASSERT_NE(nullptr, sender.get());
-    ASSERT_NE(nullptr, receiver.get());
-    ASSERT_NE(nullptr, context.get());
-
-    // load memory into callback slots
-    std::vector<intptr_t> keys;
-    keys.reserve(request.pools.size());
-    std::transform(request.pools.begin(), request.pools.end(), std::back_inserter(keys),
-                   [](const auto& pool) { return reinterpret_cast<intptr_t>(&pool); });
-    const std::vector<int32_t> slots = callback->getSlots(request.pools, keys);
-
-    // ensure slot std::numeric_limits<int32_t>::max() doesn't exist (for
-    // subsequent slot validation testing)
-    ASSERT_TRUE(std::all_of(slots.begin(), slots.end(), [](int32_t slot) {
-        return slot != std::numeric_limits<int32_t>::max();
-    }));
-
-    // serialize the request
-    const auto serialized = android::nn::serialize(request, MeasureTiming::YES, slots);
-
-    // validations
-    removeDatumTest(sender.get(), receiver.get(), serialized);
-    addDatumTest(sender.get(), receiver.get(), serialized);
-    mutateDatumTest(sender.get(), receiver.get(), serialized);
-}
-
-// This test validates that when the Result message size exceeds length of the
-// result FMQ, the service instance gracefully fails and returns an error.
-static void validateBurstFmqLength(const sp<IPreparedModel>& preparedModel,
-                                   const Request& request) {
-    // create regular burst
-    std::shared_ptr<ExecutionBurstController> controllerRegular;
-    ASSERT_NO_FATAL_FAILURE(createBurstWithResultChannelLength(
-            preparedModel, kExecutionBurstChannelLength, &controllerRegular));
-    ASSERT_NE(nullptr, controllerRegular.get());
-
-    // create burst with small output channel
-    std::shared_ptr<ExecutionBurstController> controllerSmall;
-    ASSERT_NO_FATAL_FAILURE(createBurstWithResultChannelLength(
-            preparedModel, kExecutionBurstChannelSmallLength, &controllerSmall));
-    ASSERT_NE(nullptr, controllerSmall.get());
-
-    // load memory into callback slots
-    std::vector<intptr_t> keys(request.pools.size());
-    for (size_t i = 0; i < keys.size(); ++i) {
-        keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
-    }
-
-    // collect serialized result by running regular burst
-    const auto [statusRegular, outputShapesRegular, timingRegular] =
-            controllerRegular->compute(request, MeasureTiming::NO, keys);
-
-    // skip test if regular burst output isn't useful for testing a failure
-    // caused by having too small of a length for the result FMQ
-    const std::vector<FmqResultDatum> serialized =
-            android::nn::serialize(statusRegular, outputShapesRegular, timingRegular);
-    if (statusRegular != ErrorStatus::NONE ||
-        serialized.size() <= kExecutionBurstChannelSmallLength) {
-        return;
-    }
-
-    // by this point, execution should fail because the result channel isn't
-    // large enough to return the serialized result
-    const auto [statusSmall, outputShapesSmall, timingSmall] =
-            controllerSmall->compute(request, MeasureTiming::NO, keys);
-    EXPECT_NE(ErrorStatus::NONE, statusSmall);
-    EXPECT_EQ(0u, outputShapesSmall.size());
-    EXPECT_TRUE(badTiming(timingSmall));
-}
-
-static bool isSanitized(const FmqResultDatum& datum) {
-    using Discriminator = FmqResultDatum::hidl_discriminator;
-
-    // check to ensure the padding values in the returned
-    // FmqResultDatum::OperandInformation are initialized to 0
-    if (datum.getDiscriminator() == Discriminator::operandInformation) {
-        static_assert(
-                offsetof(FmqResultDatum::OperandInformation, isSufficient) == 0,
-                "unexpected value for offset of FmqResultDatum::OperandInformation::isSufficient");
-        static_assert(
-                sizeof(FmqResultDatum::OperandInformation::isSufficient) == 1,
-                "unexpected value for size of FmqResultDatum::OperandInformation::isSufficient");
-        static_assert(offsetof(FmqResultDatum::OperandInformation, numberOfDimensions) == 4,
-                      "unexpected value for offset of "
-                      "FmqResultDatum::OperandInformation::numberOfDimensions");
-        static_assert(sizeof(FmqResultDatum::OperandInformation::numberOfDimensions) == 4,
-                      "unexpected value for size of "
-                      "FmqResultDatum::OperandInformation::numberOfDimensions");
-        static_assert(sizeof(FmqResultDatum::OperandInformation) == 8,
-                      "unexpected value for size of "
-                      "FmqResultDatum::OperandInformation");
-
-        constexpr size_t paddingOffset =
-                offsetof(FmqResultDatum::OperandInformation, isSufficient) +
-                sizeof(FmqResultDatum::OperandInformation::isSufficient);
-        constexpr size_t paddingSize =
-                offsetof(FmqResultDatum::OperandInformation, numberOfDimensions) - paddingOffset;
-
-        FmqResultDatum::OperandInformation initialized{};
-        std::memset(&initialized, 0, sizeof(initialized));
-
-        const char* initializedPaddingStart =
-                reinterpret_cast<const char*>(&initialized) + paddingOffset;
-        const char* datumPaddingStart =
-                reinterpret_cast<const char*>(&datum.operandInformation()) + paddingOffset;
-
-        return std::memcmp(datumPaddingStart, initializedPaddingStart, paddingSize) == 0;
-    }
-
-    // there are no other padding initialization checks required, so return true
-    // for any sum-type that isn't FmqResultDatum::OperandInformation
-    return true;
-}
-
-static void validateBurstSanitized(const sp<IPreparedModel>& preparedModel,
-                                   const Request& request) {
-    // create burst
-    std::unique_ptr<RequestChannelSender> sender;
-    std::unique_ptr<ResultChannelReceiver> receiver;
-    sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
-    sp<IBurstContext> context;
-    ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context));
-    ASSERT_NE(nullptr, sender.get());
-    ASSERT_NE(nullptr, receiver.get());
-    ASSERT_NE(nullptr, context.get());
-
-    // load memory into callback slots
-    std::vector<intptr_t> keys;
-    keys.reserve(request.pools.size());
-    std::transform(request.pools.begin(), request.pools.end(), std::back_inserter(keys),
-                   [](const auto& pool) { return reinterpret_cast<intptr_t>(&pool); });
-    const std::vector<int32_t> slots = callback->getSlots(request.pools, keys);
-
-    // send valid request
-    ASSERT_TRUE(sender->send(request, MeasureTiming::YES, slots));
-
-    // receive valid result
-    auto serialized = receiver->getPacketBlocking();
-    ASSERT_TRUE(serialized.has_value());
-
-    // sanitize result
-    ASSERT_TRUE(std::all_of(serialized->begin(), serialized->end(), isSanitized))
-            << "The result serialized data is not properly sanitized";
-}
-
-///////////////////////////// ENTRY POINT //////////////////////////////////
-
-void validateBurst(const sp<IPreparedModel>& preparedModel, const Request& request) {
-    ASSERT_NO_FATAL_FAILURE(validateBurstSerialization(preparedModel, request));
-    ASSERT_NO_FATAL_FAILURE(validateBurstFmqLength(preparedModel, request));
-    ASSERT_NO_FATAL_FAILURE(validateBurstSanitized(preparedModel, request));
-}
-
-}  // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/ValidateModel.cpp b/neuralnetworks/1.3/vts/functional/ValidateModel.cpp
deleted file mode 100644
index 30530be..0000000
--- a/neuralnetworks/1.3/vts/functional/ValidateModel.cpp
+++ /dev/null
@@ -1,713 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "1.0/Utils.h"
-#include "1.2/Callbacks.h"
-#include "GeneratedTestHarness.h"
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_2::vts::functional {
-
-using implementation::PreparedModelCallback;
-using V1_0::ErrorStatus;
-using V1_0::OperandLifeTime;
-using V1_1::ExecutionPreference;
-using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
-
-///////////////////////// UTILITY FUNCTIONS /////////////////////////
-
-static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
-                                           const Model& model) {
-    SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
-
-    Return<void> ret = device->getSupportedOperations_1_2(
-            model, [&](ErrorStatus status, const hidl_vec<bool>&) {
-                EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
-            });
-    EXPECT_TRUE(ret.isOk());
-}
-
-static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
-                                 const Model& model, ExecutionPreference preference) {
-    SCOPED_TRACE(message + " [prepareModel_1_2]");
-
-    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
-    Return<ErrorStatus> prepareLaunchStatus =
-            device->prepareModel_1_2(model, preference, hidl_vec<hidl_handle>(),
-                                     hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
-    ASSERT_TRUE(prepareLaunchStatus.isOk());
-    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
-
-    preparedModelCallback->wait();
-    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
-    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
-    sp<IPreparedModel> preparedModel = getPreparedModel_1_2(preparedModelCallback);
-    ASSERT_EQ(nullptr, preparedModel.get());
-}
-
-static bool validExecutionPreference(ExecutionPreference preference) {
-    return preference == ExecutionPreference::LOW_POWER ||
-           preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
-           preference == ExecutionPreference::SUSTAINED_SPEED;
-}
-
-// Primary validation function. This function will take a valid model, apply a
-// mutation to it to invalidate the model, then pass it to interface calls that
-// use the model. Note that the model here is passed by value, and any mutation
-// to the model does not leave this function.
-static void validate(const sp<IDevice>& device, const std::string& message, Model model,
-                     const std::function<void(Model*)>& mutation,
-                     ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
-    mutation(&model);
-    if (validExecutionPreference(preference)) {
-        validateGetSupportedOperations(device, message, model);
-    }
-    validatePrepareModel(device, message, model, preference);
-}
-
-static uint32_t addOperand(Model* model) {
-    return hidl_vec_push_back(&model->operands,
-                              {
-                                      .type = OperandType::INT32,
-                                      .dimensions = {},
-                                      .numberOfConsumers = 0,
-                                      .scale = 0.0f,
-                                      .zeroPoint = 0,
-                                      .lifetime = OperandLifeTime::MODEL_INPUT,
-                                      .location = {.poolIndex = 0, .offset = 0, .length = 0},
-                              });
-}
-
-static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
-    uint32_t index = addOperand(model);
-    model->operands[index].numberOfConsumers = 1;
-    model->operands[index].lifetime = lifetime;
-    return index;
-}
-
-///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
-
-static const uint32_t invalidOperandTypes[] = {
-        static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN) - 1,
-        static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX) + 1,
-        static_cast<uint32_t>(OperandTypeRange::OEM_MIN) - 1,
-        static_cast<uint32_t>(OperandTypeRange::OEM_MAX) + 1,
-};
-
-static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
-        for (uint32_t invalidOperandType : invalidOperandTypes) {
-            const std::string message = "mutateOperandTypeTest: operand " +
-                                        std::to_string(operand) + " set to value " +
-                                        std::to_string(invalidOperandType);
-            validate(device, message, model, [operand, invalidOperandType](Model* model) {
-                model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
-            });
-        }
-    }
-}
-
-///////////////////////// VALIDATE OPERAND RANK /////////////////////////
-
-static uint32_t getInvalidRank(OperandType type) {
-    switch (type) {
-        case OperandType::FLOAT16:
-        case OperandType::FLOAT32:
-        case OperandType::INT32:
-        case OperandType::UINT32:
-        case OperandType::BOOL:
-            return 1;
-        case OperandType::TENSOR_BOOL8:
-        case OperandType::TENSOR_FLOAT16:
-        case OperandType::TENSOR_FLOAT32:
-        case OperandType::TENSOR_INT32:
-        case OperandType::TENSOR_QUANT8_ASYMM:
-        case OperandType::TENSOR_QUANT8_SYMM:
-        case OperandType::TENSOR_QUANT16_ASYMM:
-        case OperandType::TENSOR_QUANT16_SYMM:
-        case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
-            return 0;
-        default:
-            return 0;
-    }
-}
-
-static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
-        const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
-        if (invalidRank == 0) {
-            continue;
-        }
-        const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
-                                    " has rank of " + std::to_string(invalidRank);
-        validate(device, message, model, [operand, invalidRank](Model* model) {
-            model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
-        });
-    }
-}
-
-///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
-
-static float getInvalidScale(OperandType type) {
-    switch (type) {
-        case OperandType::FLOAT16:
-        case OperandType::FLOAT32:
-        case OperandType::INT32:
-        case OperandType::UINT32:
-        case OperandType::BOOL:
-        case OperandType::TENSOR_BOOL8:
-        case OperandType::TENSOR_FLOAT16:
-        case OperandType::TENSOR_FLOAT32:
-        case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
-            return 1.0f;
-        case OperandType::TENSOR_INT32:
-            return -1.0f;
-        case OperandType::TENSOR_QUANT8_SYMM:
-        case OperandType::TENSOR_QUANT8_ASYMM:
-        case OperandType::TENSOR_QUANT16_ASYMM:
-        case OperandType::TENSOR_QUANT16_SYMM:
-            return 0.0f;
-        default:
-            return 0.0f;
-    }
-}
-
-static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
-        const float invalidScale = getInvalidScale(model.operands[operand].type);
-        const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
-                                    " has scale of " + std::to_string(invalidScale);
-        validate(device, message, model, [operand, invalidScale](Model* model) {
-            model->operands[operand].scale = invalidScale;
-        });
-    }
-}
-
-///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
-
-static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
-    switch (type) {
-        case OperandType::FLOAT16:
-        case OperandType::FLOAT32:
-        case OperandType::INT32:
-        case OperandType::UINT32:
-        case OperandType::BOOL:
-        case OperandType::TENSOR_BOOL8:
-        case OperandType::TENSOR_FLOAT16:
-        case OperandType::TENSOR_FLOAT32:
-        case OperandType::TENSOR_INT32:
-        case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
-            return {1};
-        case OperandType::TENSOR_QUANT8_ASYMM:
-            return {-1, 256};
-        case OperandType::TENSOR_QUANT8_SYMM:
-            return {-129, -1, 1, 128};
-        case OperandType::TENSOR_QUANT16_ASYMM:
-            return {-1, 65536};
-        case OperandType::TENSOR_QUANT16_SYMM:
-            return {-32769, -1, 1, 32768};
-        default:
-            return {};
-    }
-}
-
-static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
-        const std::vector<int32_t> invalidZeroPoints =
-                getInvalidZeroPoints(model.operands[operand].type);
-        for (int32_t invalidZeroPoint : invalidZeroPoints) {
-            const std::string message = "mutateOperandZeroPointTest: operand " +
-                                        std::to_string(operand) + " has zero point of " +
-                                        std::to_string(invalidZeroPoint);
-            validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
-                model->operands[operand].zeroPoint = invalidZeroPoint;
-            });
-        }
-    }
-}
-
-///////////////////////// VALIDATE EXTRA ??? /////////////////////////
-
-// TODO: Operand::lifetime
-// TODO: Operand::location
-
-///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
-
-static void mutateOperand(Operand* operand, OperandType type) {
-    Operand newOperand = *operand;
-    newOperand.type = type;
-    switch (type) {
-        case OperandType::FLOAT16:
-        case OperandType::FLOAT32:
-        case OperandType::INT32:
-        case OperandType::UINT32:
-        case OperandType::BOOL:
-            newOperand.dimensions = hidl_vec<uint32_t>();
-            newOperand.scale = 0.0f;
-            newOperand.zeroPoint = 0;
-            break;
-        case OperandType::TENSOR_BOOL8:
-        case OperandType::TENSOR_FLOAT16:
-        case OperandType::TENSOR_FLOAT32:
-            newOperand.dimensions =
-                    operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
-            newOperand.scale = 0.0f;
-            newOperand.zeroPoint = 0;
-            break;
-        case OperandType::TENSOR_INT32:
-            newOperand.dimensions =
-                    operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
-            newOperand.zeroPoint = 0;
-            break;
-        case OperandType::TENSOR_QUANT8_ASYMM:
-        case OperandType::TENSOR_QUANT8_SYMM:
-        case OperandType::TENSOR_QUANT16_ASYMM:
-        case OperandType::TENSOR_QUANT16_SYMM:
-            newOperand.dimensions =
-                    operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
-            newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
-            break;
-        case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
-            newOperand.dimensions =
-                    operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
-            newOperand.scale = 0.0f;
-            newOperand.zeroPoint = 0;
-
-            SymmPerChannelQuantParams channelQuant;
-            channelQuant.channelDim = 0;
-            channelQuant.scales = hidl_vec<float>(
-                    operand->dimensions.size() > 0 ? static_cast<size_t>(operand->dimensions[0])
-                                                   : 0);
-            for (size_t i = 0; i < channelQuant.scales.size(); ++i) {
-                channelQuant.scales[i] = 1.0f;
-            }
-            newOperand.extraParams.channelQuant(std::move(channelQuant));
-        } break;
-        case OperandType::OEM:
-        case OperandType::TENSOR_OEM_BYTE:
-        default:
-            break;
-    }
-    *operand = newOperand;
-}
-
-static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, const Model& model) {
-    // Do not test OEM types
-    if (type == model.operands[operand].type || type == OperandType::OEM ||
-        type == OperandType::TENSOR_OEM_BYTE) {
-        return true;
-    }
-    for (const Operation& operation : model.operations) {
-        // Skip mutateOperationOperandTypeTest for the following operations.
-        // - LSH_PROJECTION's second argument is allowed to have any type.
-        // - ARGMIN and ARGMAX's first argument can be any of
-        // TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
-        // - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
-        // - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
-        // - DEQUANTIZE input can be any of
-        // TENSOR_(QUANT8_ASYMM|QUANT8_SYMM|QUANT8_SYMM_PER_CHANNEL), output can
-        // be of either TENSOR_FLOAT16 or TENSOR_FLOAT32.
-        // - QUANTIZE input can be either TENSOR_FLOAT16 or TENSOR_FLOAT32
-        // - CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
-        // - DEPTHWISE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
-        // - GROUPED_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
-        // - TRANSPOSE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
-        switch (operation.type) {
-            case OperationType::LSH_PROJECTION: {
-                if (operand == operation.inputs[1]) {
-                    return true;
-                }
-            } break;
-            case OperationType::CAST:
-            case OperationType::ARGMAX:
-            case OperationType::ARGMIN: {
-                if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32 ||
-                    type == OperandType::TENSOR_INT32 || type == OperandType::TENSOR_QUANT8_ASYMM) {
-                    return true;
-                }
-            } break;
-            case OperationType::QUANTIZE:
-            case OperationType::RANDOM_MULTINOMIAL: {
-                if (operand == operation.inputs[0] &&
-                    (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
-                    return true;
-                }
-            } break;
-            case OperationType::DEQUANTIZE: {
-                if (operand == operation.inputs[0] &&
-                    (type == OperandType::TENSOR_QUANT8_ASYMM ||
-                     type == OperandType::TENSOR_QUANT8_SYMM ||
-                     type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
-                    return true;
-                }
-                if (operand == operation.outputs[0] &&
-                    (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
-                    return true;
-                }
-            } break;
-            case OperationType::TRANSPOSE_CONV_2D:
-            case OperationType::GROUPED_CONV_2D:
-            case OperationType::DEPTHWISE_CONV_2D:
-            case OperationType::CONV_2D: {
-                if (operand == operation.inputs[1] &&
-                    (type == OperandType::TENSOR_QUANT8_ASYMM ||
-                     type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
-                    return true;
-                }
-            } break;
-            default:
-                break;
-        }
-    }
-    return false;
-}
-
-static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
-        for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
-            if (mutateOperationOperandTypeSkip(operand, invalidOperandType, model)) {
-                continue;
-            }
-            const std::string message = "mutateOperationOperandTypeTest: operand " +
-                                        std::to_string(operand) + " set to type " +
-                                        toString(invalidOperandType);
-            validate(device, message, model, [operand, invalidOperandType](Model* model) {
-                mutateOperand(&model->operands[operand], invalidOperandType);
-            });
-        }
-    }
-}
-
-///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
-
-static const uint32_t invalidOperationTypes[] = {
-        static_cast<uint32_t>(OperationTypeRange::FUNDAMENTAL_MAX) + 1,
-        static_cast<uint32_t>(OperationTypeRange::OEM_MIN) - 1,
-        static_cast<uint32_t>(OperationTypeRange::OEM_MAX) + 1,
-};
-
-static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
-        for (uint32_t invalidOperationType : invalidOperationTypes) {
-            const std::string message = "mutateOperationTypeTest: operation " +
-                                        std::to_string(operation) + " set to value " +
-                                        std::to_string(invalidOperationType);
-            validate(device, message, model, [operation, invalidOperationType](Model* model) {
-                model->operations[operation].type =
-                        static_cast<OperationType>(invalidOperationType);
-            });
-        }
-    }
-}
-
-///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
-
-static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
-        const uint32_t invalidOperand = model.operands.size();
-        for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
-            const std::string message = "mutateOperationInputOperandIndexTest: operation " +
-                                        std::to_string(operation) + " input " +
-                                        std::to_string(input);
-            validate(device, message, model, [operation, input, invalidOperand](Model* model) {
-                model->operations[operation].inputs[input] = invalidOperand;
-            });
-        }
-    }
-}
-
-///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
-
-static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
-        const uint32_t invalidOperand = model.operands.size();
-        for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
-            const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
-                                        std::to_string(operation) + " output " +
-                                        std::to_string(output);
-            validate(device, message, model, [operation, output, invalidOperand](Model* model) {
-                model->operations[operation].outputs[output] = invalidOperand;
-            });
-        }
-    }
-}
-
-///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
-
-static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
-    if (vec) {
-        // remove elements matching "value"
-        auto last = std::remove(vec->begin(), vec->end(), value);
-        vec->resize(std::distance(vec->begin(), last));
-
-        // decrement elements exceeding "value"
-        std::transform(vec->begin(), vec->end(), vec->begin(),
-                       [value](uint32_t v) { return v > value ? v-- : v; });
-    }
-}
-
-static void removeOperand(Model* model, uint32_t index) {
-    hidl_vec_removeAt(&model->operands, index);
-    for (Operation& operation : model->operations) {
-        removeValueAndDecrementGreaterValues(&operation.inputs, index);
-        removeValueAndDecrementGreaterValues(&operation.outputs, index);
-    }
-    removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
-    removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
-}
-
-static bool removeOperandSkip(size_t operand, const Model& model) {
-    for (const Operation& operation : model.operations) {
-        // Skip removeOperandTest for the following operations.
-        // - SPLIT's outputs are not checked during prepareModel.
-        if (operation.type == OperationType::SPLIT) {
-            for (const size_t outOprand : operation.outputs) {
-                if (operand == outOprand) {
-                    return true;
-                }
-            }
-        }
-        // BIDIRECTIONAL_SEQUENCE_LSTM and BIDIRECTIONAL_SEQUENCE_RNN can have either one or two
-        // outputs depending on their mergeOutputs parameter.
-        if (operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_LSTM ||
-            operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_RNN) {
-            for (const size_t outOprand : operation.outputs) {
-                if (operand == outOprand) {
-                    return true;
-                }
-            }
-        }
-    }
-    return false;
-}
-
-static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
-        if (removeOperandSkip(operand, model)) {
-            continue;
-        }
-        const std::string message = "removeOperandTest: operand " + std::to_string(operand);
-        validate(device, message, model,
-                 [operand](Model* model) { removeOperand(model, operand); });
-    }
-}
-
-///////////////////////// REMOVE OPERATION /////////////////////////
-
-static void removeOperation(Model* model, uint32_t index) {
-    for (uint32_t operand : model->operations[index].inputs) {
-        model->operands[operand].numberOfConsumers--;
-    }
-    hidl_vec_removeAt(&model->operations, index);
-}
-
-static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
-        const std::string message = "removeOperationTest: operation " + std::to_string(operation);
-        validate(device, message, model,
-                 [operation](Model* model) { removeOperation(model, operation); });
-    }
-}
-
-///////////////////////// REMOVE OPERATION INPUT /////////////////////////
-
-static bool removeOperationInputSkip(const Operation& op, size_t input) {
-    // Skip removeOperationInputTest for the following operations.
-    // - CONCATENATION has at least 2 inputs, with the last element being INT32.
-    // - CONV_2D, DEPTHWISE_CONV_2D, MAX_POOL_2D, AVERAGE_POOL_2D, L2_POOL_2D, RESIZE_BILINEAR,
-    //   SPACE_TO_DEPTH, SPACE_TO_DEPTH, SPACE_TO_BATCH_ND, BATCH_TO_SPACE_ND can have an optional
-    //   layout parameter.
-    // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional axis
-    //   parameter.
-    switch (op.type) {
-        case OperationType::CONCATENATION: {
-            if (op.inputs.size() > 2 && input != op.inputs.size() - 1) {
-                return true;
-            }
-        } break;
-        case OperationType::DEPTHWISE_CONV_2D: {
-            if ((op.inputs.size() == 12 && input == 11) || (op.inputs.size() == 9 && input == 8)) {
-                return true;
-            }
-        } break;
-        case OperationType::CONV_2D:
-        case OperationType::AVERAGE_POOL_2D:
-        case OperationType::MAX_POOL_2D:
-        case OperationType::L2_POOL_2D: {
-            if ((op.inputs.size() == 11 && input == 10) || (op.inputs.size() == 8 && input == 7)) {
-                return true;
-            }
-        } break;
-        case OperationType::RESIZE_BILINEAR: {
-            if (op.inputs.size() == 4 && input == 3) {
-                return true;
-            }
-        } break;
-        case OperationType::SPACE_TO_DEPTH:
-        case OperationType::DEPTH_TO_SPACE:
-        case OperationType::BATCH_TO_SPACE_ND: {
-            if (op.inputs.size() == 3 && input == 2) {
-                return true;
-            }
-        } break;
-        case OperationType::SPACE_TO_BATCH_ND: {
-            if (op.inputs.size() == 4 && input == 3) {
-                return true;
-            }
-        } break;
-        case OperationType::L2_NORMALIZATION: {
-            if (op.inputs.size() == 2 && input == 1) {
-                return true;
-            }
-        } break;
-        case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
-            if (op.inputs.size() == 6 && input == 5) {
-                return true;
-            }
-        } break;
-        case OperationType::SOFTMAX: {
-            if (op.inputs.size() == 3 && input == 2) {
-                return true;
-            }
-        } break;
-        default:
-            break;
-    }
-    return false;
-}
-
-static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
-        for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
-            const Operation& op = model.operations[operation];
-            if (removeOperationInputSkip(op, input)) {
-                continue;
-            }
-            const std::string message = "removeOperationInputTest: operation " +
-                                        std::to_string(operation) + ", input " +
-                                        std::to_string(input);
-            validate(device, message, model, [operation, input](Model* model) {
-                uint32_t operand = model->operations[operation].inputs[input];
-                model->operands[operand].numberOfConsumers--;
-                hidl_vec_removeAt(&model->operations[operation].inputs, input);
-            });
-        }
-    }
-}
-
-///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
-
-static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
-        for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
-            const std::string message = "removeOperationOutputTest: operation " +
-                                        std::to_string(operation) + ", output " +
-                                        std::to_string(output);
-            validate(device, message, model, [operation, output](Model* model) {
-                hidl_vec_removeAt(&model->operations[operation].outputs, output);
-            });
-        }
-    }
-}
-
-///////////////////////// MODEL VALIDATION /////////////////////////
-
-// TODO: remove model input
-// TODO: remove model output
-// TODO: add unused operation
-
-///////////////////////// ADD OPERATION INPUT /////////////////////////
-
-static bool addOperationInputSkip(const Operation& op) {
-    // Skip addOperationInputTest for the following operations.
-    // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional INT32 axis
-    //   parameter.
-    if ((op.type == OperationType::L2_NORMALIZATION && op.inputs.size() == 1) ||
-        (op.type == OperationType::LOCAL_RESPONSE_NORMALIZATION && op.inputs.size() == 5) ||
-        (op.type == OperationType::SOFTMAX && op.inputs.size() == 2)) {
-        return true;
-    }
-    return false;
-}
-
-static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
-        if (addOperationInputSkip(model.operations[operation])) {
-            continue;
-        }
-        const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
-        validate(device, message, model, [operation](Model* model) {
-            uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
-            hidl_vec_push_back(&model->operations[operation].inputs, index);
-            hidl_vec_push_back(&model->inputIndexes, index);
-        });
-    }
-}
-
-///////////////////////// ADD OPERATION OUTPUT /////////////////////////
-
-static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
-    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
-        const std::string message =
-                "addOperationOutputTest: operation " + std::to_string(operation);
-        validate(device, message, model, [operation](Model* model) {
-            uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
-            hidl_vec_push_back(&model->operations[operation].outputs, index);
-            hidl_vec_push_back(&model->outputIndexes, index);
-        });
-    }
-}
-
-///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
-
-static const int32_t invalidExecutionPreferences[] = {
-        static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1,        // lower bound
-        static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1,  // upper bound
-};
-
-static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
-    for (int32_t preference : invalidExecutionPreferences) {
-        const std::string message =
-                "mutateExecutionPreferenceTest: preference " + std::to_string(preference);
-        validate(
-                device, message, model, [](Model*) {},
-                static_cast<ExecutionPreference>(preference));
-    }
-}
-
-////////////////////////// ENTRY POINT //////////////////////////////
-
-void validateModel(const sp<IDevice>& device, const Model& model) {
-    mutateOperandTypeTest(device, model);
-    mutateOperandRankTest(device, model);
-    mutateOperandScaleTest(device, model);
-    mutateOperandZeroPointTest(device, model);
-    mutateOperationOperandTypeTest(device, model);
-    mutateOperationTypeTest(device, model);
-    mutateOperationInputOperandIndexTest(device, model);
-    mutateOperationOutputOperandIndexTest(device, model);
-    removeOperandTest(device, model);
-    removeOperationTest(device, model);
-    removeOperationInputTest(device, model);
-    removeOperationOutputTest(device, model);
-    addOperationInputTest(device, model);
-    addOperationOutputTest(device, model);
-    mutateExecutionPreferenceTest(device, model);
-}
-
-}  // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/ValidateRequest.cpp b/neuralnetworks/1.3/vts/functional/ValidateRequest.cpp
deleted file mode 100644
index f25ee62..0000000
--- a/neuralnetworks/1.3/vts/functional/ValidateRequest.cpp
+++ /dev/null
@@ -1,168 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "1.0/Utils.h"
-#include "1.2/Callbacks.h"
-#include "ExecutionBurstController.h"
-#include "GeneratedTestHarness.h"
-#include "TestHarness.h"
-#include "Utils.h"
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_2::vts::functional {
-
-using implementation::ExecutionCallback;
-using V1_0::ErrorStatus;
-using V1_0::Request;
-
-///////////////////////// UTILITY FUNCTIONS /////////////////////////
-
-static bool badTiming(Timing timing) {
-    return timing.timeOnDevice == UINT64_MAX && timing.timeInDriver == UINT64_MAX;
-}
-
-// Primary validation function. This function will take a valid request, apply a
-// mutation to it to invalidate the request, then pass it to interface calls
-// that use the request. Note that the request here is passed by value, and any
-// mutation to the request does not leave this function.
-static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
-                     Request request, const std::function<void(Request*)>& mutation) {
-    mutation(&request);
-
-    // We'd like to test both with timing requested and without timing
-    // requested. Rather than running each test both ways, we'll decide whether
-    // to request timing by hashing the message. We do not use std::hash because
-    // it is not guaranteed stable across executions.
-    char hash = 0;
-    for (auto c : message) {
-        hash ^= c;
-    };
-    MeasureTiming measure = (hash & 1) ? MeasureTiming::YES : MeasureTiming::NO;
-
-    // asynchronous
-    {
-        SCOPED_TRACE(message + " [execute_1_2]");
-
-        sp<ExecutionCallback> executionCallback = new ExecutionCallback();
-        Return<ErrorStatus> executeLaunchStatus =
-                preparedModel->execute_1_2(request, measure, executionCallback);
-        ASSERT_TRUE(executeLaunchStatus.isOk());
-        ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
-
-        executionCallback->wait();
-        ErrorStatus executionReturnStatus = executionCallback->getStatus();
-        const auto& outputShapes = executionCallback->getOutputShapes();
-        Timing timing = executionCallback->getTiming();
-        ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
-        ASSERT_EQ(outputShapes.size(), 0);
-        ASSERT_TRUE(badTiming(timing));
-    }
-
-    // synchronous
-    {
-        SCOPED_TRACE(message + " [executeSynchronously]");
-
-        Return<void> executeStatus = preparedModel->executeSynchronously(
-                request, measure,
-                [](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes,
-                   const Timing& timing) {
-                    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
-                    EXPECT_EQ(outputShapes.size(), 0);
-                    EXPECT_TRUE(badTiming(timing));
-                });
-        ASSERT_TRUE(executeStatus.isOk());
-    }
-
-    // burst
-    {
-        SCOPED_TRACE(message + " [burst]");
-
-        // create burst
-        std::shared_ptr<::android::nn::ExecutionBurstController> burst =
-                android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true);
-        ASSERT_NE(nullptr, burst.get());
-
-        // create memory keys
-        std::vector<intptr_t> keys(request.pools.size());
-        for (size_t i = 0; i < keys.size(); ++i) {
-            keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
-        }
-
-        // execute and verify
-        ErrorStatus error;
-        std::vector<OutputShape> outputShapes;
-        Timing timing;
-        std::tie(error, outputShapes, timing) = burst->compute(request, measure, keys);
-        EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
-        EXPECT_EQ(outputShapes.size(), 0);
-        EXPECT_TRUE(badTiming(timing));
-
-        // additional burst testing
-        if (request.pools.size() > 0) {
-            // valid free
-            burst->freeMemory(keys.front());
-
-            // negative test: invalid free of unknown (blank) memory
-            burst->freeMemory(intptr_t{});
-
-            // negative test: double free of memory
-            burst->freeMemory(keys.front());
-        }
-    }
-}
-
-///////////////////////// REMOVE INPUT ////////////////////////////////////
-
-static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
-    for (size_t input = 0; input < request.inputs.size(); ++input) {
-        const std::string message = "removeInput: removed input " + std::to_string(input);
-        validate(preparedModel, message, request,
-                 [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
-    }
-}
-
-///////////////////////// REMOVE OUTPUT ////////////////////////////////////
-
-static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
-    for (size_t output = 0; output < request.outputs.size(); ++output) {
-        const std::string message = "removeOutput: removed Output " + std::to_string(output);
-        validate(preparedModel, message, request,
-                 [output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
-    }
-}
-
-///////////////////////////// ENTRY POINT //////////////////////////////////
-
-void validateRequest(const sp<IPreparedModel>& preparedModel, const Request& request) {
-    removeInputTest(preparedModel, request);
-    removeOutputTest(preparedModel, request);
-}
-
-void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const Request& request) {
-    SCOPED_TRACE("Expecting request to fail [executeSynchronously]");
-    Return<void> executeStatus = preparedModel->executeSynchronously(
-            request, MeasureTiming::NO,
-            [](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes, const Timing& timing) {
-                ASSERT_NE(ErrorStatus::NONE, error);
-                EXPECT_EQ(outputShapes.size(), 0);
-                EXPECT_TRUE(badTiming(timing));
-            });
-    ASSERT_TRUE(executeStatus.isOk());
-}
-
-}  // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
deleted file mode 100644
index 4fbd0e2..0000000
--- a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
+++ /dev/null
@@ -1,171 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "VtsHalNeuralnetworks.h"
-#include <android-base/logging.h>
-#include <hidl/ServiceManagement.h>
-#include <string>
-#include <utility>
-#include "1.0/Callbacks.h"
-#include "1.0/Utils.h"
-#include "GeneratedTestHarness.h"
-#include "TestHarness.h"
-
-namespace android::hardware::neuralnetworks::V1_2::vts::functional {
-
-using implementation::PreparedModelCallback;
-using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
-using V1_0::ErrorStatus;
-using V1_0::Request;
-using V1_1::ExecutionPreference;
-
-// internal helper function
-void createPreparedModel(const sp<IDevice>& device, const Model& model,
-                         sp<IPreparedModel>* preparedModel) {
-    ASSERT_NE(nullptr, preparedModel);
-    *preparedModel = nullptr;
-
-    // see if service can handle model
-    bool fullySupportsModel = false;
-    const Return<void> supportedCall = device->getSupportedOperations_1_2(
-            model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
-                ASSERT_EQ(ErrorStatus::NONE, status);
-                ASSERT_NE(0ul, supported.size());
-                fullySupportsModel = std::all_of(supported.begin(), supported.end(),
-                                                 [](bool valid) { return valid; });
-            });
-    ASSERT_TRUE(supportedCall.isOk());
-
-    // launch prepare model
-    const sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
-    const Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
-            model, ExecutionPreference::FAST_SINGLE_ANSWER, hidl_vec<hidl_handle>(),
-            hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
-    ASSERT_TRUE(prepareLaunchStatus.isOk());
-    ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
-
-    // retrieve prepared model
-    preparedModelCallback->wait();
-    const ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
-    *preparedModel = getPreparedModel_1_2(preparedModelCallback);
-
-    // The getSupportedOperations_1_2 call returns a list of operations that are
-    // guaranteed not to fail if prepareModel_1_2 is called, and
-    // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
-    // If a driver has any doubt that it can prepare an operation, it must
-    // return false. So here, if a driver isn't sure if it can support an
-    // operation, but reports that it successfully prepared the model, the test
-    // can continue.
-    if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
-        ASSERT_EQ(nullptr, preparedModel->get());
-        LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot prepare "
-                     "model that it does not support.";
-        std::cout << "[          ]   Early termination of test because vendor service cannot "
-                     "prepare model that it does not support."
-                  << std::endl;
-        GTEST_SKIP();
-    }
-    ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
-    ASSERT_NE(nullptr, preparedModel->get());
-}
-
-void NeuralnetworksHidlTest::SetUp() {
-    testing::TestWithParam<NeuralnetworksHidlTestParam>::SetUp();
-    ASSERT_NE(kDevice, nullptr);
-}
-
-static NamedDevice makeNamedDevice(const std::string& name) {
-    return {name, IDevice::getService(name)};
-}
-
-static std::vector<NamedDevice> getNamedDevicesImpl() {
-    // Retrieves the name of all service instances that implement IDevice,
-    // including any Lazy HAL instances.
-    const std::vector<std::string> names = hardware::getAllHalInstanceNames(IDevice::descriptor);
-
-    // Get a handle to each device and pair it with its name.
-    std::vector<NamedDevice> namedDevices;
-    namedDevices.reserve(names.size());
-    std::transform(names.begin(), names.end(), std::back_inserter(namedDevices), makeNamedDevice);
-    return namedDevices;
-}
-
-const std::vector<NamedDevice>& getNamedDevices() {
-    const static std::vector<NamedDevice> devices = getNamedDevicesImpl();
-    return devices;
-}
-
-std::string printNeuralnetworksHidlTest(
-        const testing::TestParamInfo<NeuralnetworksHidlTestParam>& info) {
-    return gtestCompliantName(getName(info.param));
-}
-
-INSTANTIATE_DEVICE_TEST(NeuralnetworksHidlTest);
-
-// Forward declaration from ValidateModel.cpp
-void validateModel(const sp<IDevice>& device, const Model& model);
-// Forward declaration from ValidateRequest.cpp
-void validateRequest(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
-// Forward declaration from ValidateRequest.cpp
-void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
-// Forward declaration from ValidateBurst.cpp
-void validateBurst(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
-
-void validateEverything(const sp<IDevice>& device, const Model& model, const Request& request) {
-    validateModel(device, model);
-
-    // Create IPreparedModel.
-    sp<IPreparedModel> preparedModel;
-    createPreparedModel(device, model, &preparedModel);
-    if (preparedModel == nullptr) return;
-
-    validateRequest(preparedModel, request);
-    validateBurst(preparedModel, request);
-}
-
-void validateFailure(const sp<IDevice>& device, const Model& model, const Request& request) {
-    // TODO: Should this always succeed?
-    //       What if the invalid input is part of the model (i.e., a parameter).
-    validateModel(device, model);
-
-    // Create IPreparedModel.
-    sp<IPreparedModel> preparedModel;
-    createPreparedModel(device, model, &preparedModel);
-    if (preparedModel == nullptr) return;
-
-    validateRequestFailure(preparedModel, request);
-}
-
-TEST_P(ValidationTest, Test) {
-    const Model model = createModel(kTestModel);
-    const Request request = createRequest(kTestModel);
-    if (kTestModel.expectFailure) {
-        validateFailure(kDevice, model, request);
-    } else {
-        validateEverything(kDevice, model, request);
-    }
-}
-
-INSTANTIATE_GENERATED_TEST(ValidationTest, [](const test_helper::TestModel&) { return true; });
-
-sp<IPreparedModel> getPreparedModel_1_2(const sp<implementation::PreparedModelCallback>& callback) {
-    sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
-    return IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
-}
-
-}  // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h
deleted file mode 100644
index d01336e..0000000
--- a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h
+++ /dev/null
@@ -1,57 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#ifndef ANDROID_HARDWARE_NEURALNETWORKS_V1_2_VTS_HAL_NEURALNETWORKS_H
-#define ANDROID_HARDWARE_NEURALNETWORKS_V1_2_VTS_HAL_NEURALNETWORKS_H
-
-#include <android/hardware/neuralnetworks/1.2/IDevice.h>
-#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.2/types.h>
-#include <gtest/gtest.h>
-#include "1.0/Utils.h"
-#include "1.2/Callbacks.h"
-
-namespace android::hardware::neuralnetworks::V1_2::vts::functional {
-
-using NamedDevice = Named<sp<IDevice>>;
-using NeuralnetworksHidlTestParam = NamedDevice;
-
-class NeuralnetworksHidlTest : public testing::TestWithParam<NeuralnetworksHidlTestParam> {
-  protected:
-    void SetUp() override;
-    const sp<IDevice> kDevice = getData(GetParam());
-};
-
-const std::vector<NamedDevice>& getNamedDevices();
-
-std::string printNeuralnetworksHidlTest(
-        const testing::TestParamInfo<NeuralnetworksHidlTestParam>& info);
-
-#define INSTANTIATE_DEVICE_TEST(TestSuite)                                                 \
-    INSTANTIATE_TEST_SUITE_P(PerInstance, TestSuite, testing::ValuesIn(getNamedDevices()), \
-                             printNeuralnetworksHidlTest)
-
-// Create an IPreparedModel object. If the model cannot be prepared,
-// "preparedModel" will be nullptr instead.
-void createPreparedModel(const sp<IDevice>& device, const Model& model,
-                         sp<IPreparedModel>* preparedModel);
-
-// Utility function to get PreparedModel from callback and downcast to V1_2.
-sp<IPreparedModel> getPreparedModel_1_2(const sp<implementation::PreparedModelCallback>& callback);
-
-}  // namespace android::hardware::neuralnetworks::V1_2::vts::functional
-
-#endif  // ANDROID_HARDWARE_NEURALNETWORKS_V1_2_VTS_HAL_NEURALNETWORKS_H
diff --git a/neuralnetworks/1.3/vts/functional/include/1.2/Callbacks.h b/neuralnetworks/1.3/vts/functional/include/1.2/Callbacks.h
deleted file mode 100644
index bf4792c..0000000
--- a/neuralnetworks/1.3/vts/functional/include/1.2/Callbacks.h
+++ /dev/null
@@ -1,325 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#ifndef ANDROID_HARDWARE_NEURALNETWORKS_V1_2_CALLBACKS_H
-#define ANDROID_HARDWARE_NEURALNETWORKS_V1_2_CALLBACKS_H
-
-#include <android-base/thread_annotations.h>
-#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
-#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
-#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
-#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
-#include <hidl/Status.h>
-#include <condition_variable>
-#include <mutex>
-
-/*
- * The Callback classes are used internally by the NeuralNetworks runtime to
- * synchronize between different threads. An asynchronous task is launched
- * paired with a callback object. When a client thread requires the output being
- * generated by the asynchronous task, the client thread can wait for the result
- * and be blocked until it has completed. Any wait may safely be called
- * concurrently, even on the same callback object. When the asynchronous task
- * has finished its workload, it must immediately call "notify*". If the
- * asynchronous task has failed to launch, the function that tried to launch the
- * asynchronous task must immediately call "notify*". This "notify*" call
- * awakens any client threads waiting on the callback object.
- *
- * These classes exist to enable synchronization across HIDL. When
- * synchronization is only required in the same process, consider using
- * std::future, std::mutex, std::condition_variable, or std::experimental::latch
- * instead.
- */
-
-namespace android::hardware::neuralnetworks::V1_2::implementation {
-
-/**
- * The PreparedModelCallback class is used to receive the error status of
- * preparing a model as well as the prepared model from a task executing
- * asynchronously with respect to the runtime. If a calling thread calls wait
- * or get* on a PreparedModelCallback object and the corresponding asynchronous
- * task has not finished preparing the model, the calling thread will block
- * until the asynchronous task has either called notify or notify_1_2.
- *
- * If the callback object is notified more than once, only the results of the
- * first call to notify* are used, and the results from subsequent calls are
- * discarded.
- *
- * This callback object is passed as an argument to IDevice::prepareModel*.
- */
-class PreparedModelCallback : public IPreparedModelCallback {
-  public:
-    /**
-     * IPreparedModelCallback::notify marks the callback object with the return
-     * status of the asynchronous model preparation along with the prepared
-     * model, and allows all prior and future wait calls on the
-     * PreparedModelCallback object to proceed.
-     *
-     * Either IPreparedModelCallback::notify or
-     * IPreparedModelCallback::notify_1_2 must be called on a given
-     * PreparedModelCallback object.
-     *
-     * If the callback object is notified more than once, only the results of
-     * the first call to notify* are used, and the results from subsequent calls
-     * are discarded.
-     *
-     * @param status Error status returned from asynchronously preparing the
-     *     model; will be:
-     *     - NONE if the asynchronous preparation was successful
-     *     - DEVICE_UNAVAILABLE if driver is offline or busy
-     *     - GENERAL_FAILURE if there is an unspecified error
-     *     - INVALID_ARGUMENT if the input model is invalid
-     * @param preparedModel Returned model that has been prepared for execution,
-     *     nullptr if the model was unable to be prepared.
-     */
-    Return<void> notify(V1_0::ErrorStatus status,
-                        const sp<V1_0::IPreparedModel>& preparedModel) override;
-
-    /**
-     * IPreparedModelCallback::notify_1_2 marks the callback object with the
-     * return status of the asynchronous model preparation along with the
-     * prepared model, and allows all prior and future wait calls on the
-     * PreparedModelCallback object to proceed.
-     *
-     * Either IPreparedModelCallback::notify or
-     * IPreparedModelCallback::notify_1_2 must be called on a given
-     * PreparedModelCallback object.
-     *
-     * If the callback object is notified more than once, only the results of
-     * the first call to notify* are used, and the results from subsequent calls
-     * are discarded.
-     *
-     * @param status Error status returned from asynchronously preparing the
-     *     model; will be:
-     *     - NONE if the asynchronous preparation was successful
-     *     - DEVICE_UNAVAILABLE if driver is offline or busy
-     *     - GENERAL_FAILURE if there is an unspecified error
-     *     - INVALID_ARGUMENT if the input model is invalid
-     * @param preparedModel Returned model that has been prepared for execution,
-     *     nullptr if the model was unable to be prepared.
-     */
-    Return<void> notify_1_2(V1_0::ErrorStatus status,
-                            const sp<V1_2::IPreparedModel>& preparedModel) override;
-
-    /**
-     * PreparedModelCallback::wait blocks until notify* has been called on the
-     * callback object.
-     */
-    void wait() const;
-
-    /**
-     * Retrieves the error status returned from the asynchronous task launched
-     * by IDevice::prepareModel*. If IDevice::prepareModel* has not finished
-     * asynchronously preparing the model, this call will block until the
-     * asynchronous task notifies the object.
-     *
-     * @return status Error status returned from asynchronously preparing the
-     *     model; will be:
-     *     - NONE if the asynchronous preparation was successful
-     *     - DEVICE_UNAVAILABLE if driver is offline or busy
-     *     - GENERAL_FAILURE if there is an unspecified error
-     *     - INVALID_ARGUMENT if the input model is invalid
-     */
-    V1_0::ErrorStatus getStatus() const;
-
-    /**
-     * Retrieves the model that has been prepared for execution from the
-     * asynchronous task launched by IDevice::prepareModel*. If
-     * IDevice::prepareModel* has not finished asynchronously preparing the
-     * model, this call will block until the asynchronous task notifies the
-     * object.
-     *
-     * @return preparedModel Returned model that has been prepared for
-     *     execution, nullptr if the model was unable to be prepared.
-     */
-    sp<V1_0::IPreparedModel> getPreparedModel() const;
-
-  private:
-    mutable std::mutex mMutex;
-    mutable std::condition_variable mCondition;
-    bool mNotified GUARDED_BY(mMutex) = false;
-    V1_0::ErrorStatus mErrorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
-    sp<V1_0::IPreparedModel> mPreparedModel;
-};
-
-/**
- * The ExecutionCallback class is used to receive the results of the execution
- * from a task executing asynchronously with respect to the runtime. If a
- * calling thread calls wait or get* on a ExecutionCallback object and the
- * corresponding asynchronous task has not finished the execution, the calling
- * thread will block until the asynchronous task has either called notify or
- * notify_1_2.
- *
- * If the callback object is notified more than once, only the results of the
- * first call to notify* are used, and the results from subsequent calls are
- * discarded.
- *
- * This callback object is passed as an argument to IPreparedModel::execute*.
- */
-class ExecutionCallback : public IExecutionCallback {
-  public:
-    /**
-     * IExecutionCallback::notify marks the callback object with the return
-     * status of the asynchronous execution that held this callback and enables
-     * all prior and future wait calls on the ExecutionCallback object to
-     * proceed.
-     *
-     * Either IExecutionCallback::notify or IExecutionCallback::notify_1_2 must
-     * be called on a given ExecutionCallback object.
-     *
-     * If the callback object is notified more than once, only the results of
-     * the first call to notify* are used, and the results from subsequent calls
-     * are discarded.
-     *
-     * @param status Error status returned from launching the asynchronous task
-     *     (if the launch fails) or from the asynchronous task itself (if the
-     *     launch succeeds). Must be:
-     *     - NONE if the asynchronous execution was successful
-     *     - DEVICE_UNAVAILABLE if driver is offline or busy
-     *     - GENERAL_FAILURE if there is an unspecified error
-     *     - OUTPUT_INSUFFICIENT_SIZE if provided output buffer is not large
-     *         enough to store the resultant values
-     *     - INVALID_ARGUMENT if the input request is invalid
-     */
-    Return<void> notify(V1_0::ErrorStatus status) override;
-
-    /**
-     * IExecutionCallback::notify_1_2 marks the callback object with the results
-     * (error status, dynamic output shapes, and timing information) of the
-     * asynchronous execution that held this callback and enables all prior and
-     * future wait calls on the ExecutionCallback object to proceed.
-     *
-     * Either IExecutionCallback::notify or IExecutionCallback::notify_1_2 must
-     * be called on a given ExecutionCallback object.
-     *
-     * If the callback object is notified more than once, only the results of
-     * the first call to notify* are used, and the results from subsequent calls
-     * are discarded.
-     *
-     * @param status Error status returned from launching the asynchronous task
-     *     (if the launch fails) or from the asynchronous task itself (if the
-     *     launch succeeds). Must be:
-     *     - NONE if the asynchronous execution was successful
-     *     - DEVICE_UNAVAILABLE if driver is offline or busy
-     *     - GENERAL_FAILURE if the asynchronous task resulted in an unspecified
-     *         error
-     *     - OUTPUT_INSUFFICIENT_SIZE if at least one output operand buffer is
-     *         not large enough to store the corresponding output
-     *     - INVALID_ARGUMENT if one of the input arguments to prepareModel is
-     *         invalid
-     * @param outputShapes A list of shape information of model output operands.
-     *     The index into "outputShapes" corresponds to the index of the output
-     *     operand in the Request outputs vector. outputShapes must be empty
-     *     unless the status is either NONE or OUTPUT_INSUFFICIENT_SIZE.
-     * @param Timing Duration of execution. Unless MeasureTiming::YES was passed
-     *     when launching the execution and status is NONE, all times must be
-     *     reported as UINT64_MAX. A driver may choose to report any time as
-     *     UINT64_MAX, indicating that particular measurement is not available.
-     */
-    Return<void> notify_1_2(V1_0::ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
-                            const Timing& timing) override;
-
-    // An overload of the latest notify interface to hide the version from ExecutionBuilder.
-    Return<void> notify(V1_0::ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
-                        const Timing& timing) {
-        return notify_1_2(status, outputShapes, timing);
-    }
-
-    /**
-     * ExecutionCallback::wait blocks until notify* has been called on the
-     * callback object.
-     */
-    void wait() const;
-
-    /**
-     * Retrieves the error status returned from the asynchronous task launched
-     * by either IPreparedModel::execute or IPreparedModel::execute_1_2. If
-     * IPreparedModel::execute or IPreparedModel::execute_1_2 has not finished
-     * asynchronously executing, this call will block until the asynchronous
-     * task notifies the object.
-     *
-     * @return status Error status returned from launching the asynchronous task
-     *     (if the launch fails) or from the asynchronous task itself (if the
-     *     launch succeeds). Must be:
-     *     - NONE if the asynchronous execution was successful
-     *     - DEVICE_UNAVAILABLE if driver is offline or busy
-     *     - GENERAL_FAILURE if the asynchronous task resulted in an unspecified
-     *         error
-     *     - OUTPUT_INSUFFICIENT_SIZE if at least one output operand buffer is
-     *         not large enough to store the corresponding output
-     *     - INVALID_ARGUMENT if one of the input arguments to prepareModel is
-     *         invalid
-     */
-    V1_0::ErrorStatus getStatus() const;
-
-    /**
-     * Retrieves the output shapes returned from the asynchronous task launched
-     * by IPreparedModel::execute_1_2. If IPreparedModel::execute_1_2 has not
-     * finished asynchronously executing, this call will block until the
-     * asynchronous task notifies the object.
-     *
-     * If the asynchronous task was launched by IPreparedModel::execute, an
-     * empty vector will be returned.
-     *
-     * @return outputShapes A list of shape information of model output
-     *     operands. The index into "outputShapes" corresponds to the index of
-     *     the output operand in the Request outputs vector. outputShapes must
-     *     be empty unless the status is either NONE or
-     *     OUTPUT_INSUFFICIENT_SIZE. outputShaps may be empty if the status is
-     *     NONE and all model output operands are fully-specified at execution
-     *     time. outputShapes must have the same number of elements as the
-     *     number of model output operands if the status is
-     *     OUTPUT_INSUFFICIENT_SIZE, or if the status is NONE and the model has
-     *     at least one output operand that is not fully-specified.
-     */
-    const std::vector<OutputShape>& getOutputShapes() const;
-
-    /**
-     * Retrieves the duration of execution of the asynchronous task launched by
-     * IPreparedModel::execute_1_2. If IPreparedModel::execute_1_2 has not
-     * finished asynchronously executing, this call will block until the
-     * asynchronous task notifies the object.
-     *
-     * If the asynchronous task was launched by IPreparedModel::execute, every
-     * time must be UINT64_MAX.
-     *
-     * @return timing Duration of the execution. Every time must be UINT64_MAX
-     *     unless the status is NONE.
-     */
-    Timing getTiming() const;
-
-  private:
-    /*
-     * ExecutionCallback::notifyInternal stores the results of the execution
-     * (status, output shapes, and timing information) in the ExecutionCallback
-     * object before any call to wait or get* return. It then enables all prior
-     * and future wait calls on the ExecutionCallback object to proceed.
-     */
-    void notifyInternal(V1_0::ErrorStatus errorStatus, const hidl_vec<OutputShape>& outputShapes,
-                        const Timing& timing);
-
-    // members
-    mutable std::mutex mMutex;
-    mutable std::condition_variable mCondition;
-    bool mNotified GUARDED_BY(mMutex) = false;
-    V1_0::ErrorStatus mErrorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
-    std::vector<OutputShape> mOutputShapes = {};
-    Timing mTiming = {};
-};
-
-}  // namespace android::hardware::neuralnetworks::V1_2::implementation
-
-#endif  // ANDROID_HARDWARE_NEURALNETWORKS_V1_2_CALLBACKS_H