Update TRANSPOSE_CONV_2D docs

* Add info about per-channel quantization
* Update current.txt

Test: mma
Change-Id: I197d984c8b65b4c46bf526eb137f212ad8844926
Merged-In: I197d984c8b65b4c46bf526eb137f212ad8844926
(cherry picked from commit 44015c090ae4d7df4b723b1928c2a446d49be6bf)
diff --git a/current.txt b/current.txt
index 8f93d8e..1d765f2 100644
--- a/current.txt
+++ b/current.txt
@@ -420,7 +420,7 @@
 92714960d1a53fc2ec557302b41c7cc93d2636d8364a44bd0f85be0c92927ff8 android.hardware.neuralnetworks@1.2::IExecutionCallback
 83885d366f22ada42c00d8854f0b7e7ba4cf73ddf80bb0d8e168ce132cec57ea android.hardware.neuralnetworks@1.2::IPreparedModel
 e1c734d1545e1a4ae749ff1dd9704a8e594c59aea7c8363159dc258e93e0df3b android.hardware.neuralnetworks@1.2::IPreparedModelCallback
-313b341f1f6196a48cf304eaf067f67510c1ebc04df8c7cd536db5611df5c5c2 android.hardware.neuralnetworks@1.2::types
+769f8650631eef7a3ceedc8cf130f4b99eb52fe698a11609d55de32985a3dddf android.hardware.neuralnetworks@1.2::types
 cf7a4ba516a638f9b82a249c91fb603042c2d9ca43fd5aad9cf6c0401ed2a5d7 android.hardware.nfc@1.2::INfc
 abf98c2ae08bf765db54edc8068e36d52eb558cff6706b6fd7c18c65a1f3fc18 android.hardware.nfc@1.2::types
 4cb252dc6372a874aef666b92a6e9529915aa187521a700f0789065c3c702ead android.hardware.power.stats@1.0::IPowerStats
diff --git a/neuralnetworks/1.2/types.hal b/neuralnetworks/1.2/types.hal
index 06bdc6a..ab17598 100644
--- a/neuralnetworks/1.2/types.hal
+++ b/neuralnetworks/1.2/types.hal
@@ -342,7 +342,7 @@
      * * * input.scale * filter.scale).
      *
      * Available since API level 29:
-     * * Quantized with symetric per channel quantization for the filter:
+     * * Quantized with symmetric per channel quantization for the filter:
      * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
      * * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
      * * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
@@ -491,7 +491,7 @@
      * * * input.scale * filter.scale).
      *
      * Available since API level 29:
-     * * Quantized with symetric per channel quantization for the filter:
+     * * Quantized with symmetric per channel quantization for the filter:
      * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
      * * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
      * * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
@@ -3018,7 +3018,7 @@
      * * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
      * * * input.scale * filter.scale).
      *
-     * * Quantized with symetric per channel quantization for the filter:
+     * * Quantized with symmetric per channel quantization for the filter:
      * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
      * * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
      * * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
@@ -4204,10 +4204,21 @@
      * The output dimensions are functions of the filter dimensions, stride, and
      * padding.
      *
-     * Supported tensor {@link OperandType}:
-     * * {@link OperandType::TENSOR_FLOAT16}
-     * * {@link OperandType::TENSOR_FLOAT32}
-     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor {@link OperandCode} configurations:
+     * * 32 bit Floating point :
+     * * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
+     *
+     * * Quantized:
+     * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
+     * * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
+     * * * input.scale * filter.scale).
+     *
+     * Available since API level 29:
+     * * Quantized with symmetric per channel quantization for the filter:
+     * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
+     * * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
+     * * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
+     * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
      *
      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
      * With the default data layout NHWC, the data is stored in the order of:
@@ -4221,14 +4232,20 @@
      *      specifying the input.
      * * 1: A 4-D tensor, of shape
      *      [depth_out, filter_height, filter_width, depth_in], specifying the
-     *      filter.
+     *      filter. For tensor of type
+     *      {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
+     *      dimension (extraParams.channelQuant.channelDim) must be set to 0.
      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
      *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
      *      {@link OperandType::TENSOR_FLOAT16}, the bias should be of the
      *      same type. For input tensor of type
      *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
      *      of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
-     *      bias_scale == input_scale * filter_scale.
+     *      bias_scale == input_scale * filter_scale. For filter tensor of
+     *      {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
+     *      must be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
+     *      0 and bias_scale of 0. The actual scale of each value 'i' is equal
+     *      to bias_scale[i] = input_scale * filter_scale[i].
      * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
      *      the left, in the ‘width’ dimension.
      * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
@@ -4252,14 +4269,20 @@
      *      specifying the input.
      * * 1: A 4-D tensor, of shape
      *      [depth_out, filter_height, filter_width, depth_in], specifying the
-     *      filter.
+     *      filter. For tensor of type
+     *      {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
+     *      dimension (extraParams.channelQuant.channelDim) must be set to 0.
      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
      *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
      *      {@link OperandType::TENSOR_FLOAT16}, the bias should be of the
      *      same type. For input tensor of type
      *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
      *      of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
-     *      bias_scale == input_scale * filter_scale.
+     *      bias_scale == input_scale * filter_scale. For filter tensor of
+     *      {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
+     *      must be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
+     *      0 and bias_scale of 0. The actual scale of each value 'i' is equal
+     *      to bias_scale[i] = input_scale * filter_scale[i].
      * * 3: An {@link OperandType::TENSOR_INT32} tensor, specifying the output
      *      tensor shape.
      * * 4: An {@link OperandType::INT32} scalar, specifying the implicit
@@ -4279,7 +4302,9 @@
      * * 0: The output 4-D tensor, of shape
      *      [batches, out_height, out_width, depth_out]. For output tensor of
      *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
-     *      must be satisfied: output_scale > input_scale * filter_scale.
+     *      must be satisfied: output_scale > input_scale * filter_scale (for
+     *      filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
+     *      this condition must be true for all filter scales).
      *
      * Available since API level 29.
      */