Relocate ExecutionBurst* classes to NN util code

The only changes when copying these files were .clang-format differences
and correcting a typo in a comment.

Bug: 177267324
Test: mma
Change-Id: I96cc2402642e1e3076ac7e78e06163c1d3d41701
Merged-In: I96cc2402642e1e3076ac7e78e06163c1d3d41701
(cherry picked from commit 87e83068784b65ab851e4ff65a1099de4e777c9e)
diff --git a/neuralnetworks/1.2/utils/src/ExecutionBurstController.cpp b/neuralnetworks/1.2/utils/src/ExecutionBurstController.cpp
new file mode 100644
index 0000000..212863e
--- /dev/null
+++ b/neuralnetworks/1.2/utils/src/ExecutionBurstController.cpp
@@ -0,0 +1,631 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "ExecutionBurstController"
+
+#include "ExecutionBurstController.h"
+
+#include <android-base/logging.h>
+
+#include <algorithm>
+#include <cstring>
+#include <limits>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+#include "HalInterfaces.h"
+#include "Tracing.h"
+#include "Utils.h"
+
+namespace android::nn {
+namespace {
+
+using V1_2::FmqRequestDatum;
+using V1_2::FmqResultDatum;
+using V1_2::IBurstCallback;
+using V1_2::IBurstContext;
+using FmqRequestDescriptor = hardware::MQDescriptorSync<FmqRequestDatum>;
+using FmqResultDescriptor = hardware::MQDescriptorSync<FmqResultDatum>;
+
+constexpr V1_2::Timing kNoTiming12 = {std::numeric_limits<uint64_t>::max(),
+                                      std::numeric_limits<uint64_t>::max()};
+
+class BurstContextDeathHandler : public hardware::hidl_death_recipient {
+  public:
+    using Callback = std::function<void()>;
+
+    BurstContextDeathHandler(const Callback& onDeathCallback) : mOnDeathCallback(onDeathCallback) {
+        CHECK(onDeathCallback != nullptr);
+    }
+
+    void serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0::IBase>& /*who*/) override {
+        LOG(ERROR) << "BurstContextDeathHandler::serviceDied -- service unexpectedly died!";
+        mOnDeathCallback();
+    }
+
+  private:
+    const Callback mOnDeathCallback;
+};
+
+}  // anonymous namespace
+
+// serialize a request into a packet
+std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, V1_2::MeasureTiming measure,
+                                       const std::vector<int32_t>& slots) {
+    // count how many elements need to be sent for a request
+    size_t count = 2 + request.inputs.size() + request.outputs.size() + request.pools.size();
+    for (const auto& input : request.inputs) {
+        count += input.dimensions.size();
+    }
+    for (const auto& output : request.outputs) {
+        count += output.dimensions.size();
+    }
+
+    // create buffer to temporarily store elements
+    std::vector<FmqRequestDatum> data;
+    data.reserve(count);
+
+    // package packetInfo
+    {
+        FmqRequestDatum datum;
+        datum.packetInformation(
+                {/*.packetSize=*/static_cast<uint32_t>(count),
+                 /*.numberOfInputOperands=*/static_cast<uint32_t>(request.inputs.size()),
+                 /*.numberOfOutputOperands=*/static_cast<uint32_t>(request.outputs.size()),
+                 /*.numberOfPools=*/static_cast<uint32_t>(request.pools.size())});
+        data.push_back(datum);
+    }
+
+    // package input data
+    for (const auto& input : request.inputs) {
+        // package operand information
+        FmqRequestDatum datum;
+        datum.inputOperandInformation(
+                {/*.hasNoValue=*/input.hasNoValue,
+                 /*.location=*/input.location,
+                 /*.numberOfDimensions=*/static_cast<uint32_t>(input.dimensions.size())});
+        data.push_back(datum);
+
+        // package operand dimensions
+        for (uint32_t dimension : input.dimensions) {
+            FmqRequestDatum datum;
+            datum.inputOperandDimensionValue(dimension);
+            data.push_back(datum);
+        }
+    }
+
+    // package output data
+    for (const auto& output : request.outputs) {
+        // package operand information
+        FmqRequestDatum datum;
+        datum.outputOperandInformation(
+                {/*.hasNoValue=*/output.hasNoValue,
+                 /*.location=*/output.location,
+                 /*.numberOfDimensions=*/static_cast<uint32_t>(output.dimensions.size())});
+        data.push_back(datum);
+
+        // package operand dimensions
+        for (uint32_t dimension : output.dimensions) {
+            FmqRequestDatum datum;
+            datum.outputOperandDimensionValue(dimension);
+            data.push_back(datum);
+        }
+    }
+
+    // package pool identifier
+    for (int32_t slot : slots) {
+        FmqRequestDatum datum;
+        datum.poolIdentifier(slot);
+        data.push_back(datum);
+    }
+
+    // package measureTiming
+    {
+        FmqRequestDatum datum;
+        datum.measureTiming(measure);
+        data.push_back(datum);
+    }
+
+    // return packet
+    return data;
+}
+
+// deserialize a packet into the result
+std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
+deserialize(const std::vector<FmqResultDatum>& data) {
+    using discriminator = FmqResultDatum::hidl_discriminator;
+
+    std::vector<V1_2::OutputShape> outputShapes;
+    size_t index = 0;
+
+    // validate packet information
+    if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
+        LOG(ERROR) << "FMQ Result packet ill-formed";
+        return std::nullopt;
+    }
+
+    // unpackage packet information
+    const FmqResultDatum::PacketInformation& packetInfo = data[index].packetInformation();
+    index++;
+    const uint32_t packetSize = packetInfo.packetSize;
+    const V1_0::ErrorStatus errorStatus = packetInfo.errorStatus;
+    const uint32_t numberOfOperands = packetInfo.numberOfOperands;
+
+    // verify packet size
+    if (data.size() != packetSize) {
+        LOG(ERROR) << "FMQ Result packet ill-formed";
+        return std::nullopt;
+    }
+
+    // unpackage operands
+    for (size_t operand = 0; operand < numberOfOperands; ++operand) {
+        // validate operand information
+        if (data[index].getDiscriminator() != discriminator::operandInformation) {
+            LOG(ERROR) << "FMQ Result packet ill-formed";
+            return std::nullopt;
+        }
+
+        // unpackage operand information
+        const FmqResultDatum::OperandInformation& operandInfo = data[index].operandInformation();
+        index++;
+        const bool isSufficient = operandInfo.isSufficient;
+        const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
+
+        // unpackage operand dimensions
+        std::vector<uint32_t> dimensions;
+        dimensions.reserve(numberOfDimensions);
+        for (size_t i = 0; i < numberOfDimensions; ++i) {
+            // validate dimension
+            if (data[index].getDiscriminator() != discriminator::operandDimensionValue) {
+                LOG(ERROR) << "FMQ Result packet ill-formed";
+                return std::nullopt;
+            }
+
+            // unpackage dimension
+            const uint32_t dimension = data[index].operandDimensionValue();
+            index++;
+
+            // store result
+            dimensions.push_back(dimension);
+        }
+
+        // store result
+        outputShapes.push_back({/*.dimensions=*/dimensions, /*.isSufficient=*/isSufficient});
+    }
+
+    // validate execution timing
+    if (data[index].getDiscriminator() != discriminator::executionTiming) {
+        LOG(ERROR) << "FMQ Result packet ill-formed";
+        return std::nullopt;
+    }
+
+    // unpackage execution timing
+    const V1_2::Timing timing = data[index].executionTiming();
+    index++;
+
+    // validate packet information
+    if (index != packetSize) {
+        LOG(ERROR) << "FMQ Result packet ill-formed";
+        return std::nullopt;
+    }
+
+    // return result
+    return std::make_tuple(errorStatus, std::move(outputShapes), timing);
+}
+
+V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode) {
+    return convertToV1_0(convertResultCodeToErrorStatus(resultCode));
+}
+
+std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*>
+ResultChannelReceiver::create(size_t channelLength, std::chrono::microseconds pollingTimeWindow) {
+    std::unique_ptr<FmqResultChannel> fmqResultChannel =
+            std::make_unique<FmqResultChannel>(channelLength, /*confEventFlag=*/true);
+    if (!fmqResultChannel->isValid()) {
+        LOG(ERROR) << "Unable to create ResultChannelReceiver";
+        return {nullptr, nullptr};
+    }
+
+    const FmqResultDescriptor* descriptor = fmqResultChannel->getDesc();
+    return std::make_pair(
+            std::make_unique<ResultChannelReceiver>(std::move(fmqResultChannel), pollingTimeWindow),
+            descriptor);
+}
+
+ResultChannelReceiver::ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
+                                             std::chrono::microseconds pollingTimeWindow)
+    : mFmqResultChannel(std::move(fmqResultChannel)), kPollingTimeWindow(pollingTimeWindow) {}
+
+std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
+ResultChannelReceiver::getBlocking() {
+    const auto packet = getPacketBlocking();
+    if (!packet) {
+        return std::nullopt;
+    }
+
+    return deserialize(*packet);
+}
+
+void ResultChannelReceiver::invalidate() {
+    mValid = false;
+
+    // force unblock
+    // ExecutionBurstController waits on a result packet after sending a
+    // request. If the driver containing ExecutionBurstServer crashes, the
+    // controller may be waiting on the futex. This force unblock wakes up any
+    // thread waiting on the futex.
+    // TODO: look for a different/better way to signal/notify the futex to
+    // wake up any thread waiting on it
+    FmqResultDatum datum;
+    datum.packetInformation({/*.packetSize=*/0,
+                             /*.errorStatus=*/V1_0::ErrorStatus::GENERAL_FAILURE,
+                             /*.numberOfOperands=*/0});
+    mFmqResultChannel->writeBlocking(&datum, 1);
+}
+
+std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() {
+    if (!mValid) {
+        return std::nullopt;
+    }
+
+    // First spend time polling if results are available in FMQ instead of
+    // waiting on the futex. Polling is more responsive (yielding lower
+    // latencies), but can take up more power, so only poll for a limited period
+    // of time.
+
+    auto& getCurrentTime = std::chrono::high_resolution_clock::now;
+    const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
+
+    while (getCurrentTime() < timeToStopPolling) {
+        // if class is being torn down, immediately return
+        if (!mValid.load(std::memory_order_relaxed)) {
+            return std::nullopt;
+        }
+
+        // Check if data is available. If it is, immediately retrieve it and
+        // return.
+        const size_t available = mFmqResultChannel->availableToRead();
+        if (available > 0) {
+            std::vector<FmqResultDatum> packet(available);
+            const bool success = mFmqResultChannel->read(packet.data(), available);
+            if (!success) {
+                LOG(ERROR) << "Error receiving packet";
+                return std::nullopt;
+            }
+            return std::make_optional(std::move(packet));
+        }
+    }
+
+    // If we get to this point, we either stopped polling because it was taking
+    // too long or polling was not allowed. Instead, perform a blocking call
+    // which uses a futex to save power.
+
+    // wait for result packet and read first element of result packet
+    FmqResultDatum datum;
+    bool success = mFmqResultChannel->readBlocking(&datum, 1);
+
+    // retrieve remaining elements
+    // NOTE: all of the data is already available at this point, so there's no
+    // need to do a blocking wait to wait for more data. This is known because
+    // in FMQ, all writes are published (made available) atomically. Currently,
+    // the producer always publishes the entire packet in one function call, so
+    // if the first element of the packet is available, the remaining elements
+    // are also available.
+    const size_t count = mFmqResultChannel->availableToRead();
+    std::vector<FmqResultDatum> packet(count + 1);
+    std::memcpy(&packet.front(), &datum, sizeof(datum));
+    success &= mFmqResultChannel->read(packet.data() + 1, count);
+
+    if (!mValid) {
+        return std::nullopt;
+    }
+
+    // ensure packet was successfully received
+    if (!success) {
+        LOG(ERROR) << "Error receiving packet";
+        return std::nullopt;
+    }
+
+    return std::make_optional(std::move(packet));
+}
+
+std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*>
+RequestChannelSender::create(size_t channelLength) {
+    std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
+            std::make_unique<FmqRequestChannel>(channelLength, /*confEventFlag=*/true);
+    if (!fmqRequestChannel->isValid()) {
+        LOG(ERROR) << "Unable to create RequestChannelSender";
+        return {nullptr, nullptr};
+    }
+
+    const FmqRequestDescriptor* descriptor = fmqRequestChannel->getDesc();
+    return std::make_pair(std::make_unique<RequestChannelSender>(std::move(fmqRequestChannel)),
+                          descriptor);
+}
+
+RequestChannelSender::RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel)
+    : mFmqRequestChannel(std::move(fmqRequestChannel)) {}
+
+bool RequestChannelSender::send(const V1_0::Request& request, V1_2::MeasureTiming measure,
+                                const std::vector<int32_t>& slots) {
+    const std::vector<FmqRequestDatum> serialized = serialize(request, measure, slots);
+    return sendPacket(serialized);
+}
+
+bool RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) {
+    if (!mValid) {
+        return false;
+    }
+
+    if (packet.size() > mFmqRequestChannel->availableToWrite()) {
+        LOG(ERROR)
+                << "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ";
+        return false;
+    }
+
+    // Always send the packet with "blocking" because this signals the futex and
+    // unblocks the consumer if it is waiting on the futex.
+    return mFmqRequestChannel->writeBlocking(packet.data(), packet.size());
+}
+
+void RequestChannelSender::invalidate() {
+    mValid = false;
+}
+
+hardware::Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories(
+        const hardware::hidl_vec<int32_t>& slots, getMemories_cb cb) {
+    std::lock_guard<std::mutex> guard(mMutex);
+
+    // get all memories
+    hardware::hidl_vec<hardware::hidl_memory> memories(slots.size());
+    std::transform(slots.begin(), slots.end(), memories.begin(), [this](int32_t slot) {
+        return slot < mMemoryCache.size() ? mMemoryCache[slot] : hardware::hidl_memory{};
+    });
+
+    // ensure all memories are valid
+    if (!std::all_of(memories.begin(), memories.end(),
+                     [](const hardware::hidl_memory& memory) { return memory.valid(); })) {
+        cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
+        return hardware::Void();
+    }
+
+    // return successful
+    cb(V1_0::ErrorStatus::NONE, std::move(memories));
+    return hardware::Void();
+}
+
+std::vector<int32_t> ExecutionBurstController::ExecutionBurstCallback::getSlots(
+        const hardware::hidl_vec<hardware::hidl_memory>& memories,
+        const std::vector<intptr_t>& keys) {
+    std::lock_guard<std::mutex> guard(mMutex);
+
+    // retrieve (or bind) all slots corresponding to memories
+    std::vector<int32_t> slots;
+    slots.reserve(memories.size());
+    for (size_t i = 0; i < memories.size(); ++i) {
+        slots.push_back(getSlotLocked(memories[i], keys[i]));
+    }
+    return slots;
+}
+
+std::pair<bool, int32_t> ExecutionBurstController::ExecutionBurstCallback::freeMemory(
+        intptr_t key) {
+    std::lock_guard<std::mutex> guard(mMutex);
+
+    auto iter = mMemoryIdToSlot.find(key);
+    if (iter == mMemoryIdToSlot.end()) {
+        return {false, 0};
+    }
+    const int32_t slot = iter->second;
+    mMemoryIdToSlot.erase(key);
+    mMemoryCache[slot] = {};
+    mFreeSlots.push(slot);
+    return {true, slot};
+}
+
+int32_t ExecutionBurstController::ExecutionBurstCallback::getSlotLocked(
+        const hardware::hidl_memory& memory, intptr_t key) {
+    auto iter = mMemoryIdToSlot.find(key);
+    if (iter == mMemoryIdToSlot.end()) {
+        const int32_t slot = allocateSlotLocked();
+        mMemoryIdToSlot[key] = slot;
+        mMemoryCache[slot] = memory;
+        return slot;
+    } else {
+        const int32_t slot = iter->second;
+        return slot;
+    }
+}
+
+int32_t ExecutionBurstController::ExecutionBurstCallback::allocateSlotLocked() {
+    constexpr size_t kMaxNumberOfSlots = std::numeric_limits<int32_t>::max();
+
+    // if there is a free slot, use it
+    if (mFreeSlots.size() > 0) {
+        const int32_t slot = mFreeSlots.top();
+        mFreeSlots.pop();
+        return slot;
+    }
+
+    // otherwise use a slot for the first time
+    CHECK(mMemoryCache.size() < kMaxNumberOfSlots) << "Exceeded maximum number of slots!";
+    const int32_t slot = static_cast<int32_t>(mMemoryCache.size());
+    mMemoryCache.emplace_back();
+
+    return slot;
+}
+
+std::unique_ptr<ExecutionBurstController> ExecutionBurstController::create(
+        const sp<V1_2::IPreparedModel>& preparedModel,
+        std::chrono::microseconds pollingTimeWindow) {
+    // check inputs
+    if (preparedModel == nullptr) {
+        LOG(ERROR) << "ExecutionBurstController::create passed a nullptr";
+        return nullptr;
+    }
+
+    // create callback object
+    sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
+
+    // create FMQ objects
+    auto [requestChannelSenderTemp, requestChannelDescriptor] =
+            RequestChannelSender::create(kExecutionBurstChannelLength);
+    auto [resultChannelReceiverTemp, resultChannelDescriptor] =
+            ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow);
+    std::shared_ptr<RequestChannelSender> requestChannelSender =
+            std::move(requestChannelSenderTemp);
+    std::shared_ptr<ResultChannelReceiver> resultChannelReceiver =
+            std::move(resultChannelReceiverTemp);
+
+    // check FMQ objects
+    if (!requestChannelSender || !resultChannelReceiver || !requestChannelDescriptor ||
+        !resultChannelDescriptor) {
+        LOG(ERROR) << "ExecutionBurstController::create failed to create FastMessageQueue";
+        return nullptr;
+    }
+
+    // configure burst
+    V1_0::ErrorStatus errorStatus;
+    sp<IBurstContext> burstContext;
+    const hardware::Return<void> ret = preparedModel->configureExecutionBurst(
+            callback, *requestChannelDescriptor, *resultChannelDescriptor,
+            [&errorStatus, &burstContext](V1_0::ErrorStatus status,
+                                          const sp<IBurstContext>& context) {
+                errorStatus = status;
+                burstContext = context;
+            });
+
+    // check burst
+    if (!ret.isOk()) {
+        LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with description "
+                   << ret.description();
+        return nullptr;
+    }
+    if (errorStatus != V1_0::ErrorStatus::NONE) {
+        LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with status "
+                   << toString(errorStatus);
+        return nullptr;
+    }
+    if (burstContext == nullptr) {
+        LOG(ERROR) << "IPreparedModel::configureExecutionBurst returned nullptr for burst";
+        return nullptr;
+    }
+
+    // create death handler object
+    BurstContextDeathHandler::Callback onDeathCallback = [requestChannelSender,
+                                                          resultChannelReceiver] {
+        requestChannelSender->invalidate();
+        resultChannelReceiver->invalidate();
+    };
+    const sp<BurstContextDeathHandler> deathHandler = new BurstContextDeathHandler(onDeathCallback);
+
+    // linkToDeath registers a callback that will be invoked on service death to
+    // proactively handle service crashes. If the linkToDeath call fails,
+    // asynchronous calls are susceptible to hangs if the service crashes before
+    // providing the response.
+    const hardware::Return<bool> deathHandlerRet = burstContext->linkToDeath(deathHandler, 0);
+    if (!deathHandlerRet.isOk() || deathHandlerRet != true) {
+        LOG(ERROR) << "ExecutionBurstController::create -- Failed to register a death recipient "
+                      "for the IBurstContext object.";
+        return nullptr;
+    }
+
+    // make and return controller
+    return std::make_unique<ExecutionBurstController>(requestChannelSender, resultChannelReceiver,
+                                                      burstContext, callback, deathHandler);
+}
+
+ExecutionBurstController::ExecutionBurstController(
+        const std::shared_ptr<RequestChannelSender>& requestChannelSender,
+        const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver,
+        const sp<IBurstContext>& burstContext, const sp<ExecutionBurstCallback>& callback,
+        const sp<hardware::hidl_death_recipient>& deathHandler)
+    : mRequestChannelSender(requestChannelSender),
+      mResultChannelReceiver(resultChannelReceiver),
+      mBurstContext(burstContext),
+      mMemoryCache(callback),
+      mDeathHandler(deathHandler) {}
+
+ExecutionBurstController::~ExecutionBurstController() {
+    // It is safe to ignore any errors resulting from this unlinkToDeath call
+    // because the ExecutionBurstController object is already being destroyed
+    // and its underlying IBurstContext object is no longer being used by the NN
+    // runtime.
+    if (mDeathHandler) {
+        mBurstContext->unlinkToDeath(mDeathHandler).isOk();
+    }
+}
+
+static std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> getExecutionResult(
+        V1_0::ErrorStatus status, std::vector<V1_2::OutputShape> outputShapes, V1_2::Timing timing,
+        bool fallback) {
+    auto [n, checkedOutputShapes, checkedTiming] =
+            getExecutionResult(convertToV1_3(status), std::move(outputShapes), timing);
+    return {n, convertToV1_2(checkedOutputShapes), convertToV1_2(checkedTiming), fallback};
+}
+
+std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool>
+ExecutionBurstController::compute(const V1_0::Request& request, V1_2::MeasureTiming measure,
+                                  const std::vector<intptr_t>& memoryIds) {
+    // This is the first point when we know an execution is occurring, so begin
+    // to collect systraces. Note that the first point we can begin collecting
+    // systraces in ExecutionBurstServer is when the RequestChannelReceiver
+    // realizes there is data in the FMQ, so ExecutionBurstServer collects
+    // systraces at different points in the code.
+    NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::compute");
+
+    std::lock_guard<std::mutex> guard(mMutex);
+
+    // send request packet
+    const std::vector<int32_t> slots = mMemoryCache->getSlots(request.pools, memoryIds);
+    const bool success = mRequestChannelSender->send(request, measure, slots);
+    if (!success) {
+        LOG(ERROR) << "Error sending FMQ packet";
+        // only use fallback execution path if the packet could not be sent
+        return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
+                                  /*fallback=*/true);
+    }
+
+    // get result packet
+    const auto result = mResultChannelReceiver->getBlocking();
+    if (!result) {
+        LOG(ERROR) << "Error retrieving FMQ packet";
+        // only use fallback execution path if the packet could not be sent
+        return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
+                                  /*fallback=*/false);
+    }
+
+    // unpack results and return (only use fallback execution path if the
+    // packet could not be sent)
+    auto [status, outputShapes, timing] = std::move(*result);
+    return getExecutionResult(status, std::move(outputShapes), timing, /*fallback=*/false);
+}
+
+void ExecutionBurstController::freeMemory(intptr_t key) {
+    std::lock_guard<std::mutex> guard(mMutex);
+
+    bool valid;
+    int32_t slot;
+    std::tie(valid, slot) = mMemoryCache->freeMemory(key);
+    if (valid) {
+        mBurstContext->freeMemory(slot).isOk();
+    }
+}
+
+}  // namespace android::nn
diff --git a/neuralnetworks/1.2/utils/src/ExecutionBurstServer.cpp b/neuralnetworks/1.2/utils/src/ExecutionBurstServer.cpp
new file mode 100644
index 0000000..848c77b
--- /dev/null
+++ b/neuralnetworks/1.2/utils/src/ExecutionBurstServer.cpp
@@ -0,0 +1,646 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "ExecutionBurstServer"
+
+#include "ExecutionBurstServer.h"
+
+#include <android-base/logging.h>
+
+#include <algorithm>
+#include <cstring>
+#include <limits>
+#include <map>
+#include <memory>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+#include "HalInterfaces.h"
+#include "Tracing.h"
+
+namespace android::nn {
+namespace {
+
+using hardware::MQDescriptorSync;
+using V1_2::FmqRequestDatum;
+using V1_2::FmqResultDatum;
+using V1_2::IBurstCallback;
+using V1_2::IBurstContext;
+
+constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
+                                    std::numeric_limits<uint64_t>::max()};
+
+// DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
+// used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
+// hidl_memory object, and the execution forwards calls to the provided
+// IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
+// must be mapped and unmapped for each execution.
+class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
+  public:
+    DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel)
+        : mpPreparedModel(preparedModel) {}
+
+    bool isCacheEntryPresent(int32_t slot) const override {
+        const auto it = mMemoryCache.find(slot);
+        return (it != mMemoryCache.end()) && it->second.valid();
+    }
+
+    void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) override {
+        mMemoryCache[slot] = memory;
+    }
+
+    void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
+
+    std::tuple<V1_0::ErrorStatus, hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing> execute(
+            const V1_0::Request& request, const std::vector<int32_t>& slots,
+            V1_2::MeasureTiming measure) override {
+        // convert slots to pools
+        hardware::hidl_vec<hardware::hidl_memory> pools(slots.size());
+        std::transform(slots.begin(), slots.end(), pools.begin(),
+                       [this](int32_t slot) { return mMemoryCache[slot]; });
+
+        // create full request
+        V1_0::Request fullRequest = request;
+        fullRequest.pools = std::move(pools);
+
+        // setup execution
+        V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
+        hardware::hidl_vec<V1_2::OutputShape> returnedOutputShapes;
+        V1_2::Timing returnedTiming;
+        auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
+                          V1_0::ErrorStatus status,
+                          const hardware::hidl_vec<V1_2::OutputShape>& outputShapes,
+                          const V1_2::Timing& timing) {
+            returnedStatus = status;
+            returnedOutputShapes = outputShapes;
+            returnedTiming = timing;
+        };
+
+        // execute
+        const hardware::Return<void> ret =
+                mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
+        if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) {
+            LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
+            return {returnedStatus, std::move(returnedOutputShapes), kNoTiming};
+        }
+
+        return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
+    }
+
+  private:
+    V1_2::IPreparedModel* const mpPreparedModel;
+    std::map<int32_t, hardware::hidl_memory> mMemoryCache;
+};
+
+}  // anonymous namespace
+
+// serialize result
+std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
+                                      const std::vector<V1_2::OutputShape>& outputShapes,
+                                      V1_2::Timing timing) {
+    // count how many elements need to be sent for a request
+    size_t count = 2 + outputShapes.size();
+    for (const auto& outputShape : outputShapes) {
+        count += outputShape.dimensions.size();
+    }
+
+    // create buffer to temporarily store elements
+    std::vector<FmqResultDatum> data;
+    data.reserve(count);
+
+    // package packetInfo
+    {
+        FmqResultDatum datum;
+        datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
+                                 /*.errorStatus=*/errorStatus,
+                                 /*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
+        data.push_back(datum);
+    }
+
+    // package output shape data
+    for (const auto& operand : outputShapes) {
+        // package operand information
+        FmqResultDatum::OperandInformation info{};
+        info.isSufficient = operand.isSufficient;
+        info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
+
+        FmqResultDatum datum;
+        datum.operandInformation(info);
+        data.push_back(datum);
+
+        // package operand dimensions
+        for (uint32_t dimension : operand.dimensions) {
+            FmqResultDatum datum;
+            datum.operandDimensionValue(dimension);
+            data.push_back(datum);
+        }
+    }
+
+    // package executionTiming
+    {
+        FmqResultDatum datum;
+        datum.executionTiming(timing);
+        data.push_back(datum);
+    }
+
+    // return result
+    return data;
+}
+
+// deserialize request
+std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize(
+        const std::vector<FmqRequestDatum>& data) {
+    using discriminator = FmqRequestDatum::hidl_discriminator;
+
+    size_t index = 0;
+
+    // validate packet information
+    if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
+        LOG(ERROR) << "FMQ Request packet ill-formed";
+        return std::nullopt;
+    }
+
+    // unpackage packet information
+    const FmqRequestDatum::PacketInformation& packetInfo = data[index].packetInformation();
+    index++;
+    const uint32_t packetSize = packetInfo.packetSize;
+    const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
+    const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
+    const uint32_t numberOfPools = packetInfo.numberOfPools;
+
+    // verify packet size
+    if (data.size() != packetSize) {
+        LOG(ERROR) << "FMQ Request packet ill-formed";
+        return std::nullopt;
+    }
+
+    // unpackage input operands
+    std::vector<V1_0::RequestArgument> inputs;
+    inputs.reserve(numberOfInputOperands);
+    for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
+        // validate input operand information
+        if (data[index].getDiscriminator() != discriminator::inputOperandInformation) {
+            LOG(ERROR) << "FMQ Request packet ill-formed";
+            return std::nullopt;
+        }
+
+        // unpackage operand information
+        const FmqRequestDatum::OperandInformation& operandInfo =
+                data[index].inputOperandInformation();
+        index++;
+        const bool hasNoValue = operandInfo.hasNoValue;
+        const V1_0::DataLocation location = operandInfo.location;
+        const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
+
+        // unpackage operand dimensions
+        std::vector<uint32_t> dimensions;
+        dimensions.reserve(numberOfDimensions);
+        for (size_t i = 0; i < numberOfDimensions; ++i) {
+            // validate dimension
+            if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) {
+                LOG(ERROR) << "FMQ Request packet ill-formed";
+                return std::nullopt;
+            }
+
+            // unpackage dimension
+            const uint32_t dimension = data[index].inputOperandDimensionValue();
+            index++;
+
+            // store result
+            dimensions.push_back(dimension);
+        }
+
+        // store result
+        inputs.push_back(
+                {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
+    }
+
+    // unpackage output operands
+    std::vector<V1_0::RequestArgument> outputs;
+    outputs.reserve(numberOfOutputOperands);
+    for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
+        // validate output operand information
+        if (data[index].getDiscriminator() != discriminator::outputOperandInformation) {
+            LOG(ERROR) << "FMQ Request packet ill-formed";
+            return std::nullopt;
+        }
+
+        // unpackage operand information
+        const FmqRequestDatum::OperandInformation& operandInfo =
+                data[index].outputOperandInformation();
+        index++;
+        const bool hasNoValue = operandInfo.hasNoValue;
+        const V1_0::DataLocation location = operandInfo.location;
+        const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
+
+        // unpackage operand dimensions
+        std::vector<uint32_t> dimensions;
+        dimensions.reserve(numberOfDimensions);
+        for (size_t i = 0; i < numberOfDimensions; ++i) {
+            // validate dimension
+            if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) {
+                LOG(ERROR) << "FMQ Request packet ill-formed";
+                return std::nullopt;
+            }
+
+            // unpackage dimension
+            const uint32_t dimension = data[index].outputOperandDimensionValue();
+            index++;
+
+            // store result
+            dimensions.push_back(dimension);
+        }
+
+        // store result
+        outputs.push_back(
+                {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
+    }
+
+    // unpackage pools
+    std::vector<int32_t> slots;
+    slots.reserve(numberOfPools);
+    for (size_t pool = 0; pool < numberOfPools; ++pool) {
+        // validate input operand information
+        if (data[index].getDiscriminator() != discriminator::poolIdentifier) {
+            LOG(ERROR) << "FMQ Request packet ill-formed";
+            return std::nullopt;
+        }
+
+        // unpackage operand information
+        const int32_t poolId = data[index].poolIdentifier();
+        index++;
+
+        // store result
+        slots.push_back(poolId);
+    }
+
+    // validate measureTiming
+    if (data[index].getDiscriminator() != discriminator::measureTiming) {
+        LOG(ERROR) << "FMQ Request packet ill-formed";
+        return std::nullopt;
+    }
+
+    // unpackage measureTiming
+    const V1_2::MeasureTiming measure = data[index].measureTiming();
+    index++;
+
+    // validate packet information
+    if (index != packetSize) {
+        LOG(ERROR) << "FMQ Result packet ill-formed";
+        return std::nullopt;
+    }
+
+    // return request
+    V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
+    return std::make_tuple(std::move(request), std::move(slots), measure);
+}
+
+// RequestChannelReceiver methods
+
+std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
+        const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) {
+    std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
+            std::make_unique<FmqRequestChannel>(requestChannel);
+
+    if (!fmqRequestChannel->isValid()) {
+        LOG(ERROR) << "Unable to create RequestChannelReceiver";
+        return nullptr;
+    }
+    if (fmqRequestChannel->getEventFlagWord() == nullptr) {
+        LOG(ERROR)
+                << "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
+        return nullptr;
+    }
+
+    return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel),
+                                                    pollingTimeWindow);
+}
+
+RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
+                                               std::chrono::microseconds pollingTimeWindow)
+    : mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {}
+
+std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>>
+RequestChannelReceiver::getBlocking() {
+    const auto packet = getPacketBlocking();
+    if (!packet) {
+        return std::nullopt;
+    }
+
+    return deserialize(*packet);
+}
+
+void RequestChannelReceiver::invalidate() {
+    mTeardown = true;
+
+    // force unblock
+    // ExecutionBurstServer is by default waiting on a request packet. If the
+    // client process destroys its burst object, the server may still be waiting
+    // on the futex. This force unblock wakes up any thread waiting on the
+    // futex.
+    // TODO: look for a different/better way to signal/notify the futex to wake
+    // up any thread waiting on it
+    FmqRequestDatum datum;
+    datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
+                             /*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
+    mFmqRequestChannel->writeBlocking(&datum, 1);
+}
+
+std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
+    if (mTeardown) {
+        return std::nullopt;
+    }
+
+    // First spend time polling if results are available in FMQ instead of
+    // waiting on the futex. Polling is more responsive (yielding lower
+    // latencies), but can take up more power, so only poll for a limited period
+    // of time.
+
+    auto& getCurrentTime = std::chrono::high_resolution_clock::now;
+    const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
+
+    while (getCurrentTime() < timeToStopPolling) {
+        // if class is being torn down, immediately return
+        if (mTeardown.load(std::memory_order_relaxed)) {
+            return std::nullopt;
+        }
+
+        // Check if data is available. If it is, immediately retrieve it and
+        // return.
+        const size_t available = mFmqRequestChannel->availableToRead();
+        if (available > 0) {
+            // This is the first point when we know an execution is occurring,
+            // so begin to collect systraces. Note that a similar systrace does
+            // not exist at the corresponding point in
+            // ResultChannelReceiver::getPacketBlocking because the execution is
+            // already in flight.
+            NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
+                         "ExecutionBurstServer getting packet");
+            std::vector<FmqRequestDatum> packet(available);
+            const bool success = mFmqRequestChannel->read(packet.data(), available);
+            if (!success) {
+                LOG(ERROR) << "Error receiving packet";
+                return std::nullopt;
+            }
+            return std::make_optional(std::move(packet));
+        }
+    }
+
+    // If we get to this point, we either stopped polling because it was taking
+    // too long or polling was not allowed. Instead, perform a blocking call
+    // which uses a futex to save power.
+
+    // wait for request packet and read first element of request packet
+    FmqRequestDatum datum;
+    bool success = mFmqRequestChannel->readBlocking(&datum, 1);
+
+    // This is the first point when we know an execution is occurring, so begin
+    // to collect systraces. Note that a similar systrace does not exist at the
+    // corresponding point in ResultChannelReceiver::getPacketBlocking because
+    // the execution is already in flight.
+    NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
+
+    // retrieve remaining elements
+    // NOTE: all of the data is already available at this point, so there's no
+    // need to do a blocking wait to wait for more data. This is known because
+    // in FMQ, all writes are published (made available) atomically. Currently,
+    // the producer always publishes the entire packet in one function call, so
+    // if the first element of the packet is available, the remaining elements
+    // are also available.
+    const size_t count = mFmqRequestChannel->availableToRead();
+    std::vector<FmqRequestDatum> packet(count + 1);
+    std::memcpy(&packet.front(), &datum, sizeof(datum));
+    success &= mFmqRequestChannel->read(packet.data() + 1, count);
+
+    // terminate loop
+    if (mTeardown) {
+        return std::nullopt;
+    }
+
+    // ensure packet was successfully received
+    if (!success) {
+        LOG(ERROR) << "Error receiving packet";
+        return std::nullopt;
+    }
+
+    return std::make_optional(std::move(packet));
+}
+
+// ResultChannelSender methods
+
+std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
+        const FmqResultDescriptor& resultChannel) {
+    std::unique_ptr<FmqResultChannel> fmqResultChannel =
+            std::make_unique<FmqResultChannel>(resultChannel);
+
+    if (!fmqResultChannel->isValid()) {
+        LOG(ERROR) << "Unable to create RequestChannelSender";
+        return nullptr;
+    }
+    if (fmqResultChannel->getEventFlagWord() == nullptr) {
+        LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
+        return nullptr;
+    }
+
+    return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel));
+}
+
+ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)
+    : mFmqResultChannel(std::move(fmqResultChannel)) {}
+
+bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
+                               const std::vector<V1_2::OutputShape>& outputShapes,
+                               V1_2::Timing timing) {
+    const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
+    return sendPacket(serialized);
+}
+
+bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
+    if (packet.size() > mFmqResultChannel->availableToWrite()) {
+        LOG(ERROR)
+                << "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
+        const std::vector<FmqResultDatum> errorPacket =
+                serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
+
+        // Always send the packet with "blocking" because this signals the futex
+        // and unblocks the consumer if it is waiting on the futex.
+        return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
+    }
+
+    // Always send the packet with "blocking" because this signals the futex and
+    // unblocks the consumer if it is waiting on the futex.
+    return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
+}
+
+// ExecutionBurstServer methods
+
+sp<ExecutionBurstServer> ExecutionBurstServer::create(
+        const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
+        const MQDescriptorSync<FmqResultDatum>& resultChannel,
+        std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
+        std::chrono::microseconds pollingTimeWindow) {
+    // check inputs
+    if (callback == nullptr || executorWithCache == nullptr) {
+        LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
+        return nullptr;
+    }
+
+    // create FMQ objects
+    std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
+            RequestChannelReceiver::create(requestChannel, pollingTimeWindow);
+    std::unique_ptr<ResultChannelSender> resultChannelSender =
+            ResultChannelSender::create(resultChannel);
+
+    // check FMQ objects
+    if (!requestChannelReceiver || !resultChannelSender) {
+        LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
+        return nullptr;
+    }
+
+    // make and return context
+    return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
+                                    std::move(resultChannelSender), std::move(executorWithCache));
+}
+
+sp<ExecutionBurstServer> ExecutionBurstServer::create(
+        const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
+        const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel,
+        std::chrono::microseconds pollingTimeWindow) {
+    // check relevant input
+    if (preparedModel == nullptr) {
+        LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
+        return nullptr;
+    }
+
+    // adapt IPreparedModel to have caching
+    const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
+            std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
+
+    // make and return context
+    return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
+                                        preparedModelAdapter, pollingTimeWindow);
+}
+
+ExecutionBurstServer::ExecutionBurstServer(
+        const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
+        std::unique_ptr<ResultChannelSender> resultChannel,
+        std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
+    : mCallback(callback),
+      mRequestChannelReceiver(std::move(requestChannel)),
+      mResultChannelSender(std::move(resultChannel)),
+      mExecutorWithCache(std::move(executorWithCache)) {
+    // TODO: highly document the threading behavior of this class
+    mWorker = std::thread([this] { task(); });
+}
+
+ExecutionBurstServer::~ExecutionBurstServer() {
+    // set teardown flag
+    mTeardown = true;
+    mRequestChannelReceiver->invalidate();
+
+    // wait for task thread to end
+    mWorker.join();
+}
+
+hardware::Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
+    std::lock_guard<std::mutex> hold(mMutex);
+    mExecutorWithCache->removeCacheEntry(slot);
+    return hardware::Void();
+}
+
+void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
+    const auto slotIsKnown = [this](int32_t slot) {
+        return mExecutorWithCache->isCacheEntryPresent(slot);
+    };
+
+    // find unique unknown slots
+    std::vector<int32_t> unknownSlots = slots;
+    auto unknownSlotsEnd = unknownSlots.end();
+    std::sort(unknownSlots.begin(), unknownSlotsEnd);
+    unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
+    unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
+    unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
+
+    // quick-exit if all slots are known
+    if (unknownSlots.empty()) {
+        return;
+    }
+
+    V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
+    std::vector<hardware::hidl_memory> returnedMemories;
+    auto cb = [&errorStatus, &returnedMemories](
+                      V1_0::ErrorStatus status,
+                      const hardware::hidl_vec<hardware::hidl_memory>& memories) {
+        errorStatus = status;
+        returnedMemories = memories;
+    };
+
+    const hardware::Return<void> ret = mCallback->getMemories(unknownSlots, cb);
+
+    if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE ||
+        returnedMemories.size() != unknownSlots.size()) {
+        LOG(ERROR) << "Error retrieving memories";
+        return;
+    }
+
+    // add memories to unknown slots
+    for (size_t i = 0; i < unknownSlots.size(); ++i) {
+        mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
+    }
+}
+
+void ExecutionBurstServer::task() {
+    // loop until the burst object is being destroyed
+    while (!mTeardown) {
+        // receive request
+        auto arguments = mRequestChannelReceiver->getBlocking();
+
+        // if the request packet was not properly received, return a generic
+        // error and skip the execution
+        //
+        // if the burst is being torn down, skip the execution so the "task"
+        // function can end
+        if (!arguments) {
+            if (!mTeardown) {
+                mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
+            }
+            continue;
+        }
+
+        // otherwise begin tracing execution
+        NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
+                     "ExecutionBurstServer getting memory, executing, and returning results");
+
+        // unpack the arguments; types are Request, std::vector<int32_t>, and
+        // MeasureTiming, respectively
+        const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
+
+        // ensure executor with cache has required memory
+        std::lock_guard<std::mutex> hold(mMutex);
+        ensureCacheEntriesArePresentLocked(slotsOfPools);
+
+        // perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
+        // and Timing, respectively
+        const auto [errorStatus, outputShapes, returnedTiming] =
+                mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
+
+        // return result
+        mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
+    }
+}
+
+}  // namespace android::nn