NN validation tests
This CL adds validation tests for all of the existing generated models.
The strategy of this CL is this: given a valid model or request, make a
single change to invalidate the model or request, then verify that the
vendor service driver catches the inconsistency and returns
INVALID_ARGUMENT.
Bug: 67828197
Test: mma
Test: VtsHalNeuralnetworksV1_0TargetTest
Test: VtsHalNeuralnetworksV1_1TargetTest
Change-Id: I8efcdbdccc77aaf78992e52c1eac5c940fc81a03
diff --git a/neuralnetworks/1.0/vts/functional/Android.bp b/neuralnetworks/1.0/vts/functional/Android.bp
index 54dd14a..e28113b 100644
--- a/neuralnetworks/1.0/vts/functional/Android.bp
+++ b/neuralnetworks/1.0/vts/functional/Android.bp
@@ -18,7 +18,6 @@
name: "VtsHalNeuralnetworksTest_utils",
srcs: [
"Callbacks.cpp",
- "Models.cpp",
"GeneratedTestHarness.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
@@ -41,14 +40,17 @@
cc_test {
name: "VtsHalNeuralnetworksV1_0TargetTest",
srcs: [
- "VtsHalNeuralnetworksV1_0.cpp",
- "VtsHalNeuralnetworksV1_0BasicTest.cpp",
- "VtsHalNeuralnetworksV1_0GeneratedTest.cpp",
+ "BasicTests.cpp",
+ "GeneratedTests.cpp",
+ "ValidateModel.cpp",
+ "ValidateRequest.cpp",
+ "ValidationTests.cpp",
+ "VtsHalNeuralnetworks.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
static_libs: [
- "android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
+ "android.hardware.neuralnetworks@1.0",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libhidlmemory",
diff --git a/neuralnetworks/1.0/vts/functional/BasicTests.cpp b/neuralnetworks/1.0/vts/functional/BasicTests.cpp
new file mode 100644
index 0000000..945c406
--- /dev/null
+++ b/neuralnetworks/1.0/vts/functional/BasicTests.cpp
@@ -0,0 +1,56 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_0 {
+namespace vts {
+namespace functional {
+
+// create device test
+TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
+
+// status test
+TEST_F(NeuralnetworksHidlTest, StatusTest) {
+ Return<DeviceStatus> status = device->getStatus();
+ ASSERT_TRUE(status.isOk());
+ EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
+}
+
+// initialization
+TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
+ Return<void> ret =
+ device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) {
+ EXPECT_EQ(ErrorStatus::NONE, status);
+ EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
+ EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
+ EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
+ EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_0
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
diff --git a/neuralnetworks/1.0/vts/functional/Callbacks.h b/neuralnetworks/1.0/vts/functional/Callbacks.h
index 0e2ffb3..2ac6130 100644
--- a/neuralnetworks/1.0/vts/functional/Callbacks.h
+++ b/neuralnetworks/1.0/vts/functional/Callbacks.h
@@ -17,14 +17,6 @@
namespace V1_0 {
namespace implementation {
-using ::android::hardware::hidl_array;
-using ::android::hardware::hidl_memory;
-using ::android::hardware::hidl_string;
-using ::android::hardware::hidl_vec;
-using ::android::hardware::Return;
-using ::android::hardware::Void;
-using ::android::sp;
-
/**
* The CallbackBase class is used internally by the NeuralNetworks runtime to
* synchronize between different threads. An asynchronous task is launched
diff --git a/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp b/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
index 8646a4c..4f9d528 100644
--- a/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
+++ b/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
@@ -179,7 +179,7 @@
}
}
-void Execute(sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
+void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExampleType>& examples) {
V1_0::Model model = create_model();
@@ -223,7 +223,7 @@
EvaluatePreparedModel(preparedModel, is_ignored, examples);
}
-void Execute(sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
+void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExampleType>& examples) {
V1_1::Model model = create_model();
diff --git a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0GeneratedTest.cpp b/neuralnetworks/1.0/vts/functional/GeneratedTests.cpp
similarity index 61%
rename from neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0GeneratedTest.cpp
rename to neuralnetworks/1.0/vts/functional/GeneratedTests.cpp
index b99aef7..2107333 100644
--- a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0GeneratedTest.cpp
+++ b/neuralnetworks/1.0/vts/functional/GeneratedTests.cpp
@@ -16,47 +16,33 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
-#include "VtsHalNeuralnetworksV1_0.h"
+#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
#include "TestHarness.h"
+#include "Utils.h"
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
-using ::android::hardware::neuralnetworks::V1_0::IDevice;
-using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
-using ::android::hardware::neuralnetworks::V1_0::Capabilities;
-using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
-using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
-using ::android::hardware::neuralnetworks::V1_0::Model;
-using ::android::hardware::neuralnetworks::V1_0::OperationType;
-using ::android::hardware::neuralnetworks::V1_0::PerformanceInfo;
-using ::android::hardware::Return;
-using ::android::hardware::Void;
-using ::android::hardware::hidl_memory;
-using ::android::hardware::hidl_string;
-using ::android::hardware::hidl_vec;
-using ::android::hidl::allocator::V1_0::IAllocator;
-using ::android::hidl::memory::V1_0::IMemory;
-using ::android::sp;
-
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace generated_tests {
using ::generated_tests::MixedTypedExampleType;
-extern void Execute(sp<IDevice>&, std::function<Model(void)>, std::function<bool(int)>,
- const std::vector<MixedTypedExampleType>&);
+extern void Execute(const sp<V1_0::IDevice>&, std::function<V1_0::Model(void)>,
+ std::function<bool(int)>, const std::vector<MixedTypedExampleType>&);
} // namespace generated_tests
namespace V1_0 {
namespace vts {
namespace functional {
+
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+using ::android::nn::allocateSharedMemory;
// Mixed-typed examples
typedef generated_tests::MixedTypedExampleType MixedTypedExample;
diff --git a/neuralnetworks/1.0/vts/functional/Models.cpp b/neuralnetworks/1.0/vts/functional/Models.cpp
deleted file mode 100644
index 180286a..0000000
--- a/neuralnetworks/1.0/vts/functional/Models.cpp
+++ /dev/null
@@ -1,202 +0,0 @@
-/*
- * Copyright (C) 2017 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "Models.h"
-#include "Utils.h"
-
-#include <android-base/logging.h>
-#include <android/hidl/allocator/1.0/IAllocator.h>
-#include <android/hidl/memory/1.0/IMemory.h>
-#include <hidlmemory/mapping.h>
-#include <vector>
-
-using ::android::sp;
-
-namespace android {
-namespace hardware {
-namespace neuralnetworks {
-
-// create a valid model
-V1_1::Model createValidTestModel_1_1() {
- const std::vector<float> operand2Data = {5.0f, 6.0f, 7.0f, 8.0f};
- const uint32_t size = operand2Data.size() * sizeof(float);
-
- const uint32_t operand1 = 0;
- const uint32_t operand2 = 1;
- const uint32_t operand3 = 2;
- const uint32_t operand4 = 3;
-
- const std::vector<Operand> operands = {
- {
- .type = OperandType::TENSOR_FLOAT32,
- .dimensions = {1, 2, 2, 1},
- .numberOfConsumers = 1,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = OperandLifeTime::MODEL_INPUT,
- .location = {.poolIndex = 0, .offset = 0, .length = 0},
- },
- {
- .type = OperandType::TENSOR_FLOAT32,
- .dimensions = {1, 2, 2, 1},
- .numberOfConsumers = 1,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = OperandLifeTime::CONSTANT_COPY,
- .location = {.poolIndex = 0, .offset = 0, .length = size},
- },
- {
- .type = OperandType::INT32,
- .dimensions = {},
- .numberOfConsumers = 1,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = OperandLifeTime::CONSTANT_COPY,
- .location = {.poolIndex = 0, .offset = size, .length = sizeof(int32_t)},
- },
- {
- .type = OperandType::TENSOR_FLOAT32,
- .dimensions = {1, 2, 2, 1},
- .numberOfConsumers = 0,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = OperandLifeTime::MODEL_OUTPUT,
- .location = {.poolIndex = 0, .offset = 0, .length = 0},
- },
- };
-
- const std::vector<Operation> operations = {{
- .type = OperationType::ADD, .inputs = {operand1, operand2, operand3}, .outputs = {operand4},
- }};
-
- const std::vector<uint32_t> inputIndexes = {operand1};
- const std::vector<uint32_t> outputIndexes = {operand4};
- std::vector<uint8_t> operandValues(
- reinterpret_cast<const uint8_t*>(operand2Data.data()),
- reinterpret_cast<const uint8_t*>(operand2Data.data()) + size);
- int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)};
- operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]),
- reinterpret_cast<const uint8_t*>(&activation[1]));
-
- const std::vector<hidl_memory> pools = {};
-
- return {
- .operands = operands,
- .operations = operations,
- .inputIndexes = inputIndexes,
- .outputIndexes = outputIndexes,
- .operandValues = operandValues,
- .pools = pools,
- };
-}
-
-// create first invalid model
-V1_1::Model createInvalidTestModel1_1_1() {
- Model model = createValidTestModel_1_1();
- model.operations[0].type = static_cast<OperationType>(0xDEADBEEF); /* INVALID */
- return model;
-}
-
-// create second invalid model
-V1_1::Model createInvalidTestModel2_1_1() {
- Model model = createValidTestModel_1_1();
- const uint32_t operand1 = 0;
- const uint32_t operand5 = 4; // INVALID OPERAND
- model.inputIndexes = std::vector<uint32_t>({operand1, operand5 /* INVALID OPERAND */});
- return model;
-}
-
-V1_0::Model createValidTestModel_1_0() {
- V1_1::Model model = createValidTestModel_1_1();
- return nn::convertToV1_0(model);
-}
-
-V1_0::Model createInvalidTestModel1_1_0() {
- V1_1::Model model = createInvalidTestModel1_1_1();
- return nn::convertToV1_0(model);
-}
-
-V1_0::Model createInvalidTestModel2_1_0() {
- V1_1::Model model = createInvalidTestModel2_1_1();
- return nn::convertToV1_0(model);
-}
-
-// create a valid request
-Request createValidTestRequest() {
- std::vector<float> inputData = {1.0f, 2.0f, 3.0f, 4.0f};
- std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
- const uint32_t INPUT = 0;
- const uint32_t OUTPUT = 1;
-
- // prepare inputs
- uint32_t inputSize = static_cast<uint32_t>(inputData.size() * sizeof(float));
- uint32_t outputSize = static_cast<uint32_t>(outputData.size() * sizeof(float));
- std::vector<RequestArgument> inputs = {{
- .location = {.poolIndex = INPUT, .offset = 0, .length = inputSize}, .dimensions = {},
- }};
- std::vector<RequestArgument> outputs = {{
- .location = {.poolIndex = OUTPUT, .offset = 0, .length = outputSize}, .dimensions = {},
- }};
- std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
- nn::allocateSharedMemory(outputSize)};
- if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
- return {};
- }
-
- // load data
- sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
- sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
- if (inputMemory.get() == nullptr || outputMemory.get() == nullptr) {
- return {};
- }
- float* inputPtr = reinterpret_cast<float*>(static_cast<void*>(inputMemory->getPointer()));
- float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
- if (inputPtr == nullptr || outputPtr == nullptr) {
- return {};
- }
- inputMemory->update();
- outputMemory->update();
- std::copy(inputData.begin(), inputData.end(), inputPtr);
- std::copy(outputData.begin(), outputData.end(), outputPtr);
- inputMemory->commit();
- outputMemory->commit();
-
- return {.inputs = inputs, .outputs = outputs, .pools = pools};
-}
-
-// create first invalid request
-Request createInvalidTestRequest1() {
- Request request = createValidTestRequest();
- const uint32_t INVALID = 2;
- std::vector<float> inputData = {1.0f, 2.0f, 3.0f, 4.0f};
- uint32_t inputSize = static_cast<uint32_t>(inputData.size() * sizeof(float));
- request.inputs[0].location = {
- .poolIndex = INVALID /* INVALID */, .offset = 0, .length = inputSize};
- return request;
-}
-
-// create second invalid request
-Request createInvalidTestRequest2() {
- Request request = createValidTestRequest();
- request.inputs[0].dimensions = std::vector<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8} /* INVALID */);
- return request;
-}
-
-} // namespace neuralnetworks
-} // namespace hardware
-} // namespace android
diff --git a/neuralnetworks/1.0/vts/functional/Models.h b/neuralnetworks/1.0/vts/functional/Models.h
index 9398235..a1fbe92 100644
--- a/neuralnetworks/1.0/vts/functional/Models.h
+++ b/neuralnetworks/1.0/vts/functional/Models.h
@@ -1,5 +1,5 @@
/*
- * Copyright (C) 2017 The Android Open Source Project
+ * Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -14,29 +14,187 @@
* limitations under the License.
*/
+#ifndef VTS_HAL_NEURALNETWORKS_V1_0_VTS_FUNCTIONAL_MODELS_H
+#define VTS_HAL_NEURALNETWORKS_V1_0_VTS_FUNCTIONAL_MODELS_H
+
#define LOG_TAG "neuralnetworks_hidl_hal_test"
-#include <android/hardware/neuralnetworks/1.1/types.h>
+#include "TestHarness.h"
+
+#include <android/hardware/neuralnetworks/1.0/types.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
+namespace V1_0 {
+namespace vts {
+namespace functional {
-// create V1_1 model
-V1_1::Model createValidTestModel_1_1();
-V1_1::Model createInvalidTestModel1_1_1();
-V1_1::Model createInvalidTestModel2_1_1();
+using MixedTypedExample = generated_tests::MixedTypedExampleType;
-// create V1_0 model
-V1_0::Model createValidTestModel_1_0();
-V1_0::Model createInvalidTestModel1_1_0();
-V1_0::Model createInvalidTestModel2_1_0();
+#define FOR_EACH_TEST_MODEL(FN) \
+ FN(add_broadcast_quant8) \
+ FN(add) \
+ FN(add_quant8) \
+ FN(avg_pool_float_1) \
+ FN(avg_pool_float_2) \
+ FN(avg_pool_float_3) \
+ FN(avg_pool_float_4) \
+ FN(avg_pool_float_5) \
+ FN(avg_pool_quant8_1) \
+ FN(avg_pool_quant8_2) \
+ FN(avg_pool_quant8_3) \
+ FN(avg_pool_quant8_4) \
+ FN(avg_pool_quant8_5) \
+ FN(concat_float_1) \
+ FN(concat_float_2) \
+ FN(concat_float_3) \
+ FN(concat_quant8_1) \
+ FN(concat_quant8_2) \
+ FN(concat_quant8_3) \
+ FN(conv_1_h3_w2_SAME) \
+ FN(conv_1_h3_w2_VALID) \
+ FN(conv_3_h3_w2_SAME) \
+ FN(conv_3_h3_w2_VALID) \
+ FN(conv_float_2) \
+ FN(conv_float_channels) \
+ FN(conv_float_channels_weights_as_inputs) \
+ FN(conv_float_large) \
+ FN(conv_float_large_weights_as_inputs) \
+ FN(conv_float) \
+ FN(conv_float_weights_as_inputs) \
+ FN(conv_quant8_2) \
+ FN(conv_quant8_channels) \
+ FN(conv_quant8_channels_weights_as_inputs) \
+ FN(conv_quant8_large) \
+ FN(conv_quant8_large_weights_as_inputs) \
+ FN(conv_quant8) \
+ FN(conv_quant8_overflow) \
+ FN(conv_quant8_overflow_weights_as_inputs) \
+ FN(conv_quant8_weights_as_inputs) \
+ FN(depth_to_space_float_1) \
+ FN(depth_to_space_float_2) \
+ FN(depth_to_space_float_3) \
+ FN(depth_to_space_quant8_1) \
+ FN(depth_to_space_quant8_2) \
+ FN(depthwise_conv2d_float_2) \
+ FN(depthwise_conv2d_float_large_2) \
+ FN(depthwise_conv2d_float_large_2_weights_as_inputs) \
+ FN(depthwise_conv2d_float_large) \
+ FN(depthwise_conv2d_float_large_weights_as_inputs) \
+ FN(depthwise_conv2d_float) \
+ FN(depthwise_conv2d_float_weights_as_inputs) \
+ FN(depthwise_conv2d_quant8_2) \
+ FN(depthwise_conv2d_quant8_large) \
+ FN(depthwise_conv2d_quant8_large_weights_as_inputs) \
+ FN(depthwise_conv2d_quant8) \
+ FN(depthwise_conv2d_quant8_weights_as_inputs) \
+ FN(depthwise_conv) \
+ FN(dequantize) \
+ FN(embedding_lookup) \
+ FN(floor) \
+ FN(fully_connected_float_2) \
+ FN(fully_connected_float_large) \
+ FN(fully_connected_float_large_weights_as_inputs) \
+ FN(fully_connected_float) \
+ FN(fully_connected_float_weights_as_inputs) \
+ FN(fully_connected_quant8_2) \
+ FN(fully_connected_quant8_large) \
+ FN(fully_connected_quant8_large_weights_as_inputs) \
+ FN(fully_connected_quant8) \
+ FN(fully_connected_quant8_weights_as_inputs) \
+ FN(hashtable_lookup_float) \
+ FN(hashtable_lookup_quant8) \
+ FN(l2_normalization_2) \
+ FN(l2_normalization_large) \
+ FN(l2_normalization) \
+ FN(l2_pool_float_2) \
+ FN(l2_pool_float_large) \
+ FN(l2_pool_float) \
+ FN(local_response_norm_float_1) \
+ FN(local_response_norm_float_2) \
+ FN(local_response_norm_float_3) \
+ FN(local_response_norm_float_4) \
+ FN(logistic_float_1) \
+ FN(logistic_float_2) \
+ FN(logistic_quant8_1) \
+ FN(logistic_quant8_2) \
+ FN(lsh_projection_2) \
+ FN(lsh_projection) \
+ FN(lsh_projection_weights_as_inputs) \
+ FN(lstm2) \
+ FN(lstm2_state2) \
+ FN(lstm2_state) \
+ FN(lstm3) \
+ FN(lstm3_state2) \
+ FN(lstm3_state3) \
+ FN(lstm3_state) \
+ FN(lstm) \
+ FN(lstm_state2) \
+ FN(lstm_state) \
+ FN(max_pool_float_1) \
+ FN(max_pool_float_2) \
+ FN(max_pool_float_3) \
+ FN(max_pool_float_4) \
+ FN(max_pool_quant8_1) \
+ FN(max_pool_quant8_2) \
+ FN(max_pool_quant8_3) \
+ FN(max_pool_quant8_4) \
+ FN(mobilenet_224_gender_basic_fixed) \
+ FN(mobilenet_quantized) \
+ FN(mul_broadcast_quant8) \
+ FN(mul) \
+ FN(mul_quant8) \
+ FN(mul_relu) \
+ FN(relu1_float_1) \
+ FN(relu1_float_2) \
+ FN(relu1_quant8_1) \
+ FN(relu1_quant8_2) \
+ FN(relu6_float_1) \
+ FN(relu6_float_2) \
+ FN(relu6_quant8_1) \
+ FN(relu6_quant8_2) \
+ FN(relu_float_1) \
+ FN(relu_float_2) \
+ FN(relu_quant8_1) \
+ FN(relu_quant8_2) \
+ FN(reshape) \
+ FN(reshape_quant8) \
+ FN(reshape_quant8_weights_as_inputs) \
+ FN(reshape_weights_as_inputs) \
+ FN(resize_bilinear_2) \
+ FN(resize_bilinear) \
+ FN(rnn) \
+ FN(rnn_state) \
+ FN(softmax_float_1) \
+ FN(softmax_float_2) \
+ FN(softmax_quant8_1) \
+ FN(softmax_quant8_2) \
+ FN(space_to_depth_float_1) \
+ FN(space_to_depth_float_2) \
+ FN(space_to_depth_float_3) \
+ FN(space_to_depth_quant8_1) \
+ FN(space_to_depth_quant8_2) \
+ FN(svdf2) \
+ FN(svdf) \
+ FN(svdf_state) \
+ FN(tanh)
-// create the request
-V1_0::Request createValidTestRequest();
-V1_0::Request createInvalidTestRequest1();
-V1_0::Request createInvalidTestRequest2();
+#define FORWARD_DECLARE_GENERATED_OBJECTS(function) \
+ namespace function { \
+ extern std::vector<MixedTypedExample> examples; \
+ Model createTestModel(); \
+ }
+FOR_EACH_TEST_MODEL(FORWARD_DECLARE_GENERATED_OBJECTS)
+
+#undef FORWARD_DECLARE_GENERATED_OBJECTS
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
+
+#endif // VTS_HAL_NEURALNETWORKS_V1_0_VTS_FUNCTIONAL_MODELS_H
diff --git a/neuralnetworks/1.0/vts/functional/ValidateModel.cpp b/neuralnetworks/1.0/vts/functional/ValidateModel.cpp
new file mode 100644
index 0000000..4f0697e
--- /dev/null
+++ b/neuralnetworks/1.0/vts/functional/ValidateModel.cpp
@@ -0,0 +1,506 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_0 {
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
+ const V1_0::Model& model) {
+ SCOPED_TRACE(message + " [getSupportedOperations]");
+
+ Return<void> ret =
+ device->getSupportedOperations(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
+ EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+
+static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
+ const V1_0::Model& model) {
+ SCOPED_TRACE(message + " [prepareModel]");
+
+ sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+ ASSERT_NE(nullptr, preparedModelCallback.get());
+ Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
+ ASSERT_TRUE(prepareLaunchStatus.isOk());
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+ preparedModelCallback->wait();
+ ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
+ sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
+ ASSERT_EQ(nullptr, preparedModel.get());
+}
+
+// Primary validation function. This function will take a valid model, apply a
+// mutation to it to invalidate the model, then pass it to interface calls that
+// use the model. Note that the model here is passed by value, and any mutation
+// to the model does not leave this function.
+static void validate(const sp<IDevice>& device, const std::string& message, V1_0::Model model,
+ const std::function<void(Model*)>& mutation) {
+ mutation(&model);
+ validateGetSupportedOperations(device, message, model);
+ validatePrepareModel(device, message, model);
+}
+
+// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
+// so this is efficiently accomplished by moving the element to the end and
+// resizing the hidl_vec to one less.
+template <typename Type>
+static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
+ if (vec) {
+ std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
+ vec->resize(vec->size() - 1);
+ }
+}
+
+template <typename Type>
+static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
+ // assume vec is valid
+ const uint32_t index = vec->size();
+ vec->resize(index + 1);
+ (*vec)[index] = value;
+ return index;
+}
+
+static uint32_t addOperand(Model* model) {
+ return hidl_vec_push_back(&model->operands,
+ {
+ .type = OperandType::INT32,
+ .dimensions = {},
+ .numberOfConsumers = 0,
+ .scale = 0.0f,
+ .zeroPoint = 0,
+ .lifetime = OperandLifeTime::MODEL_INPUT,
+ .location = {.poolIndex = 0, .offset = 0, .length = 0},
+ });
+}
+
+static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
+ uint32_t index = addOperand(model);
+ model->operands[index].numberOfConsumers = 1;
+ model->operands[index].lifetime = lifetime;
+ return index;
+}
+
+///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
+
+static const int32_t invalidOperandTypes[] = {
+ static_cast<int32_t>(OperandType::FLOAT32) - 1, // lower bound fundamental
+ static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1, // upper bound fundamental
+ static_cast<int32_t>(OperandType::OEM) - 1, // lower bound OEM
+ static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1, // upper bound OEM
+};
+
+static void mutateOperandTypeTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ for (int32_t invalidOperandType : invalidOperandTypes) {
+ const std::string message = "mutateOperandTypeTest: operand " +
+ std::to_string(operand) + " set to value " +
+ std::to_string(invalidOperandType);
+ validate(device, message, model, [operand, invalidOperandType](Model* model) {
+ model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE OPERAND RANK /////////////////////////
+
+static uint32_t getInvalidRank(OperandType type) {
+ switch (type) {
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ return 1;
+ case OperandType::TENSOR_FLOAT32:
+ case OperandType::TENSOR_INT32:
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return 0;
+ default:
+ return 0;
+ }
+}
+
+static void mutateOperandRankTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
+ const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
+ " has rank of " + std::to_string(invalidRank);
+ validate(device, message, model, [operand, invalidRank](Model* model) {
+ model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
+ });
+ }
+}
+
+///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
+
+static float getInvalidScale(OperandType type) {
+ switch (type) {
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ case OperandType::TENSOR_FLOAT32:
+ return 1.0f;
+ case OperandType::TENSOR_INT32:
+ return -1.0f;
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return 0.0f;
+ default:
+ return 0.0f;
+ }
+}
+
+static void mutateOperandScaleTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const float invalidScale = getInvalidScale(model.operands[operand].type);
+ const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
+ " has scale of " + std::to_string(invalidScale);
+ validate(device, message, model, [operand, invalidScale](Model* model) {
+ model->operands[operand].scale = invalidScale;
+ });
+ }
+}
+
+///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
+
+static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
+ switch (type) {
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ case OperandType::TENSOR_FLOAT32:
+ case OperandType::TENSOR_INT32:
+ return {1};
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return {-1, 256};
+ default:
+ return {};
+ }
+}
+
+static void mutateOperandZeroPointTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const std::vector<int32_t> invalidZeroPoints =
+ getInvalidZeroPoints(model.operands[operand].type);
+ for (int32_t invalidZeroPoint : invalidZeroPoints) {
+ const std::string message = "mutateOperandZeroPointTest: operand " +
+ std::to_string(operand) + " has zero point of " +
+ std::to_string(invalidZeroPoint);
+ validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
+ model->operands[operand].zeroPoint = invalidZeroPoint;
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE EXTRA ??? /////////////////////////
+
+// TODO: Operand::lifetime
+// TODO: Operand::location
+
+///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
+
+static void mutateOperand(Operand* operand, OperandType type) {
+ Operand newOperand = *operand;
+ newOperand.type = type;
+ switch (type) {
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ newOperand.dimensions = hidl_vec<uint32_t>();
+ newOperand.scale = 0.0f;
+ newOperand.zeroPoint = 0;
+ break;
+ case OperandType::TENSOR_FLOAT32:
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.scale = 0.0f;
+ newOperand.zeroPoint = 0;
+ break;
+ case OperandType::TENSOR_INT32:
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.zeroPoint = 0;
+ break;
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
+ break;
+ case OperandType::OEM:
+ case OperandType::TENSOR_OEM_BYTE:
+ default:
+ break;
+ }
+ *operand = newOperand;
+}
+
+static bool mutateOperationOperandTypeSkip(size_t operand, const V1_0::Model& model) {
+ // LSH_PROJECTION's second argument is allowed to have any type. This is the
+ // only operation that currently has a type that can be anything independent
+ // from any other type. Changing the operand type to any other type will
+ // result in a valid model for LSH_PROJECTION. If this is the case, skip the
+ // test.
+ for (const Operation& operation : model.operations) {
+ if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
+ return true;
+ }
+ }
+ return false;
+}
+
+static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ if (mutateOperationOperandTypeSkip(operand, model)) {
+ continue;
+ }
+ for (OperandType invalidOperandType : hidl_enum_iterator<OperandType>{}) {
+ // Do not test OEM types
+ if (invalidOperandType == model.operands[operand].type ||
+ invalidOperandType == OperandType::OEM ||
+ invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
+ continue;
+ }
+ const std::string message = "mutateOperationOperandTypeTest: operand " +
+ std::to_string(operand) + " set to type " +
+ toString(invalidOperandType);
+ validate(device, message, model, [operand, invalidOperandType](Model* model) {
+ mutateOperand(&model->operands[operand], invalidOperandType);
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
+
+static const int32_t invalidOperationTypes[] = {
+ static_cast<int32_t>(OperationType::ADD) - 1, // lower bound fundamental
+ static_cast<int32_t>(OperationType::TANH) + 1, // upper bound fundamental
+ static_cast<int32_t>(OperationType::OEM_OPERATION) - 1, // lower bound OEM
+ static_cast<int32_t>(OperationType::OEM_OPERATION) + 1, // upper bound OEM
+};
+
+static void mutateOperationTypeTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ for (int32_t invalidOperationType : invalidOperationTypes) {
+ const std::string message = "mutateOperationTypeTest: operation " +
+ std::to_string(operation) + " set to value " +
+ std::to_string(invalidOperationType);
+ validate(device, message, model, [operation, invalidOperationType](Model* model) {
+ model->operations[operation].type =
+ static_cast<OperationType>(invalidOperationType);
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device,
+ const V1_0::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const uint32_t invalidOperand = model.operands.size();
+ for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+ const std::string message = "mutateOperationInputOperandIndexTest: operation " +
+ std::to_string(operation) + " input " +
+ std::to_string(input);
+ validate(device, message, model, [operation, input, invalidOperand](Model* model) {
+ model->operations[operation].inputs[input] = invalidOperand;
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device,
+ const V1_0::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const uint32_t invalidOperand = model.operands.size();
+ for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+ const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
+ std::to_string(operation) + " output " +
+ std::to_string(output);
+ validate(device, message, model, [operation, output, invalidOperand](Model* model) {
+ model->operations[operation].outputs[output] = invalidOperand;
+ });
+ }
+ }
+}
+
+///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
+
+static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
+ if (vec) {
+ // remove elements matching "value"
+ auto last = std::remove(vec->begin(), vec->end(), value);
+ vec->resize(std::distance(vec->begin(), last));
+
+ // decrement elements exceeding "value"
+ std::transform(vec->begin(), vec->end(), vec->begin(),
+ [value](uint32_t v) { return v > value ? v-- : v; });
+ }
+}
+
+static void removeOperand(Model* model, uint32_t index) {
+ hidl_vec_removeAt(&model->operands, index);
+ for (Operation& operation : model->operations) {
+ removeValueAndDecrementGreaterValues(&operation.inputs, index);
+ removeValueAndDecrementGreaterValues(&operation.outputs, index);
+ }
+ removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
+ removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
+}
+
+static void removeOperandTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const std::string message = "removeOperandTest: operand " + std::to_string(operand);
+ validate(device, message, model,
+ [operand](Model* model) { removeOperand(model, operand); });
+ }
+}
+
+///////////////////////// REMOVE OPERATION /////////////////////////
+
+static void removeOperation(Model* model, uint32_t index) {
+ for (uint32_t operand : model->operations[index].inputs) {
+ model->operands[operand].numberOfConsumers--;
+ }
+ hidl_vec_removeAt(&model->operations, index);
+}
+
+static void removeOperationTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const std::string message = "removeOperationTest: operation " + std::to_string(operation);
+ validate(device, message, model,
+ [operation](Model* model) { removeOperation(model, operation); });
+ }
+}
+
+///////////////////////// REMOVE OPERATION INPUT /////////////////////////
+
+static void removeOperationInputTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+ const V1_0::Operation& op = model.operations[operation];
+ // CONCATENATION has at least 2 inputs, with the last element being
+ // INT32. Skip this test if removing one of CONCATENATION's
+ // inputs still produces a valid model.
+ if (op.type == V1_0::OperationType::CONCATENATION && op.inputs.size() > 2 &&
+ input != op.inputs.size() - 1) {
+ continue;
+ }
+ const std::string message = "removeOperationInputTest: operation " +
+ std::to_string(operation) + ", input " +
+ std::to_string(input);
+ validate(device, message, model, [operation, input](Model* model) {
+ uint32_t operand = model->operations[operation].inputs[input];
+ model->operands[operand].numberOfConsumers--;
+ hidl_vec_removeAt(&model->operations[operation].inputs, input);
+ });
+ }
+ }
+}
+
+///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
+
+static void removeOperationOutputTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+ const std::string message = "removeOperationOutputTest: operation " +
+ std::to_string(operation) + ", output " +
+ std::to_string(output);
+ validate(device, message, model, [operation, output](Model* model) {
+ hidl_vec_removeAt(&model->operations[operation].outputs, output);
+ });
+ }
+ }
+}
+
+///////////////////////// MODEL VALIDATION /////////////////////////
+
+// TODO: remove model input
+// TODO: remove model output
+// TODO: add unused operation
+
+///////////////////////// ADD OPERATION INPUT /////////////////////////
+
+static void addOperationInputTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
+ validate(device, message, model, [operation](Model* model) {
+ uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
+ hidl_vec_push_back(&model->operations[operation].inputs, index);
+ hidl_vec_push_back(&model->inputIndexes, index);
+ });
+ }
+}
+
+///////////////////////// ADD OPERATION OUTPUT /////////////////////////
+
+static void addOperationOutputTest(const sp<IDevice>& device, const V1_0::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const std::string message =
+ "addOperationOutputTest: operation " + std::to_string(operation);
+ validate(device, message, model, [operation](Model* model) {
+ uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
+ hidl_vec_push_back(&model->operations[operation].outputs, index);
+ hidl_vec_push_back(&model->outputIndexes, index);
+ });
+ }
+}
+
+////////////////////////// ENTRY POINT //////////////////////////////
+
+void ValidationTest::validateModel(const V1_0::Model& model) {
+ mutateOperandTypeTest(device, model);
+ mutateOperandRankTest(device, model);
+ mutateOperandScaleTest(device, model);
+ mutateOperandZeroPointTest(device, model);
+ mutateOperationOperandTypeTest(device, model);
+ mutateOperationTypeTest(device, model);
+ mutateOperationInputOperandIndexTest(device, model);
+ mutateOperationOutputOperandIndexTest(device, model);
+ removeOperandTest(device, model);
+ removeOperationTest(device, model);
+ removeOperationInputTest(device, model);
+ removeOperationOutputTest(device, model);
+ addOperationInputTest(device, model);
+ addOperationOutputTest(device, model);
+}
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_0
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
diff --git a/neuralnetworks/1.0/vts/functional/ValidateRequest.cpp b/neuralnetworks/1.0/vts/functional/ValidateRequest.cpp
new file mode 100644
index 0000000..08f2613
--- /dev/null
+++ b/neuralnetworks/1.0/vts/functional/ValidateRequest.cpp
@@ -0,0 +1,261 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+#include "TestHarness.h"
+#include "Utils.h"
+
+#include <android-base/logging.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+#include <hidlmemory/mapping.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_0 {
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+using ::android::hidl::memory::V1_0::IMemory;
+using generated_tests::MixedTyped;
+using generated_tests::MixedTypedExampleType;
+using generated_tests::for_all;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static void createPreparedModel(const sp<IDevice>& device, const V1_0::Model& model,
+ sp<IPreparedModel>* preparedModel) {
+ ASSERT_NE(nullptr, preparedModel);
+
+ // see if service can handle model
+ bool fullySupportsModel = false;
+ Return<void> supportedOpsLaunchStatus = device->getSupportedOperations(
+ model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
+ ASSERT_EQ(ErrorStatus::NONE, status);
+ ASSERT_NE(0ul, supported.size());
+ fullySupportsModel =
+ std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
+ });
+ ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
+
+ // launch prepare model
+ sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+ ASSERT_NE(nullptr, preparedModelCallback.get());
+ Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
+ ASSERT_TRUE(prepareLaunchStatus.isOk());
+ ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+ // retrieve prepared model
+ preparedModelCallback->wait();
+ ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+ *preparedModel = preparedModelCallback->getPreparedModel();
+
+ // The getSupportedOperations call returns a list of operations that are
+ // guaranteed not to fail if prepareModel is called, and
+ // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
+ // If a driver has any doubt that it can prepare an operation, it must
+ // return false. So here, if a driver isn't sure if it can support an
+ // operation, but reports that it successfully prepared the model, the test
+ // can continue.
+ if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
+ ASSERT_EQ(nullptr, preparedModel->get());
+ LOG(INFO) << "NN VTS: Unable to test Request validation because vendor service cannot "
+ "prepare model that it does not support.";
+ std::cout << "[ ] Unable to test Request validation because vendor service "
+ "cannot prepare model that it does not support."
+ << std::endl;
+ return;
+ }
+ ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
+ ASSERT_NE(nullptr, preparedModel->get());
+}
+
+// Primary validation function. This function will take a valid request, apply a
+// mutation to it to invalidate the request, then pass it to interface calls
+// that use the request. Note that the request here is passed by value, and any
+// mutation to the request does not leave this function.
+static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
+ Request request, const std::function<void(Request*)>& mutation) {
+ mutation(&request);
+ SCOPED_TRACE(message + " [execute]");
+
+ sp<ExecutionCallback> executionCallback = new ExecutionCallback();
+ ASSERT_NE(nullptr, executionCallback.get());
+ Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
+ ASSERT_TRUE(executeLaunchStatus.isOk());
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
+
+ executionCallback->wait();
+ ErrorStatus executionReturnStatus = executionCallback->getStatus();
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
+}
+
+// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
+// so this is efficiently accomplished by moving the element to the end and
+// resizing the hidl_vec to one less.
+template <typename Type>
+static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
+ if (vec) {
+ std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
+ vec->resize(vec->size() - 1);
+ }
+}
+
+template <typename Type>
+static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
+ // assume vec is valid
+ const uint32_t index = vec->size();
+ vec->resize(index + 1);
+ (*vec)[index] = value;
+ return index;
+}
+
+///////////////////////// REMOVE INPUT ////////////////////////////////////
+
+static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ for (size_t input = 0; input < request.inputs.size(); ++input) {
+ const std::string message = "removeInput: removed input " + std::to_string(input);
+ validate(preparedModel, message, request,
+ [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
+ }
+}
+
+///////////////////////// REMOVE OUTPUT ////////////////////////////////////
+
+static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ for (size_t output = 0; output < request.outputs.size(); ++output) {
+ const std::string message = "removeOutput: removed Output " + std::to_string(output);
+ validate(preparedModel, message, request,
+ [output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
+ }
+}
+
+///////////////////////////// ENTRY POINT //////////////////////////////////
+
+std::vector<Request> createRequests(const std::vector<MixedTypedExampleType>& examples) {
+ const uint32_t INPUT = 0;
+ const uint32_t OUTPUT = 1;
+
+ std::vector<Request> requests;
+
+ for (auto& example : examples) {
+ const MixedTyped& inputs = example.first;
+ const MixedTyped& outputs = example.second;
+
+ std::vector<RequestArgument> inputs_info, outputs_info;
+ uint32_t inputSize = 0, outputSize = 0;
+
+ // This function only partially specifies the metadata (vector of RequestArguments).
+ // The contents are copied over below.
+ for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
+ if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
+ RequestArgument arg = {
+ .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
+ .dimensions = {},
+ };
+ RequestArgument arg_empty = {
+ .hasNoValue = true,
+ };
+ inputs_info[index] = s ? arg : arg_empty;
+ inputSize += s;
+ });
+ // Compute offset for inputs 1 and so on
+ {
+ size_t offset = 0;
+ for (auto& i : inputs_info) {
+ if (!i.hasNoValue) i.location.offset = offset;
+ offset += i.location.length;
+ }
+ }
+
+ // Go through all outputs, initialize RequestArgument descriptors
+ for_all(outputs, [&outputs_info, &outputSize](int index, auto, auto s) {
+ if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
+ RequestArgument arg = {
+ .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
+ .dimensions = {},
+ };
+ outputs_info[index] = arg;
+ outputSize += s;
+ });
+ // Compute offset for outputs 1 and so on
+ {
+ size_t offset = 0;
+ for (auto& i : outputs_info) {
+ i.location.offset = offset;
+ offset += i.location.length;
+ }
+ }
+ std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
+ nn::allocateSharedMemory(outputSize)};
+ if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
+ return {};
+ }
+
+ // map pool
+ sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
+ if (inputMemory == nullptr) {
+ return {};
+ }
+ char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
+ if (inputPtr == nullptr) {
+ return {};
+ }
+
+ // initialize pool
+ inputMemory->update();
+ for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
+ char* begin = (char*)p;
+ char* end = begin + s;
+ // TODO: handle more than one input
+ std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
+ });
+ inputMemory->commit();
+
+ requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
+ }
+
+ return requests;
+}
+
+void ValidationTest::validateRequests(const V1_0::Model& model,
+ const std::vector<Request>& requests) {
+ // create IPreparedModel
+ sp<IPreparedModel> preparedModel;
+ ASSERT_NO_FATAL_FAILURE(createPreparedModel(device, model, &preparedModel));
+ if (preparedModel == nullptr) {
+ return;
+ }
+
+ // validate each request
+ for (const Request& request : requests) {
+ removeInputTest(preparedModel, request);
+ removeOutputTest(preparedModel, request);
+ }
+}
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_0
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
diff --git a/neuralnetworks/1.0/vts/functional/ValidationTests.cpp b/neuralnetworks/1.0/vts/functional/ValidationTests.cpp
new file mode 100644
index 0000000..98fc1c5
--- /dev/null
+++ b/neuralnetworks/1.0/vts/functional/ValidationTests.cpp
@@ -0,0 +1,50 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "Models.h"
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_0 {
+namespace vts {
+namespace functional {
+
+// forward declarations
+std::vector<Request> createRequests(const std::vector<MixedTypedExample>& examples);
+
+// generate validation tests
+#define VTS_CURRENT_TEST_CASE(TestName) \
+ TEST_F(ValidationTest, TestName) { \
+ const Model model = TestName::createTestModel(); \
+ const std::vector<Request> requests = createRequests(TestName::examples); \
+ validateModel(model); \
+ validateRequests(model, requests); \
+ }
+
+FOR_EACH_TEST_MODEL(VTS_CURRENT_TEST_CASE)
+
+#undef VTS_CURRENT_TEST_CASE
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_0
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
diff --git a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0.cpp b/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworks.cpp
similarity index 64%
rename from neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0.cpp
rename to neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworks.cpp
index b14fb2c..1ff3b66 100644
--- a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0.cpp
+++ b/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworks.cpp
@@ -16,15 +16,7 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
-#include "VtsHalNeuralnetworksV1_0.h"
-#include "Utils.h"
-
-#include <android-base/logging.h>
-
-using ::android::hardware::hidl_memory;
-using ::android::hidl::allocator::V1_0::IAllocator;
-using ::android::hidl::memory::V1_0::IMemory;
-using ::android::sp;
+#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
@@ -33,11 +25,6 @@
namespace vts {
namespace functional {
-// allocator helper
-hidl_memory allocateSharedMemory(int64_t size) {
- return nn::allocateSharedMemory(size);
-}
-
// A class for test environment setup
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
@@ -51,23 +38,49 @@
}
void NeuralnetworksHidlEnvironment::registerTestServices() {
- registerTestService<V1_0::IDevice>();
+ registerTestService<IDevice>();
}
// The main test class for NEURALNETWORK HIDL HAL.
+NeuralnetworksHidlTest::NeuralnetworksHidlTest() {}
+
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
void NeuralnetworksHidlTest::SetUp() {
- device = ::testing::VtsHalHidlTargetTestBase::getService<V1_0::IDevice>(
+ ::testing::VtsHalHidlTargetTestBase::SetUp();
+ device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
NeuralnetworksHidlEnvironment::getInstance());
ASSERT_NE(nullptr, device.get());
}
-void NeuralnetworksHidlTest::TearDown() {}
+void NeuralnetworksHidlTest::TearDown() {
+ device = nullptr;
+ ::testing::VtsHalHidlTargetTestBase::TearDown();
+}
} // namespace functional
} // namespace vts
+
+::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
+ return os << toString(errorStatus);
+}
+
+::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
+ return os << toString(deviceStatus);
+}
+
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
+
+using android::hardware::neuralnetworks::V1_0::vts::functional::NeuralnetworksHidlEnvironment;
+
+int main(int argc, char** argv) {
+ ::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
+ ::testing::InitGoogleTest(&argc, argv);
+ NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
+
+ int status = RUN_ALL_TESTS();
+ return status;
+}
diff --git a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0.h b/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworks.h
similarity index 60%
rename from neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0.h
rename to neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworks.h
index fbb1607..e79129b 100644
--- a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0.h
+++ b/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworks.h
@@ -18,16 +18,15 @@
#define VTS_HAL_NEURALNETWORKS_V1_0_TARGET_TESTS_H
#include <android/hardware/neuralnetworks/1.0/IDevice.h>
-#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
-#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
-#include <android/hidl/allocator/1.0/IAllocator.h>
#include <VtsHalHidlTargetTestBase.h>
#include <VtsHalHidlTargetTestEnvBase.h>
+
+#include <android-base/macros.h>
#include <gtest/gtest.h>
-#include <string>
+#include <iostream>
+#include <vector>
namespace android {
namespace hardware {
@@ -36,47 +35,47 @@
namespace vts {
namespace functional {
-hidl_memory allocateSharedMemory(int64_t size);
-
// A class for test environment setup
class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
+ DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlEnvironment);
NeuralnetworksHidlEnvironment();
- NeuralnetworksHidlEnvironment(const NeuralnetworksHidlEnvironment&) = delete;
- NeuralnetworksHidlEnvironment(NeuralnetworksHidlEnvironment&&) = delete;
- NeuralnetworksHidlEnvironment& operator=(const NeuralnetworksHidlEnvironment&) = delete;
- NeuralnetworksHidlEnvironment& operator=(NeuralnetworksHidlEnvironment&&) = delete;
+ ~NeuralnetworksHidlEnvironment() override;
public:
- ~NeuralnetworksHidlEnvironment() override;
static NeuralnetworksHidlEnvironment* getInstance();
void registerTestServices() override;
};
// The main test class for NEURALNETWORKS HIDL HAL.
class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
+ DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlTest);
+
public:
+ NeuralnetworksHidlTest();
~NeuralnetworksHidlTest() override;
void SetUp() override;
void TearDown() override;
- sp<V1_0::IDevice> device;
+ protected:
+ sp<IDevice> device;
};
+
+// Tag for the validation tests
+class ValidationTest : public NeuralnetworksHidlTest {
+ protected:
+ void validateModel(const Model& model);
+ void validateRequests(const Model& model, const std::vector<Request>& request);
+};
+
+// Tag for the generated tests
+class GeneratedTest : public NeuralnetworksHidlTest {};
+
} // namespace functional
} // namespace vts
// pretty-print values for error messages
-
-template <typename CharT, typename Traits>
-::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
- V1_0::ErrorStatus errorStatus) {
- return os << toString(errorStatus);
-}
-
-template <typename CharT, typename Traits>
-::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
- V1_0::DeviceStatus deviceStatus) {
- return os << toString(deviceStatus);
-}
+::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
+::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus);
} // namespace V1_0
} // namespace neuralnetworks
diff --git a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0BasicTest.cpp b/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0BasicTest.cpp
deleted file mode 100644
index 59e5b80..0000000
--- a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0BasicTest.cpp
+++ /dev/null
@@ -1,293 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "VtsHalNeuralnetworksV1_0.h"
-
-#include "Callbacks.h"
-#include "Models.h"
-#include "TestHarness.h"
-
-#include <android-base/logging.h>
-#include <android/hidl/memory/1.0/IMemory.h>
-#include <hidlmemory/mapping.h>
-
-using ::android::hardware::neuralnetworks::V1_0::IDevice;
-using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
-using ::android::hardware::neuralnetworks::V1_0::Capabilities;
-using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
-using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
-using ::android::hardware::neuralnetworks::V1_0::Model;
-using ::android::hardware::neuralnetworks::V1_0::OperationType;
-using ::android::hardware::neuralnetworks::V1_0::PerformanceInfo;
-using ::android::hardware::Return;
-using ::android::hardware::Void;
-using ::android::hardware::hidl_memory;
-using ::android::hardware::hidl_string;
-using ::android::hardware::hidl_vec;
-using ::android::hidl::allocator::V1_0::IAllocator;
-using ::android::hidl::memory::V1_0::IMemory;
-using ::android::sp;
-
-namespace android {
-namespace hardware {
-namespace neuralnetworks {
-namespace V1_0 {
-namespace vts {
-namespace functional {
-using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
-using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
-
-static void doPrepareModelShortcut(const sp<IDevice>& device, sp<IPreparedModel>* preparedModel) {
- ASSERT_NE(nullptr, preparedModel);
- Model model = createValidTestModel_1_0();
-
- // see if service can handle model
- bool fullySupportsModel = false;
- Return<void> supportedOpsLaunchStatus = device->getSupportedOperations(
- model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
- ASSERT_EQ(ErrorStatus::NONE, status);
- ASSERT_NE(0ul, supported.size());
- fullySupportsModel =
- std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
- });
- ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
-
- // launch prepare model
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- ASSERT_NE(nullptr, preparedModelCallback.get());
- Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
-
- // retrieve prepared model
- preparedModelCallback->wait();
- ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
- *preparedModel = preparedModelCallback->getPreparedModel();
-
- // The getSupportedOperations call returns a list of operations that are
- // guaranteed not to fail if prepareModel is called, and
- // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
- // If a driver has any doubt that it can prepare an operation, it must
- // return false. So here, if a driver isn't sure if it can support an
- // operation, but reports that it successfully prepared the model, the test
- // can continue.
- if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
- ASSERT_EQ(nullptr, preparedModel->get());
- LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
- "prepare model that it does not support.";
- std::cout << "[ ] Early termination of test because vendor service cannot "
- "prepare model that it does not support."
- << std::endl;
- return;
- }
- ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
- ASSERT_NE(nullptr, preparedModel->get());
-}
-
-// create device test
-TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
-
-// status test
-TEST_F(NeuralnetworksHidlTest, StatusTest) {
- Return<DeviceStatus> status = device->getStatus();
- ASSERT_TRUE(status.isOk());
- EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
-}
-
-// initialization
-TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
- Return<void> ret =
- device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) {
- EXPECT_EQ(ErrorStatus::NONE, status);
- EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
- EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
- EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
- EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
- });
- EXPECT_TRUE(ret.isOk());
-}
-
-// supported operations positive test
-TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
- Model model = createValidTestModel_1_0();
- Return<void> ret = device->getSupportedOperations(
- model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
- EXPECT_EQ(ErrorStatus::NONE, status);
- EXPECT_EQ(model.operations.size(), supported.size());
- });
- EXPECT_TRUE(ret.isOk());
-}
-
-// supported operations negative test 1
-TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest1) {
- Model model = createInvalidTestModel1_1_0();
- Return<void> ret = device->getSupportedOperations(
- model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
- (void)supported;
- });
- EXPECT_TRUE(ret.isOk());
-}
-
-// supported operations negative test 2
-TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
- Model model = createInvalidTestModel2_1_0();
- Return<void> ret = device->getSupportedOperations(
- model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
- (void)supported;
- });
- EXPECT_TRUE(ret.isOk());
-}
-
-// prepare simple model positive test
-TEST_F(NeuralnetworksHidlTest, SimplePrepareModelPositiveTest) {
- sp<IPreparedModel> preparedModel;
- doPrepareModelShortcut(device, &preparedModel);
-}
-
-// prepare simple model negative test 1
-TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest1) {
- Model model = createInvalidTestModel1_1_0();
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- ASSERT_NE(nullptr, preparedModelCallback.get());
- Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
-
- preparedModelCallback->wait();
- ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
- sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
- EXPECT_EQ(nullptr, preparedModel.get());
-}
-
-// prepare simple model negative test 2
-TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest2) {
- Model model = createInvalidTestModel2_1_0();
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- ASSERT_NE(nullptr, preparedModelCallback.get());
- Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
-
- preparedModelCallback->wait();
- ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
- sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
- EXPECT_EQ(nullptr, preparedModel.get());
-}
-
-// execute simple graph positive test
-TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
- std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
- std::vector<float> expectedData = {6.0f, 8.0f, 10.0f, 12.0f};
- const uint32_t OUTPUT = 1;
-
- sp<IPreparedModel> preparedModel;
- ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
- if (preparedModel == nullptr) {
- return;
- }
- Request request = createValidTestRequest();
-
- auto postWork = [&] {
- sp<IMemory> outputMemory = mapMemory(request.pools[OUTPUT]);
- if (outputMemory == nullptr) {
- return false;
- }
- float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
- if (outputPtr == nullptr) {
- return false;
- }
- outputMemory->read();
- std::copy(outputPtr, outputPtr + outputData.size(), outputData.begin());
- outputMemory->commit();
- return true;
- };
-
- sp<ExecutionCallback> executionCallback = new ExecutionCallback();
- ASSERT_NE(nullptr, executionCallback.get());
- executionCallback->on_finish(postWork);
- Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
- ASSERT_TRUE(executeLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executeLaunchStatus));
-
- executionCallback->wait();
- ErrorStatus executionReturnStatus = executionCallback->getStatus();
- EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
- EXPECT_EQ(expectedData, outputData);
-}
-
-// execute simple graph negative test 1
-TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest1) {
- sp<IPreparedModel> preparedModel;
- ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
- if (preparedModel == nullptr) {
- return;
- }
- Request request = createInvalidTestRequest1();
-
- sp<ExecutionCallback> executionCallback = new ExecutionCallback();
- ASSERT_NE(nullptr, executionCallback.get());
- Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
- ASSERT_TRUE(executeLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
-
- executionCallback->wait();
- ErrorStatus executionReturnStatus = executionCallback->getStatus();
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
-}
-
-// execute simple graph negative test 2
-TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
- sp<IPreparedModel> preparedModel;
- ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
- if (preparedModel == nullptr) {
- return;
- }
- Request request = createInvalidTestRequest2();
-
- sp<ExecutionCallback> executionCallback = new ExecutionCallback();
- ASSERT_NE(nullptr, executionCallback.get());
- Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
- ASSERT_TRUE(executeLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
-
- executionCallback->wait();
- ErrorStatus executionReturnStatus = executionCallback->getStatus();
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
-}
-
-} // namespace functional
-} // namespace vts
-} // namespace V1_0
-} // namespace neuralnetworks
-} // namespace hardware
-} // namespace android
-
-using android::hardware::neuralnetworks::V1_0::vts::functional::NeuralnetworksHidlEnvironment;
-
-int main(int argc, char** argv) {
- ::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
- ::testing::InitGoogleTest(&argc, argv);
- NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
-
- int status = RUN_ALL_TESTS();
- return status;
-}
diff --git a/neuralnetworks/1.1/vts/functional/Android.bp b/neuralnetworks/1.1/vts/functional/Android.bp
index 947ca2c..f755c20 100644
--- a/neuralnetworks/1.1/vts/functional/Android.bp
+++ b/neuralnetworks/1.1/vts/functional/Android.bp
@@ -17,9 +17,12 @@
cc_test {
name: "VtsHalNeuralnetworksV1_1TargetTest",
srcs: [
- "VtsHalNeuralnetworksV1_1.cpp",
- "VtsHalNeuralnetworksV1_1BasicTest.cpp",
- "VtsHalNeuralnetworksV1_1GeneratedTest.cpp",
+ "BasicTests.cpp",
+ "GeneratedTests.cpp",
+ "ValidateModel.cpp",
+ "ValidateRequest.cpp",
+ "ValidationTests.cpp",
+ "VtsHalNeuralnetworks.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
static_libs: [
diff --git a/neuralnetworks/1.1/vts/functional/BasicTests.cpp b/neuralnetworks/1.1/vts/functional/BasicTests.cpp
new file mode 100644
index 0000000..ed59a2d
--- /dev/null
+++ b/neuralnetworks/1.1/vts/functional/BasicTests.cpp
@@ -0,0 +1,58 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_1 {
+namespace vts {
+namespace functional {
+
+// create device test
+TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
+
+// status test
+TEST_F(NeuralnetworksHidlTest, StatusTest) {
+ Return<DeviceStatus> status = device->getStatus();
+ ASSERT_TRUE(status.isOk());
+ EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
+}
+
+// initialization
+TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
+ Return<void> ret =
+ device->getCapabilities_1_1([](ErrorStatus status, const Capabilities& capabilities) {
+ EXPECT_EQ(ErrorStatus::NONE, status);
+ EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
+ EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
+ EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
+ EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
+ EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.execTime);
+ EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.powerUsage);
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_1
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
diff --git a/neuralnetworks/1.1/vts/functional/GeneratedTests.cpp b/neuralnetworks/1.1/vts/functional/GeneratedTests.cpp
new file mode 100644
index 0000000..1f1cc7a
--- /dev/null
+++ b/neuralnetworks/1.1/vts/functional/GeneratedTests.cpp
@@ -0,0 +1,59 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+#include "TestHarness.h"
+#include "Utils.h"
+
+#include <android-base/logging.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+#include <hidlmemory/mapping.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+
+namespace generated_tests {
+using ::generated_tests::MixedTypedExampleType;
+extern void Execute(const sp<V1_1::IDevice>&, std::function<V1_1::Model(void)>,
+ std::function<bool(int)>, const std::vector<MixedTypedExampleType>&);
+} // namespace generated_tests
+
+namespace V1_1 {
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+using ::android::nn::allocateSharedMemory;
+
+// Mixed-typed examples
+typedef generated_tests::MixedTypedExampleType MixedTypedExample;
+
+// in frameworks/ml/nn/runtime/tests/generated/
+#include "all_generated_V1_0_vts_tests.cpp"
+#include "all_generated_V1_1_vts_tests.cpp"
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_1
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
diff --git a/neuralnetworks/1.1/vts/functional/Models.h b/neuralnetworks/1.1/vts/functional/Models.h
new file mode 100644
index 0000000..c3cadb5
--- /dev/null
+++ b/neuralnetworks/1.1/vts/functional/Models.h
@@ -0,0 +1,323 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef VTS_HAL_NEURALNETWORKS_V1_1_VTS_FUNCTIONAL_MODELS_H
+#define VTS_HAL_NEURALNETWORKS_V1_1_VTS_FUNCTIONAL_MODELS_H
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "TestHarness.h"
+
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <android/hardware/neuralnetworks/1.1/types.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_1 {
+namespace vts {
+namespace functional {
+
+using MixedTypedExample = generated_tests::MixedTypedExampleType;
+
+#define FOR_EACH_TEST_MODEL(FN) \
+ FN(add) \
+ FN(add_broadcast_quant8) \
+ FN(add_quant8) \
+ FN(add_relaxed) \
+ FN(avg_pool_float_1) \
+ FN(avg_pool_float_1_relaxed) \
+ FN(avg_pool_float_2) \
+ FN(avg_pool_float_2_relaxed) \
+ FN(avg_pool_float_3) \
+ FN(avg_pool_float_3_relaxed) \
+ FN(avg_pool_float_4) \
+ FN(avg_pool_float_4_relaxed) \
+ FN(avg_pool_float_5) \
+ FN(avg_pool_quant8_1) \
+ FN(avg_pool_quant8_2) \
+ FN(avg_pool_quant8_3) \
+ FN(avg_pool_quant8_4) \
+ FN(avg_pool_quant8_5) \
+ FN(batch_to_space) \
+ FN(batch_to_space_float_1) \
+ FN(batch_to_space_quant8_1) \
+ FN(concat_float_1) \
+ FN(concat_float_1_relaxed) \
+ FN(concat_float_2) \
+ FN(concat_float_2_relaxed) \
+ FN(concat_float_3) \
+ FN(concat_float_3_relaxed) \
+ FN(concat_quant8_1) \
+ FN(concat_quant8_2) \
+ FN(concat_quant8_3) \
+ FN(conv_1_h3_w2_SAME) \
+ FN(conv_1_h3_w2_SAME_relaxed) \
+ FN(conv_1_h3_w2_VALID) \
+ FN(conv_1_h3_w2_VALID_relaxed) \
+ FN(conv_3_h3_w2_SAME) \
+ FN(conv_3_h3_w2_SAME_relaxed) \
+ FN(conv_3_h3_w2_VALID) \
+ FN(conv_3_h3_w2_VALID_relaxed) \
+ FN(conv_float) \
+ FN(conv_float_2) \
+ FN(conv_float_channels) \
+ FN(conv_float_channels_relaxed) \
+ FN(conv_float_channels_weights_as_inputs) \
+ FN(conv_float_channels_weights_as_inputs_relaxed) \
+ FN(conv_float_large) \
+ FN(conv_float_large_relaxed) \
+ FN(conv_float_large_weights_as_inputs) \
+ FN(conv_float_large_weights_as_inputs_relaxed) \
+ FN(conv_float_relaxed) \
+ FN(conv_float_weights_as_inputs) \
+ FN(conv_float_weights_as_inputs_relaxed) \
+ FN(conv_quant8) \
+ FN(conv_quant8_2) \
+ FN(conv_quant8_channels) \
+ FN(conv_quant8_channels_weights_as_inputs) \
+ FN(conv_quant8_large) \
+ FN(conv_quant8_large_weights_as_inputs) \
+ FN(conv_quant8_overflow) \
+ FN(conv_quant8_overflow_weights_as_inputs) \
+ FN(conv_quant8_weights_as_inputs) \
+ FN(depth_to_space_float_1) \
+ FN(depth_to_space_float_1_relaxed) \
+ FN(depth_to_space_float_2) \
+ FN(depth_to_space_float_2_relaxed) \
+ FN(depth_to_space_float_3) \
+ FN(depth_to_space_float_3_relaxed) \
+ FN(depth_to_space_quant8_1) \
+ FN(depth_to_space_quant8_2) \
+ FN(depthwise_conv) \
+ FN(depthwise_conv2d_float) \
+ FN(depthwise_conv2d_float_2) \
+ FN(depthwise_conv2d_float_large) \
+ FN(depthwise_conv2d_float_large_2) \
+ FN(depthwise_conv2d_float_large_2_weights_as_inputs) \
+ FN(depthwise_conv2d_float_large_relaxed) \
+ FN(depthwise_conv2d_float_large_weights_as_inputs) \
+ FN(depthwise_conv2d_float_large_weights_as_inputs_relaxed) \
+ FN(depthwise_conv2d_float_weights_as_inputs) \
+ FN(depthwise_conv2d_quant8) \
+ FN(depthwise_conv2d_quant8_2) \
+ FN(depthwise_conv2d_quant8_large) \
+ FN(depthwise_conv2d_quant8_large_weights_as_inputs) \
+ FN(depthwise_conv2d_quant8_weights_as_inputs) \
+ FN(depthwise_conv_relaxed) \
+ FN(dequantize) \
+ FN(div) \
+ FN(embedding_lookup) \
+ FN(embedding_lookup_relaxed) \
+ FN(floor) \
+ FN(floor_relaxed) \
+ FN(fully_connected_float) \
+ FN(fully_connected_float_2) \
+ FN(fully_connected_float_large) \
+ FN(fully_connected_float_large_weights_as_inputs) \
+ FN(fully_connected_float_relaxed) \
+ FN(fully_connected_float_weights_as_inputs) \
+ FN(fully_connected_float_weights_as_inputs_relaxed) \
+ FN(fully_connected_quant8) \
+ FN(fully_connected_quant8_2) \
+ FN(fully_connected_quant8_large) \
+ FN(fully_connected_quant8_large_weights_as_inputs) \
+ FN(fully_connected_quant8_weights_as_inputs) \
+ FN(hashtable_lookup_float) \
+ FN(hashtable_lookup_float_relaxed) \
+ FN(hashtable_lookup_quant8) \
+ FN(l2_normalization) \
+ FN(l2_normalization_2) \
+ FN(l2_normalization_large) \
+ FN(l2_normalization_large_relaxed) \
+ FN(l2_normalization_relaxed) \
+ FN(l2_pool_float) \
+ FN(l2_pool_float_2) \
+ FN(l2_pool_float_large) \
+ FN(l2_pool_float_relaxed) \
+ FN(local_response_norm_float_1) \
+ FN(local_response_norm_float_1_relaxed) \
+ FN(local_response_norm_float_2) \
+ FN(local_response_norm_float_2_relaxed) \
+ FN(local_response_norm_float_3) \
+ FN(local_response_norm_float_3_relaxed) \
+ FN(local_response_norm_float_4) \
+ FN(local_response_norm_float_4_relaxed) \
+ FN(logistic_float_1) \
+ FN(logistic_float_1_relaxed) \
+ FN(logistic_float_2) \
+ FN(logistic_float_2_relaxed) \
+ FN(logistic_quant8_1) \
+ FN(logistic_quant8_2) \
+ FN(lsh_projection) \
+ FN(lsh_projection_2) \
+ FN(lsh_projection_2_relaxed) \
+ FN(lsh_projection_relaxed) \
+ FN(lsh_projection_weights_as_inputs) \
+ FN(lsh_projection_weights_as_inputs_relaxed) \
+ FN(lstm) \
+ FN(lstm2) \
+ FN(lstm2_relaxed) \
+ FN(lstm2_state) \
+ FN(lstm2_state2) \
+ FN(lstm2_state2_relaxed) \
+ FN(lstm2_state_relaxed) \
+ FN(lstm3) \
+ FN(lstm3_relaxed) \
+ FN(lstm3_state) \
+ FN(lstm3_state2) \
+ FN(lstm3_state2_relaxed) \
+ FN(lstm3_state3) \
+ FN(lstm3_state3_relaxed) \
+ FN(lstm3_state_relaxed) \
+ FN(lstm_relaxed) \
+ FN(lstm_state) \
+ FN(lstm_state2) \
+ FN(lstm_state2_relaxed) \
+ FN(lstm_state_relaxed) \
+ FN(max_pool_float_1) \
+ FN(max_pool_float_1_relaxed) \
+ FN(max_pool_float_2) \
+ FN(max_pool_float_2_relaxed) \
+ FN(max_pool_float_3) \
+ FN(max_pool_float_3_relaxed) \
+ FN(max_pool_float_4) \
+ FN(max_pool_quant8_1) \
+ FN(max_pool_quant8_2) \
+ FN(max_pool_quant8_3) \
+ FN(max_pool_quant8_4) \
+ FN(mean) \
+ FN(mean_float_1) \
+ FN(mean_float_2) \
+ FN(mean_quant8_1) \
+ FN(mean_quant8_2) \
+ FN(mobilenet_224_gender_basic_fixed) \
+ FN(mobilenet_224_gender_basic_fixed_relaxed) \
+ FN(mobilenet_quantized) \
+ FN(mul) \
+ FN(mul_broadcast_quant8) \
+ FN(mul_quant8) \
+ FN(mul_relaxed) \
+ FN(mul_relu) \
+ FN(mul_relu_relaxed) \
+ FN(pad) \
+ FN(pad_float_1) \
+ FN(relu1_float_1) \
+ FN(relu1_float_1_relaxed) \
+ FN(relu1_float_2) \
+ FN(relu1_float_2_relaxed) \
+ FN(relu1_quant8_1) \
+ FN(relu1_quant8_2) \
+ FN(relu6_float_1) \
+ FN(relu6_float_1_relaxed) \
+ FN(relu6_float_2) \
+ FN(relu6_float_2_relaxed) \
+ FN(relu6_quant8_1) \
+ FN(relu6_quant8_2) \
+ FN(relu_float_1) \
+ FN(relu_float_1_relaxed) \
+ FN(relu_float_2) \
+ FN(relu_quant8_1) \
+ FN(relu_quant8_2) \
+ FN(reshape) \
+ FN(reshape_quant8) \
+ FN(reshape_quant8_weights_as_inputs) \
+ FN(reshape_relaxed) \
+ FN(reshape_weights_as_inputs) \
+ FN(reshape_weights_as_inputs_relaxed) \
+ FN(resize_bilinear) \
+ FN(resize_bilinear_2) \
+ FN(resize_bilinear_relaxed) \
+ FN(rnn) \
+ FN(rnn_relaxed) \
+ FN(rnn_state) \
+ FN(rnn_state_relaxed) \
+ FN(softmax_float_1) \
+ FN(softmax_float_1_relaxed) \
+ FN(softmax_float_2) \
+ FN(softmax_float_2_relaxed) \
+ FN(softmax_quant8_1) \
+ FN(softmax_quant8_2) \
+ FN(space_to_batch) \
+ FN(space_to_batch_float_1) \
+ FN(space_to_batch_float_2) \
+ FN(space_to_batch_float_3) \
+ FN(space_to_batch_quant8_1) \
+ FN(space_to_batch_quant8_2) \
+ FN(space_to_batch_quant8_3) \
+ FN(space_to_depth_float_1) \
+ FN(space_to_depth_float_1_relaxed) \
+ FN(space_to_depth_float_2) \
+ FN(space_to_depth_float_2_relaxed) \
+ FN(space_to_depth_float_3) \
+ FN(space_to_depth_float_3_relaxed) \
+ FN(space_to_depth_quant8_1) \
+ FN(space_to_depth_quant8_2) \
+ FN(squeeze) \
+ FN(squeeze_float_1) \
+ FN(squeeze_quant8_1) \
+ FN(strided_slice) \
+ FN(strided_slice_float_1) \
+ FN(strided_slice_float_10) \
+ FN(strided_slice_float_2) \
+ FN(strided_slice_float_3) \
+ FN(strided_slice_float_4) \
+ FN(strided_slice_float_5) \
+ FN(strided_slice_float_6) \
+ FN(strided_slice_float_7) \
+ FN(strided_slice_float_8) \
+ FN(strided_slice_float_9) \
+ FN(strided_slice_qaunt8_10) \
+ FN(strided_slice_quant8_1) \
+ FN(strided_slice_quant8_2) \
+ FN(strided_slice_quant8_3) \
+ FN(strided_slice_quant8_4) \
+ FN(strided_slice_quant8_5) \
+ FN(strided_slice_quant8_6) \
+ FN(strided_slice_quant8_7) \
+ FN(strided_slice_quant8_8) \
+ FN(strided_slice_quant8_9) \
+ FN(sub) \
+ FN(svdf) \
+ FN(svdf2) \
+ FN(svdf2_relaxed) \
+ FN(svdf_relaxed) \
+ FN(svdf_state) \
+ FN(svdf_state_relaxed) \
+ FN(tanh) \
+ FN(tanh_relaxed) \
+ FN(transpose) \
+ FN(transpose_float_1) \
+ FN(transpose_quant8_1)
+
+#define FORWARD_DECLARE_GENERATED_OBJECTS(function) \
+ namespace function { \
+ extern std::vector<MixedTypedExample> examples; \
+ Model createTestModel(); \
+ }
+
+FOR_EACH_TEST_MODEL(FORWARD_DECLARE_GENERATED_OBJECTS)
+
+#undef FORWARD_DECLARE_GENERATED_OBJECTS
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_1
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
+
+#endif // VTS_HAL_NEURALNETWORKS_V1_1_VTS_FUNCTIONAL_MODELS_H
diff --git a/neuralnetworks/1.1/vts/functional/ValidateModel.cpp b/neuralnetworks/1.1/vts/functional/ValidateModel.cpp
new file mode 100644
index 0000000..7a20e26
--- /dev/null
+++ b/neuralnetworks/1.1/vts/functional/ValidateModel.cpp
@@ -0,0 +1,513 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_1 {
+
+using V1_0::IPreparedModel;
+using V1_0::Operand;
+using V1_0::OperandLifeTime;
+using V1_0::OperandType;
+
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
+ const V1_1::Model& model) {
+ SCOPED_TRACE(message + " [getSupportedOperations_1_1]");
+
+ Return<void> ret =
+ device->getSupportedOperations_1_1(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
+ EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+
+static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
+ const V1_1::Model& model) {
+ SCOPED_TRACE(message + " [prepareModel_1_1]");
+
+ sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+ ASSERT_NE(nullptr, preparedModelCallback.get());
+ Return<ErrorStatus> prepareLaunchStatus =
+ device->prepareModel_1_1(model, preparedModelCallback);
+ ASSERT_TRUE(prepareLaunchStatus.isOk());
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+ preparedModelCallback->wait();
+ ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
+ sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
+ ASSERT_EQ(nullptr, preparedModel.get());
+}
+
+// Primary validation function. This function will take a valid model, apply a
+// mutation to it to invalidate the model, then pass it to interface calls that
+// use the model. Note that the model here is passed by value, and any mutation
+// to the model does not leave this function.
+static void validate(const sp<IDevice>& device, const std::string& message, V1_1::Model model,
+ const std::function<void(Model*)>& mutation) {
+ mutation(&model);
+ validateGetSupportedOperations(device, message, model);
+ validatePrepareModel(device, message, model);
+}
+
+// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
+// so this is efficiently accomplished by moving the element to the end and
+// resizing the hidl_vec to one less.
+template <typename Type>
+static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
+ if (vec) {
+ std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
+ vec->resize(vec->size() - 1);
+ }
+}
+
+template <typename Type>
+static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
+ // assume vec is valid
+ const uint32_t index = vec->size();
+ vec->resize(index + 1);
+ (*vec)[index] = value;
+ return index;
+}
+
+static uint32_t addOperand(Model* model) {
+ return hidl_vec_push_back(&model->operands,
+ {
+ .type = OperandType::INT32,
+ .dimensions = {},
+ .numberOfConsumers = 0,
+ .scale = 0.0f,
+ .zeroPoint = 0,
+ .lifetime = OperandLifeTime::MODEL_INPUT,
+ .location = {.poolIndex = 0, .offset = 0, .length = 0},
+ });
+}
+
+static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
+ uint32_t index = addOperand(model);
+ model->operands[index].numberOfConsumers = 1;
+ model->operands[index].lifetime = lifetime;
+ return index;
+}
+
+///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
+
+static const int32_t invalidOperandTypes[] = {
+ static_cast<int32_t>(OperandType::FLOAT32) - 1, // lower bound fundamental
+ static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1, // upper bound fundamental
+ static_cast<int32_t>(OperandType::OEM) - 1, // lower bound OEM
+ static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1, // upper bound OEM
+};
+
+static void mutateOperandTypeTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ for (int32_t invalidOperandType : invalidOperandTypes) {
+ const std::string message = "mutateOperandTypeTest: operand " +
+ std::to_string(operand) + " set to value " +
+ std::to_string(invalidOperandType);
+ validate(device, message, model, [operand, invalidOperandType](Model* model) {
+ model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE OPERAND RANK /////////////////////////
+
+static uint32_t getInvalidRank(OperandType type) {
+ switch (type) {
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ return 1;
+ case OperandType::TENSOR_FLOAT32:
+ case OperandType::TENSOR_INT32:
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return 0;
+ default:
+ return 0;
+ }
+}
+
+static void mutateOperandRankTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
+ const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
+ " has rank of " + std::to_string(invalidRank);
+ validate(device, message, model, [operand, invalidRank](Model* model) {
+ model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
+ });
+ }
+}
+
+///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
+
+static float getInvalidScale(OperandType type) {
+ switch (type) {
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ case OperandType::TENSOR_FLOAT32:
+ return 1.0f;
+ case OperandType::TENSOR_INT32:
+ return -1.0f;
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return 0.0f;
+ default:
+ return 0.0f;
+ }
+}
+
+static void mutateOperandScaleTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const float invalidScale = getInvalidScale(model.operands[operand].type);
+ const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
+ " has scale of " + std::to_string(invalidScale);
+ validate(device, message, model, [operand, invalidScale](Model* model) {
+ model->operands[operand].scale = invalidScale;
+ });
+ }
+}
+
+///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
+
+static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
+ switch (type) {
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ case OperandType::TENSOR_FLOAT32:
+ case OperandType::TENSOR_INT32:
+ return {1};
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return {-1, 256};
+ default:
+ return {};
+ }
+}
+
+static void mutateOperandZeroPointTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const std::vector<int32_t> invalidZeroPoints =
+ getInvalidZeroPoints(model.operands[operand].type);
+ for (int32_t invalidZeroPoint : invalidZeroPoints) {
+ const std::string message = "mutateOperandZeroPointTest: operand " +
+ std::to_string(operand) + " has zero point of " +
+ std::to_string(invalidZeroPoint);
+ validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
+ model->operands[operand].zeroPoint = invalidZeroPoint;
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE EXTRA ??? /////////////////////////
+
+// TODO: Operand::lifetime
+// TODO: Operand::location
+
+///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
+
+static void mutateOperand(Operand* operand, OperandType type) {
+ Operand newOperand = *operand;
+ newOperand.type = type;
+ switch (type) {
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ newOperand.dimensions = hidl_vec<uint32_t>();
+ newOperand.scale = 0.0f;
+ newOperand.zeroPoint = 0;
+ break;
+ case OperandType::TENSOR_FLOAT32:
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.scale = 0.0f;
+ newOperand.zeroPoint = 0;
+ break;
+ case OperandType::TENSOR_INT32:
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.zeroPoint = 0;
+ break;
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
+ break;
+ case OperandType::OEM:
+ case OperandType::TENSOR_OEM_BYTE:
+ default:
+ break;
+ }
+ *operand = newOperand;
+}
+
+static bool mutateOperationOperandTypeSkip(size_t operand, const V1_1::Model& model) {
+ // LSH_PROJECTION's second argument is allowed to have any type. This is the
+ // only operation that currently has a type that can be anything independent
+ // from any other type. Changing the operand type to any other type will
+ // result in a valid model for LSH_PROJECTION. If this is the case, skip the
+ // test.
+ for (const Operation& operation : model.operations) {
+ if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
+ return true;
+ }
+ }
+ return false;
+}
+
+static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ if (mutateOperationOperandTypeSkip(operand, model)) {
+ continue;
+ }
+ for (OperandType invalidOperandType : hidl_enum_iterator<OperandType>{}) {
+ // Do not test OEM types
+ if (invalidOperandType == model.operands[operand].type ||
+ invalidOperandType == OperandType::OEM ||
+ invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
+ continue;
+ }
+ const std::string message = "mutateOperationOperandTypeTest: operand " +
+ std::to_string(operand) + " set to type " +
+ toString(invalidOperandType);
+ validate(device, message, model, [operand, invalidOperandType](Model* model) {
+ mutateOperand(&model->operands[operand], invalidOperandType);
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
+
+static const int32_t invalidOperationTypes[] = {
+ static_cast<int32_t>(OperationType::ADD) - 1, // lower bound fundamental
+ static_cast<int32_t>(OperationType::TRANSPOSE) + 1, // upper bound fundamental
+ static_cast<int32_t>(OperationType::OEM_OPERATION) - 1, // lower bound OEM
+ static_cast<int32_t>(OperationType::OEM_OPERATION) + 1, // upper bound OEM
+};
+
+static void mutateOperationTypeTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ for (int32_t invalidOperationType : invalidOperationTypes) {
+ const std::string message = "mutateOperationTypeTest: operation " +
+ std::to_string(operation) + " set to value " +
+ std::to_string(invalidOperationType);
+ validate(device, message, model, [operation, invalidOperationType](Model* model) {
+ model->operations[operation].type =
+ static_cast<OperationType>(invalidOperationType);
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device,
+ const V1_1::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const uint32_t invalidOperand = model.operands.size();
+ for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+ const std::string message = "mutateOperationInputOperandIndexTest: operation " +
+ std::to_string(operation) + " input " +
+ std::to_string(input);
+ validate(device, message, model, [operation, input, invalidOperand](Model* model) {
+ model->operations[operation].inputs[input] = invalidOperand;
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device,
+ const V1_1::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const uint32_t invalidOperand = model.operands.size();
+ for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+ const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
+ std::to_string(operation) + " output " +
+ std::to_string(output);
+ validate(device, message, model, [operation, output, invalidOperand](Model* model) {
+ model->operations[operation].outputs[output] = invalidOperand;
+ });
+ }
+ }
+}
+
+///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
+
+static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
+ if (vec) {
+ // remove elements matching "value"
+ auto last = std::remove(vec->begin(), vec->end(), value);
+ vec->resize(std::distance(vec->begin(), last));
+
+ // decrement elements exceeding "value"
+ std::transform(vec->begin(), vec->end(), vec->begin(),
+ [value](uint32_t v) { return v > value ? v-- : v; });
+ }
+}
+
+static void removeOperand(Model* model, uint32_t index) {
+ hidl_vec_removeAt(&model->operands, index);
+ for (Operation& operation : model->operations) {
+ removeValueAndDecrementGreaterValues(&operation.inputs, index);
+ removeValueAndDecrementGreaterValues(&operation.outputs, index);
+ }
+ removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
+ removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
+}
+
+static void removeOperandTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const std::string message = "removeOperandTest: operand " + std::to_string(operand);
+ validate(device, message, model,
+ [operand](Model* model) { removeOperand(model, operand); });
+ }
+}
+
+///////////////////////// REMOVE OPERATION /////////////////////////
+
+static void removeOperation(Model* model, uint32_t index) {
+ for (uint32_t operand : model->operations[index].inputs) {
+ model->operands[operand].numberOfConsumers--;
+ }
+ hidl_vec_removeAt(&model->operations, index);
+}
+
+static void removeOperationTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const std::string message = "removeOperationTest: operation " + std::to_string(operation);
+ validate(device, message, model,
+ [operation](Model* model) { removeOperation(model, operation); });
+ }
+}
+
+///////////////////////// REMOVE OPERATION INPUT /////////////////////////
+
+static void removeOperationInputTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+ const V1_1::Operation& op = model.operations[operation];
+ // CONCATENATION has at least 2 inputs, with the last element being
+ // INT32. Skip this test if removing one of CONCATENATION's
+ // inputs still produces a valid model.
+ if (op.type == V1_1::OperationType::CONCATENATION && op.inputs.size() > 2 &&
+ input != op.inputs.size() - 1) {
+ continue;
+ }
+ const std::string message = "removeOperationInputTest: operation " +
+ std::to_string(operation) + ", input " +
+ std::to_string(input);
+ validate(device, message, model, [operation, input](Model* model) {
+ uint32_t operand = model->operations[operation].inputs[input];
+ model->operands[operand].numberOfConsumers--;
+ hidl_vec_removeAt(&model->operations[operation].inputs, input);
+ });
+ }
+ }
+}
+
+///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
+
+static void removeOperationOutputTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+ const std::string message = "removeOperationOutputTest: operation " +
+ std::to_string(operation) + ", output " +
+ std::to_string(output);
+ validate(device, message, model, [operation, output](Model* model) {
+ hidl_vec_removeAt(&model->operations[operation].outputs, output);
+ });
+ }
+ }
+}
+
+///////////////////////// MODEL VALIDATION /////////////////////////
+
+// TODO: remove model input
+// TODO: remove model output
+// TODO: add unused operation
+
+///////////////////////// ADD OPERATION INPUT /////////////////////////
+
+static void addOperationInputTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
+ validate(device, message, model, [operation](Model* model) {
+ uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
+ hidl_vec_push_back(&model->operations[operation].inputs, index);
+ hidl_vec_push_back(&model->inputIndexes, index);
+ });
+ }
+}
+
+///////////////////////// ADD OPERATION OUTPUT /////////////////////////
+
+static void addOperationOutputTest(const sp<IDevice>& device, const V1_1::Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const std::string message =
+ "addOperationOutputTest: operation " + std::to_string(operation);
+ validate(device, message, model, [operation](Model* model) {
+ uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
+ hidl_vec_push_back(&model->operations[operation].outputs, index);
+ hidl_vec_push_back(&model->outputIndexes, index);
+ });
+ }
+}
+
+////////////////////////// ENTRY POINT //////////////////////////////
+
+void ValidationTest::validateModel(const V1_1::Model& model) {
+ mutateOperandTypeTest(device, model);
+ mutateOperandRankTest(device, model);
+ mutateOperandScaleTest(device, model);
+ mutateOperandZeroPointTest(device, model);
+ mutateOperationOperandTypeTest(device, model);
+ mutateOperationTypeTest(device, model);
+ mutateOperationInputOperandIndexTest(device, model);
+ mutateOperationOutputOperandIndexTest(device, model);
+ removeOperandTest(device, model);
+ removeOperationTest(device, model);
+ removeOperationInputTest(device, model);
+ removeOperationOutputTest(device, model);
+ addOperationInputTest(device, model);
+ addOperationOutputTest(device, model);
+}
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_1
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
diff --git a/neuralnetworks/1.1/vts/functional/ValidateRequest.cpp b/neuralnetworks/1.1/vts/functional/ValidateRequest.cpp
new file mode 100644
index 0000000..bd96614
--- /dev/null
+++ b/neuralnetworks/1.1/vts/functional/ValidateRequest.cpp
@@ -0,0 +1,262 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+#include "TestHarness.h"
+#include "Utils.h"
+
+#include <android-base/logging.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+#include <hidlmemory/mapping.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_1 {
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+using ::android::hidl::memory::V1_0::IMemory;
+using generated_tests::MixedTyped;
+using generated_tests::MixedTypedExampleType;
+using generated_tests::for_all;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static void createPreparedModel(const sp<IDevice>& device, const V1_1::Model& model,
+ sp<IPreparedModel>* preparedModel) {
+ ASSERT_NE(nullptr, preparedModel);
+
+ // see if service can handle model
+ bool fullySupportsModel = false;
+ Return<void> supportedOpsLaunchStatus = device->getSupportedOperations_1_1(
+ model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
+ ASSERT_EQ(ErrorStatus::NONE, status);
+ ASSERT_NE(0ul, supported.size());
+ fullySupportsModel =
+ std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
+ });
+ ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
+
+ // launch prepare model
+ sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+ ASSERT_NE(nullptr, preparedModelCallback.get());
+ Return<ErrorStatus> prepareLaunchStatus =
+ device->prepareModel_1_1(model, preparedModelCallback);
+ ASSERT_TRUE(prepareLaunchStatus.isOk());
+ ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+ // retrieve prepared model
+ preparedModelCallback->wait();
+ ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+ *preparedModel = preparedModelCallback->getPreparedModel();
+
+ // The getSupportedOperations_1_1 call returns a list of operations that are
+ // guaranteed not to fail if prepareModel_1_1 is called, and
+ // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
+ // If a driver has any doubt that it can prepare an operation, it must
+ // return false. So here, if a driver isn't sure if it can support an
+ // operation, but reports that it successfully prepared the model, the test
+ // can continue.
+ if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
+ ASSERT_EQ(nullptr, preparedModel->get());
+ LOG(INFO) << "NN VTS: Unable to test Request validation because vendor service cannot "
+ "prepare model that it does not support.";
+ std::cout << "[ ] Unable to test Request validation because vendor service "
+ "cannot prepare model that it does not support."
+ << std::endl;
+ return;
+ }
+ ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
+ ASSERT_NE(nullptr, preparedModel->get());
+}
+
+// Primary validation function. This function will take a valid request, apply a
+// mutation to it to invalidate the request, then pass it to interface calls
+// that use the request. Note that the request here is passed by value, and any
+// mutation to the request does not leave this function.
+static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
+ Request request, const std::function<void(Request*)>& mutation) {
+ mutation(&request);
+ SCOPED_TRACE(message + " [execute]");
+
+ sp<ExecutionCallback> executionCallback = new ExecutionCallback();
+ ASSERT_NE(nullptr, executionCallback.get());
+ Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
+ ASSERT_TRUE(executeLaunchStatus.isOk());
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
+
+ executionCallback->wait();
+ ErrorStatus executionReturnStatus = executionCallback->getStatus();
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
+}
+
+// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
+// so this is efficiently accomplished by moving the element to the end and
+// resizing the hidl_vec to one less.
+template <typename Type>
+static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
+ if (vec) {
+ std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
+ vec->resize(vec->size() - 1);
+ }
+}
+
+template <typename Type>
+static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
+ // assume vec is valid
+ const uint32_t index = vec->size();
+ vec->resize(index + 1);
+ (*vec)[index] = value;
+ return index;
+}
+
+///////////////////////// REMOVE INPUT ////////////////////////////////////
+
+static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ for (size_t input = 0; input < request.inputs.size(); ++input) {
+ const std::string message = "removeInput: removed input " + std::to_string(input);
+ validate(preparedModel, message, request,
+ [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
+ }
+}
+
+///////////////////////// REMOVE OUTPUT ////////////////////////////////////
+
+static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ for (size_t output = 0; output < request.outputs.size(); ++output) {
+ const std::string message = "removeOutput: removed Output " + std::to_string(output);
+ validate(preparedModel, message, request,
+ [output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
+ }
+}
+
+///////////////////////////// ENTRY POINT //////////////////////////////////
+
+std::vector<Request> createRequests(const std::vector<MixedTypedExampleType>& examples) {
+ const uint32_t INPUT = 0;
+ const uint32_t OUTPUT = 1;
+
+ std::vector<Request> requests;
+
+ for (auto& example : examples) {
+ const MixedTyped& inputs = example.first;
+ const MixedTyped& outputs = example.second;
+
+ std::vector<RequestArgument> inputs_info, outputs_info;
+ uint32_t inputSize = 0, outputSize = 0;
+
+ // This function only partially specifies the metadata (vector of RequestArguments).
+ // The contents are copied over below.
+ for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
+ if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
+ RequestArgument arg = {
+ .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
+ .dimensions = {},
+ };
+ RequestArgument arg_empty = {
+ .hasNoValue = true,
+ };
+ inputs_info[index] = s ? arg : arg_empty;
+ inputSize += s;
+ });
+ // Compute offset for inputs 1 and so on
+ {
+ size_t offset = 0;
+ for (auto& i : inputs_info) {
+ if (!i.hasNoValue) i.location.offset = offset;
+ offset += i.location.length;
+ }
+ }
+
+ // Go through all outputs, initialize RequestArgument descriptors
+ for_all(outputs, [&outputs_info, &outputSize](int index, auto, auto s) {
+ if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
+ RequestArgument arg = {
+ .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
+ .dimensions = {},
+ };
+ outputs_info[index] = arg;
+ outputSize += s;
+ });
+ // Compute offset for outputs 1 and so on
+ {
+ size_t offset = 0;
+ for (auto& i : outputs_info) {
+ i.location.offset = offset;
+ offset += i.location.length;
+ }
+ }
+ std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
+ nn::allocateSharedMemory(outputSize)};
+ if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
+ return {};
+ }
+
+ // map pool
+ sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
+ if (inputMemory == nullptr) {
+ return {};
+ }
+ char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
+ if (inputPtr == nullptr) {
+ return {};
+ }
+
+ // initialize pool
+ inputMemory->update();
+ for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
+ char* begin = (char*)p;
+ char* end = begin + s;
+ // TODO: handle more than one input
+ std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
+ });
+ inputMemory->commit();
+
+ requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
+ }
+
+ return requests;
+}
+
+void ValidationTest::validateRequests(const V1_1::Model& model,
+ const std::vector<Request>& requests) {
+ // create IPreparedModel
+ sp<IPreparedModel> preparedModel;
+ ASSERT_NO_FATAL_FAILURE(createPreparedModel(device, model, &preparedModel));
+ if (preparedModel == nullptr) {
+ return;
+ }
+
+ // validate each request
+ for (const Request& request : requests) {
+ removeInputTest(preparedModel, request);
+ removeOutputTest(preparedModel, request);
+ }
+}
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_1
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
diff --git a/neuralnetworks/1.1/vts/functional/ValidationTests.cpp b/neuralnetworks/1.1/vts/functional/ValidationTests.cpp
new file mode 100644
index 0000000..1c35ba8
--- /dev/null
+++ b/neuralnetworks/1.1/vts/functional/ValidationTests.cpp
@@ -0,0 +1,50 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "Models.h"
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_1 {
+namespace vts {
+namespace functional {
+
+// forward declarations
+std::vector<Request> createRequests(const std::vector<MixedTypedExample>& examples);
+
+// generate validation tests
+#define VTS_CURRENT_TEST_CASE(TestName) \
+ TEST_F(ValidationTest, TestName) { \
+ const Model model = TestName::createTestModel(); \
+ const std::vector<Request> requests = createRequests(TestName::examples); \
+ validateModel(model); \
+ validateRequests(model, requests); \
+ }
+
+FOR_EACH_TEST_MODEL(VTS_CURRENT_TEST_CASE)
+
+#undef VTS_CURRENT_TEST_CASE
+
+} // namespace functional
+} // namespace vts
+} // namespace V1_1
+} // namespace neuralnetworks
+} // namespace hardware
+} // namespace android
diff --git a/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1.cpp b/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworks.cpp
similarity index 64%
rename from neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1.cpp
rename to neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworks.cpp
index b1d3be7..62381e6 100644
--- a/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1.cpp
+++ b/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworks.cpp
@@ -16,16 +16,7 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
-#include "VtsHalNeuralnetworksV1_1.h"
-#include "Utils.h"
-
-#include <android-base/logging.h>
-#include <hidlmemory/mapping.h>
-
-using ::android::hardware::hidl_memory;
-using ::android::hidl::allocator::V1_0::IAllocator;
-using ::android::hidl::memory::V1_0::IMemory;
-using ::android::sp;
+#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
@@ -34,11 +25,6 @@
namespace vts {
namespace functional {
-// allocator helper
-hidl_memory allocateSharedMemory(int64_t size) {
- return nn::allocateSharedMemory(size);
-}
-
// A class for test environment setup
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
@@ -52,23 +38,49 @@
}
void NeuralnetworksHidlEnvironment::registerTestServices() {
- registerTestService<V1_1::IDevice>();
+ registerTestService<IDevice>();
}
// The main test class for NEURALNETWORK HIDL HAL.
+NeuralnetworksHidlTest::NeuralnetworksHidlTest() {}
+
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
void NeuralnetworksHidlTest::SetUp() {
- device = ::testing::VtsHalHidlTargetTestBase::getService<V1_1::IDevice>(
+ ::testing::VtsHalHidlTargetTestBase::SetUp();
+ device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
NeuralnetworksHidlEnvironment::getInstance());
ASSERT_NE(nullptr, device.get());
}
-void NeuralnetworksHidlTest::TearDown() {}
+void NeuralnetworksHidlTest::TearDown() {
+ device = nullptr;
+ ::testing::VtsHalHidlTargetTestBase::TearDown();
+}
} // namespace functional
} // namespace vts
+
+::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
+ return os << toString(errorStatus);
+}
+
+::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
+ return os << toString(deviceStatus);
+}
+
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
+
+using android::hardware::neuralnetworks::V1_1::vts::functional::NeuralnetworksHidlEnvironment;
+
+int main(int argc, char** argv) {
+ ::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
+ ::testing::InitGoogleTest(&argc, argv);
+ NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
+
+ int status = RUN_ALL_TESTS();
+ return status;
+}
diff --git a/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1.h b/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworks.h
similarity index 60%
rename from neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1.h
rename to neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworks.h
index 426246c..0050e52 100644
--- a/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1.h
+++ b/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworks.h
@@ -17,65 +17,71 @@
#ifndef VTS_HAL_NEURALNETWORKS_V1_1_H
#define VTS_HAL_NEURALNETWORKS_V1_1_H
-#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
-#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
+#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
-#include <android/hidl/allocator/1.0/IAllocator.h>
#include <VtsHalHidlTargetTestBase.h>
#include <VtsHalHidlTargetTestEnvBase.h>
+
+#include <android-base/macros.h>
#include <gtest/gtest.h>
-#include <string>
+#include <iostream>
+#include <vector>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
+
+using V1_0::Request;
+using V1_0::DeviceStatus;
+using V1_0::ErrorStatus;
+
namespace vts {
namespace functional {
-hidl_memory allocateSharedMemory(int64_t size);
// A class for test environment setup
class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
+ DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlEnvironment);
NeuralnetworksHidlEnvironment();
- NeuralnetworksHidlEnvironment(const NeuralnetworksHidlEnvironment&) = delete;
- NeuralnetworksHidlEnvironment(NeuralnetworksHidlEnvironment&&) = delete;
- NeuralnetworksHidlEnvironment& operator=(const NeuralnetworksHidlEnvironment&) = delete;
- NeuralnetworksHidlEnvironment& operator=(NeuralnetworksHidlEnvironment&&) = delete;
+ ~NeuralnetworksHidlEnvironment() override;
public:
- ~NeuralnetworksHidlEnvironment() override;
static NeuralnetworksHidlEnvironment* getInstance();
void registerTestServices() override;
};
// The main test class for NEURALNETWORKS HIDL HAL.
class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
+ DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlTest);
+
public:
+ NeuralnetworksHidlTest();
~NeuralnetworksHidlTest() override;
void SetUp() override;
void TearDown() override;
- sp<V1_1::IDevice> device;
+ protected:
+ sp<IDevice> device;
};
+
+// Tag for the validation tests
+class ValidationTest : public NeuralnetworksHidlTest {
+ protected:
+ void validateModel(const Model& model);
+ void validateRequests(const Model& model, const std::vector<Request>& request);
+};
+
+// Tag for the generated tests
+class GeneratedTest : public NeuralnetworksHidlTest {};
+
} // namespace functional
} // namespace vts
// pretty-print values for error messages
-
-template <typename CharT, typename Traits>
-::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
- V1_0::ErrorStatus errorStatus) {
- return os << toString(errorStatus);
-}
-
-template <typename CharT, typename Traits>
-::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
- V1_0::DeviceStatus deviceStatus) {
- return os << toString(deviceStatus);
-}
+::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
+::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus);
} // namespace V1_1
} // namespace neuralnetworks
diff --git a/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1BasicTest.cpp b/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1BasicTest.cpp
deleted file mode 100644
index 10591dc..0000000
--- a/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1BasicTest.cpp
+++ /dev/null
@@ -1,468 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "VtsHalNeuralnetworksV1_1.h"
-
-#include "Callbacks.h"
-#include "Models.h"
-#include "TestHarness.h"
-
-#include <android-base/logging.h>
-#include <android/hardware/neuralnetworks/1.1/IDevice.h>
-#include <android/hardware/neuralnetworks/1.1/types.h>
-#include <android/hidl/memory/1.0/IMemory.h>
-#include <hidlmemory/mapping.h>
-
-using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
-using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
-using ::android::hardware::neuralnetworks::V1_0::ErrorStatus;
-using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
-using ::android::hardware::neuralnetworks::V1_0::Operand;
-using ::android::hardware::neuralnetworks::V1_0::OperandLifeTime;
-using ::android::hardware::neuralnetworks::V1_0::OperandType;
-using ::android::hardware::neuralnetworks::V1_0::Request;
-using ::android::hardware::neuralnetworks::V1_1::Capabilities;
-using ::android::hardware::neuralnetworks::V1_1::IDevice;
-using ::android::hardware::neuralnetworks::V1_1::Model;
-using ::android::hardware::neuralnetworks::V1_1::Operation;
-using ::android::hardware::neuralnetworks::V1_1::OperationType;
-using ::android::hardware::Return;
-using ::android::hardware::Void;
-using ::android::hardware::hidl_memory;
-using ::android::hardware::hidl_string;
-using ::android::hardware::hidl_vec;
-using ::android::hidl::allocator::V1_0::IAllocator;
-using ::android::hidl::memory::V1_0::IMemory;
-using ::android::sp;
-
-namespace android {
-namespace hardware {
-namespace neuralnetworks {
-namespace V1_1 {
-namespace vts {
-namespace functional {
-using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
-using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
-
-static void doPrepareModelShortcut(const sp<IDevice>& device, sp<IPreparedModel>* preparedModel) {
- ASSERT_NE(nullptr, preparedModel);
- Model model = createValidTestModel_1_1();
-
- // see if service can handle model
- bool fullySupportsModel = false;
- Return<void> supportedOpsLaunchStatus = device->getSupportedOperations_1_1(
- model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
- ASSERT_EQ(ErrorStatus::NONE, status);
- ASSERT_NE(0ul, supported.size());
- fullySupportsModel =
- std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
- });
- ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
-
- // launch prepare model
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- ASSERT_NE(nullptr, preparedModelCallback.get());
- Return<ErrorStatus> prepareLaunchStatus =
- device->prepareModel_1_1(model, preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
-
- // retrieve prepared model
- preparedModelCallback->wait();
- ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
- *preparedModel = preparedModelCallback->getPreparedModel();
-
- // The getSupportedOperations call returns a list of operations that are
- // guaranteed not to fail if prepareModel is called, and
- // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
- // If a driver has any doubt that it can prepare an operation, it must
- // return false. So here, if a driver isn't sure if it can support an
- // operation, but reports that it successfully prepared the model, the test
- // can continue.
- if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
- ASSERT_EQ(nullptr, preparedModel->get());
- LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
- "prepare model that it does not support.";
- std::cout << "[ ] Early termination of test because vendor service cannot "
- "prepare model that it does not support."
- << std::endl;
- return;
- }
- ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
- ASSERT_NE(nullptr, preparedModel->get());
-}
-
-// create device test
-TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
-
-// status test
-TEST_F(NeuralnetworksHidlTest, StatusTest) {
- Return<DeviceStatus> status = device->getStatus();
- ASSERT_TRUE(status.isOk());
- EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
-}
-
-// initialization
-TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
- Return<void> ret =
- device->getCapabilities_1_1([](ErrorStatus status, const Capabilities& capabilities) {
- EXPECT_EQ(ErrorStatus::NONE, status);
- EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
- EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
- EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
- EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
- EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.execTime);
- EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.powerUsage);
- });
- EXPECT_TRUE(ret.isOk());
-}
-
-// supported operations positive test
-TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
- Model model = createValidTestModel_1_1();
- Return<void> ret = device->getSupportedOperations_1_1(
- model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
- EXPECT_EQ(ErrorStatus::NONE, status);
- EXPECT_EQ(model.operations.size(), supported.size());
- });
- EXPECT_TRUE(ret.isOk());
-}
-
-// supported operations negative test 1
-TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest1) {
- Model model = createInvalidTestModel1_1_1();
- Return<void> ret = device->getSupportedOperations_1_1(
- model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
- (void)supported;
- });
- EXPECT_TRUE(ret.isOk());
-}
-
-// supported operations negative test 2
-TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
- Model model = createInvalidTestModel2_1_1();
- Return<void> ret = device->getSupportedOperations_1_1(
- model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
- (void)supported;
- });
- EXPECT_TRUE(ret.isOk());
-}
-
-// prepare simple model positive test
-TEST_F(NeuralnetworksHidlTest, SimplePrepareModelPositiveTest) {
- sp<IPreparedModel> preparedModel;
- doPrepareModelShortcut(device, &preparedModel);
-}
-
-// prepare simple model negative test 1
-TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest1) {
- Model model = createInvalidTestModel1_1_1();
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- ASSERT_NE(nullptr, preparedModelCallback.get());
- Return<ErrorStatus> prepareLaunchStatus =
- device->prepareModel_1_1(model, preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
-
- preparedModelCallback->wait();
- ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
- sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
- EXPECT_EQ(nullptr, preparedModel.get());
-}
-
-// prepare simple model negative test 2
-TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest2) {
- Model model = createInvalidTestModel2_1_1();
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- ASSERT_NE(nullptr, preparedModelCallback.get());
- Return<ErrorStatus> prepareLaunchStatus =
- device->prepareModel_1_1(model, preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
-
- preparedModelCallback->wait();
- ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
- sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
- EXPECT_EQ(nullptr, preparedModel.get());
-}
-
-// execute simple graph positive test
-TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
- std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
- std::vector<float> expectedData = {6.0f, 8.0f, 10.0f, 12.0f};
- const uint32_t OUTPUT = 1;
-
- sp<IPreparedModel> preparedModel;
- ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
- if (preparedModel == nullptr) {
- return;
- }
- Request request = createValidTestRequest();
-
- auto postWork = [&] {
- sp<IMemory> outputMemory = mapMemory(request.pools[OUTPUT]);
- if (outputMemory == nullptr) {
- return false;
- }
- float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
- if (outputPtr == nullptr) {
- return false;
- }
- outputMemory->read();
- std::copy(outputPtr, outputPtr + outputData.size(), outputData.begin());
- outputMemory->commit();
- return true;
- };
-
- sp<ExecutionCallback> executionCallback = new ExecutionCallback();
- ASSERT_NE(nullptr, executionCallback.get());
- executionCallback->on_finish(postWork);
- Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
- ASSERT_TRUE(executeLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executeLaunchStatus));
-
- executionCallback->wait();
- ErrorStatus executionReturnStatus = executionCallback->getStatus();
- EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
- EXPECT_EQ(expectedData, outputData);
-}
-
-// execute simple graph negative test 1
-TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest1) {
- sp<IPreparedModel> preparedModel;
- ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
- if (preparedModel == nullptr) {
- return;
- }
- Request request = createInvalidTestRequest1();
-
- sp<ExecutionCallback> executionCallback = new ExecutionCallback();
- ASSERT_NE(nullptr, executionCallback.get());
- Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
- ASSERT_TRUE(executeLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
-
- executionCallback->wait();
- ErrorStatus executionReturnStatus = executionCallback->getStatus();
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
-}
-
-// execute simple graph negative test 2
-TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
- sp<IPreparedModel> preparedModel;
- ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
- if (preparedModel == nullptr) {
- return;
- }
- Request request = createInvalidTestRequest2();
-
- sp<ExecutionCallback> executionCallback = new ExecutionCallback();
- ASSERT_NE(nullptr, executionCallback.get());
- Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
- ASSERT_TRUE(executeLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
-
- executionCallback->wait();
- ErrorStatus executionReturnStatus = executionCallback->getStatus();
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
-}
-
-class NeuralnetworksInputsOutputsTest
- : public NeuralnetworksHidlTest,
- public ::testing::WithParamInterface<std::tuple<bool, bool>> {
- protected:
- virtual void SetUp() { NeuralnetworksHidlTest::SetUp(); }
- virtual void TearDown() { NeuralnetworksHidlTest::TearDown(); }
- V1_1::Model createModel(const std::vector<uint32_t>& inputs,
- const std::vector<uint32_t>& outputs) {
- // We set up the operands as floating-point with no designated
- // model inputs and outputs, and then patch type and lifetime
- // later on in this function.
-
- std::vector<Operand> operands = {
- {
- .type = OperandType::TENSOR_FLOAT32,
- .dimensions = {1},
- .numberOfConsumers = 1,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
- .location = {.poolIndex = 0, .offset = 0, .length = 0},
- },
- {
- .type = OperandType::TENSOR_FLOAT32,
- .dimensions = {1},
- .numberOfConsumers = 1,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
- .location = {.poolIndex = 0, .offset = 0, .length = 0},
- },
- {
- .type = OperandType::INT32,
- .dimensions = {},
- .numberOfConsumers = 1,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = OperandLifeTime::CONSTANT_COPY,
- .location = {.poolIndex = 0, .offset = 0, .length = sizeof(int32_t)},
- },
- {
- .type = OperandType::TENSOR_FLOAT32,
- .dimensions = {1},
- .numberOfConsumers = 0,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
- .location = {.poolIndex = 0, .offset = 0, .length = 0},
- },
- };
-
- const std::vector<Operation> operations = {{
- .type = OperationType::ADD, .inputs = {0, 1, 2}, .outputs = {3},
- }};
-
- std::vector<uint8_t> operandValues;
- int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)};
- operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]),
- reinterpret_cast<const uint8_t*>(&activation[1]));
-
- if (kQuantized) {
- for (auto& operand : operands) {
- if (operand.type == OperandType::TENSOR_FLOAT32) {
- operand.type = OperandType::TENSOR_QUANT8_ASYMM;
- operand.scale = 1.0f;
- operand.zeroPoint = 0;
- }
- }
- }
-
- auto patchLifetime = [&operands](const std::vector<uint32_t>& operandIndexes,
- OperandLifeTime lifetime) {
- for (uint32_t index : operandIndexes) {
- operands[index].lifetime = lifetime;
- }
- };
- if (kInputHasPrecedence) {
- patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
- patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
- } else {
- patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
- patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
- }
-
- return {
- .operands = operands,
- .operations = operations,
- .inputIndexes = inputs,
- .outputIndexes = outputs,
- .operandValues = operandValues,
- .pools = {},
- };
- }
- void check(const std::string& name,
- bool expectation, // true = success
- const std::vector<uint32_t>& inputs, const std::vector<uint32_t>& outputs) {
- SCOPED_TRACE(name + " (HAL calls should " + (expectation ? "succeed" : "fail") + ", " +
- (kInputHasPrecedence ? "input" : "output") + " precedence, " +
- (kQuantized ? "quantized" : "float"));
-
- V1_1::Model model = createModel(inputs, outputs);
-
- // ensure that getSupportedOperations_1_1() checks model validity
- ErrorStatus supportedOpsErrorStatus = ErrorStatus::GENERAL_FAILURE;
- Return<void> supportedOpsReturn = device->getSupportedOperations_1_1(
- model, [&model, &supportedOpsErrorStatus](ErrorStatus status,
- const hidl_vec<bool>& supported) {
- supportedOpsErrorStatus = status;
- if (status == ErrorStatus::NONE) {
- ASSERT_EQ(supported.size(), model.operations.size());
- }
- });
- ASSERT_TRUE(supportedOpsReturn.isOk());
- ASSERT_EQ(supportedOpsErrorStatus,
- (expectation ? ErrorStatus::NONE : ErrorStatus::INVALID_ARGUMENT));
-
- // ensure that prepareModel_1_1() checks model validity
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback;
- ASSERT_NE(preparedModelCallback.get(), nullptr);
- Return<ErrorStatus> prepareLaunchReturn =
- device->prepareModel_1_1(model, preparedModelCallback);
- ASSERT_TRUE(prepareLaunchReturn.isOk());
- ASSERT_TRUE(prepareLaunchReturn == ErrorStatus::NONE ||
- prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT);
- bool preparationOk = (prepareLaunchReturn == ErrorStatus::NONE);
- if (preparationOk) {
- preparedModelCallback->wait();
- preparationOk = (preparedModelCallback->getStatus() == ErrorStatus::NONE);
- }
-
- if (preparationOk) {
- ASSERT_TRUE(expectation);
- } else {
- // Preparation can fail for reasons other than an invalid model --
- // for example, perhaps not all operations are supported, or perhaps
- // the device hit some kind of capacity limit.
- bool invalid = prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT ||
- preparedModelCallback->getStatus() == ErrorStatus::INVALID_ARGUMENT;
- ASSERT_NE(expectation, invalid);
- }
- }
-
- // Indicates whether an operand that appears in both the inputs
- // and outputs vector should have lifetime appropriate for input
- // rather than for output.
- const bool kInputHasPrecedence = std::get<0>(GetParam());
-
- // Indicates whether we should test TENSOR_QUANT8_ASYMM rather
- // than TENSOR_FLOAT32.
- const bool kQuantized = std::get<1>(GetParam());
-};
-
-TEST_P(NeuralnetworksInputsOutputsTest, Validate) {
- check("Ok", true, {0, 1}, {3});
- check("InputIsOutput", false, {0, 1}, {3, 0});
- check("OutputIsInput", false, {0, 1, 3}, {3});
- check("DuplicateInputs", false, {0, 1, 0}, {3});
- check("DuplicateOutputs", false, {0, 1}, {3, 3});
-}
-
-INSTANTIATE_TEST_CASE_P(Flavor, NeuralnetworksInputsOutputsTest,
- ::testing::Combine(::testing::Bool(), ::testing::Bool()));
-
-} // namespace functional
-} // namespace vts
-} // namespace V1_1
-} // namespace neuralnetworks
-} // namespace hardware
-} // namespace android
-
-using android::hardware::neuralnetworks::V1_1::vts::functional::NeuralnetworksHidlEnvironment;
-
-int main(int argc, char** argv) {
- ::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
- ::testing::InitGoogleTest(&argc, argv);
- NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
-
- int status = RUN_ALL_TESTS();
- return status;
-}
diff --git a/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1GeneratedTest.cpp b/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1GeneratedTest.cpp
deleted file mode 100644
index 025d9fe..0000000
--- a/neuralnetworks/1.1/vts/functional/VtsHalNeuralnetworksV1_1GeneratedTest.cpp
+++ /dev/null
@@ -1,80 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "VtsHalNeuralnetworksV1_1.h"
-
-#include "Callbacks.h"
-#include "TestHarness.h"
-
-#include <android-base/logging.h>
-#include <android/hardware/neuralnetworks/1.1/IDevice.h>
-#include <android/hardware/neuralnetworks/1.1/types.h>
-#include <android/hidl/memory/1.0/IMemory.h>
-#include <hidlmemory/mapping.h>
-
-using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
-using ::android::hardware::neuralnetworks::V1_0::Capabilities;
-using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
-using ::android::hardware::neuralnetworks::V1_0::ErrorStatus;
-using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
-using ::android::hardware::neuralnetworks::V1_0::Operand;
-using ::android::hardware::neuralnetworks::V1_0::OperandLifeTime;
-using ::android::hardware::neuralnetworks::V1_0::OperandType;
-using ::android::hardware::neuralnetworks::V1_0::Request;
-using ::android::hardware::neuralnetworks::V1_1::IDevice;
-using ::android::hardware::neuralnetworks::V1_1::Model;
-using ::android::hardware::neuralnetworks::V1_1::Operation;
-using ::android::hardware::neuralnetworks::V1_1::OperationType;
-using ::android::hardware::Return;
-using ::android::hardware::Void;
-using ::android::hardware::hidl_memory;
-using ::android::hardware::hidl_string;
-using ::android::hardware::hidl_vec;
-using ::android::hidl::allocator::V1_0::IAllocator;
-using ::android::hidl::memory::V1_0::IMemory;
-using ::android::sp;
-
-namespace android {
-namespace hardware {
-namespace neuralnetworks {
-
-namespace generated_tests {
-using ::generated_tests::MixedTypedExampleType;
-extern void Execute(sp<V1_1::IDevice>&, std::function<Model(void)>, std::function<bool(int)>,
- const std::vector<MixedTypedExampleType>&);
-} // namespace generated_tests
-
-namespace V1_1 {
-namespace vts {
-namespace functional {
-using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
-using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
-
-// Mixed-typed examples
-typedef generated_tests::MixedTypedExampleType MixedTypedExample;
-
-// in frameworks/ml/nn/runtime/tests/generated/
-#include "all_generated_V1_0_vts_tests.cpp"
-#include "all_generated_V1_1_vts_tests.cpp"
-
-} // namespace functional
-} // namespace vts
-} // namespace V1_1
-} // namespace neuralnetworks
-} // namespace hardware
-} // namespace android