Merge "Add 4.14.0 kernel to all matrices." into pi-dev
diff --git a/audio/4.0/config/audio_policy_configuration.xsd b/audio/4.0/config/audio_policy_configuration.xsd
index 34c2b11..14e4fd6 100644
--- a/audio/4.0/config/audio_policy_configuration.xsd
+++ b/audio/4.0/config/audio_policy_configuration.xsd
@@ -218,24 +218,20 @@
 
             <xs:enumeration value="AUDIO_DEVICE_OUT_EARPIECE"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_SPEAKER"/>
-            <xs:enumeration value="AUDIO_DEVICE_OUT_SPEAKER_SAFE"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_WIRED_HEADSET"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_WIRED_HEADPHONE"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_BLUETOOTH_SCO"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT"/>
-            <xs:enumeration value="AUDIO_DEVICE_OUT_ALL_SCO"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_BLUETOOTH_A2DP"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER"/>
-            <xs:enumeration value="AUDIO_DEVICE_OUT_ALL_A2DP"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_AUX_DIGITAL"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_HDMI"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_USB_ACCESSORY"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_USB_DEVICE"/>
-            <xs:enumeration value="AUDIO_DEVICE_OUT_ALL_USB"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_REMOTE_SUBMIX"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_TELEPHONY_TX"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_LINE"/>
@@ -243,10 +239,13 @@
             <xs:enumeration value="AUDIO_DEVICE_OUT_SPDIF"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_FM"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_AUX_LINE"/>
+            <xs:enumeration value="AUDIO_DEVICE_OUT_SPEAKER_SAFE"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_IP"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_BUS"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_PROXY"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_USB_HEADSET"/>
+            <xs:enumeration value="AUDIO_DEVICE_OUT_HEARING_AID"/>
+            <xs:enumeration value="AUDIO_DEVICE_OUT_ECHO_CANCELLER"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_DEFAULT"/>
             <xs:enumeration value="AUDIO_DEVICE_OUT_STUB"/>
 
@@ -255,19 +254,17 @@
             <xs:enumeration value="AUDIO_DEVICE_IN_AMBIENT"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_BUILTIN_MIC"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET"/>
-            <xs:enumeration value="AUDIO_DEVICE_IN_ALL_SCO"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_WIRED_HEADSET"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_AUX_DIGITAL"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_HDMI"/>
-            <xs:enumeration value="AUDIO_DEVICE_IN_TELEPHONY_RX"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_VOICE_CALL"/>
+            <xs:enumeration value="AUDIO_DEVICE_IN_TELEPHONY_RX"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_BACK_MIC"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_REMOTE_SUBMIX"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_USB_ACCESSORY"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_USB_DEVICE"/>
-            <xs:enumeration value="AUDIO_DEVICE_IN_ALL_USB"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_FM_TUNER"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_TV_TUNER"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_LINE"/>
@@ -278,6 +275,7 @@
             <xs:enumeration value="AUDIO_DEVICE_IN_BUS"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_PROXY"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_USB_HEADSET"/>
+            <xs:enumeration value="AUDIO_DEVICE_IN_BLUETOOTH_BLE"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_DEFAULT"/>
             <xs:enumeration value="AUDIO_DEVICE_IN_STUB"/>
         </xs:restriction>
diff --git a/audio/effect/4.0/types.hal b/audio/effect/4.0/types.hal
index 0f76601..2a8f4b8 100644
--- a/audio/effect/4.0/types.hal
+++ b/audio/effect/4.0/types.hal
@@ -200,16 +200,16 @@
  * enumeration of the effect engines present in a library.
  */
 struct EffectDescriptor {
-    Uuid type;             // UUID of to the OpenSL ES interface implemented
-                           // by this effect
-    Uuid uuid;             // UUID for this particular implementation
-    EffectFlags flags;     // effect engine capabilities/requirements flags
-    uint16_t cpuLoad;      // CPU load indication expressed in 0.1 MIPS units
-                           // as estimated on an ARM9E core (ARMv5TE) with 0 WS
-    uint16_t memoryUsage;  // data memory usage expressed in KB and includes
-                           // only dynamically allocated memory
-    uint8_t[64] name;      // human readable effect name
-    uint8_t[64] implementor;  // human readable effect implementor name
+    Uuid type;                   // UUID of to the OpenSL ES interface implemented
+                                 // by this effect
+    Uuid uuid;                   // UUID for this particular implementation
+    bitfield<EffectFlags> flags; // effect engine capabilities/requirements flags
+    uint16_t cpuLoad;            // CPU load indication expressed in 0.1 MIPS units
+                                 // as estimated on an ARM9E core (ARMv5TE) with 0 WS
+    uint16_t memoryUsage;        // data memory usage expressed in KB and includes
+                                 // only dynamically allocated memory
+    uint8_t[64] name;            // human readable effect name
+    uint8_t[64] implementor;     // human readable effect implementor name
 };
 
 /**
diff --git a/audio/effect/all-versions/default/include/effect/all-versions/default/Conversions.impl.h b/audio/effect/all-versions/default/include/effect/all-versions/default/Conversions.impl.h
index 44adf4b..de67d89 100644
--- a/audio/effect/all-versions/default/include/effect/all-versions/default/Conversions.impl.h
+++ b/audio/effect/all-versions/default/include/effect/all-versions/default/Conversions.impl.h
@@ -19,7 +19,10 @@
 #include <memory.h>
 #include <stdio.h>
 
+#include <common/all-versions/VersionUtils.h>
+
 using ::android::hardware::audio::common::AUDIO_HAL_VERSION::HidlUtils;
+using ::android::hardware::audio::common::utils::mkEnumConverter;
 
 namespace android {
 namespace hardware {
@@ -32,7 +35,7 @@
                              EffectDescriptor* descriptor) {
     HidlUtils::uuidFromHal(halDescriptor.type, &descriptor->type);
     HidlUtils::uuidFromHal(halDescriptor.uuid, &descriptor->uuid);
-    descriptor->flags = EffectFlags(halDescriptor.flags);
+    descriptor->flags = mkEnumConverter<EffectFlags>(halDescriptor.flags);
     descriptor->cpuLoad = halDescriptor.cpuLoad;
     descriptor->memoryUsage = halDescriptor.memoryUsage;
     memcpy(descriptor->name.data(), halDescriptor.name, descriptor->name.size());
diff --git a/bluetooth/a2dp/1.0/vts/functional/Android.bp b/bluetooth/a2dp/1.0/vts/functional/Android.bp
new file mode 100644
index 0000000..f1ffc45
--- /dev/null
+++ b/bluetooth/a2dp/1.0/vts/functional/Android.bp
@@ -0,0 +1,26 @@
+//
+// Copyright (C) 2018 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_test {
+    name: "VtsHalBluetoothA2dpV1_0TargetTest",
+    defaults: ["VtsHalTargetTestDefaults"],
+    srcs: ["VtsHalBluetoothA2dpV1_0TargetTest.cpp"],
+    static_libs: [
+        "android.hardware.bluetooth@1.0",
+        "android.hardware.bluetooth.a2dp@1.0",
+        "libbluetooth-types",
+    ],
+}
diff --git a/bluetooth/a2dp/1.0/vts/functional/VtsHalBluetoothA2dpV1_0TargetTest.cpp b/bluetooth/a2dp/1.0/vts/functional/VtsHalBluetoothA2dpV1_0TargetTest.cpp
new file mode 100644
index 0000000..1a0342f
--- /dev/null
+++ b/bluetooth/a2dp/1.0/vts/functional/VtsHalBluetoothA2dpV1_0TargetTest.cpp
@@ -0,0 +1,126 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "bluetooth_a2dp_hidl_hal_test"
+
+#include <android-base/logging.h>
+#include <android/hardware/bluetooth/a2dp/1.0/IBluetoothAudioHost.h>
+#include <android/hardware/bluetooth/a2dp/1.0/IBluetoothAudioOffload.h>
+#include <hardware/bluetooth.h>
+#include <utils/Log.h>
+
+#include <VtsHalHidlTargetCallbackBase.h>
+#include <VtsHalHidlTargetTestBase.h>
+#include <VtsHalHidlTargetTestEnvBase.h>
+
+using ::android::hardware::bluetooth::a2dp::V1_0::IBluetoothAudioHost;
+using ::android::hardware::bluetooth::a2dp::V1_0::IBluetoothAudioOffload;
+using ::android::hardware::bluetooth::a2dp::V1_0::Status;
+using ::android::hardware::bluetooth::a2dp::V1_0::CodecType;
+using ::android::hardware::bluetooth::a2dp::V1_0::SampleRate;
+using ::android::hardware::bluetooth::a2dp::V1_0::BitsPerSample;
+using ::android::hardware::bluetooth::a2dp::V1_0::ChannelMode;
+using ::android::hardware::bluetooth::a2dp::V1_0::CodecConfiguration;
+using ::android::hardware::Return;
+using ::android::hardware::Void;
+using ::android::sp;
+
+// Test environment for Bluetooth HIDL A2DP HAL.
+class BluetoothA2dpHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
+   public:
+    // get the test environment singleton
+    static BluetoothA2dpHidlEnvironment* Instance() {
+        static BluetoothA2dpHidlEnvironment* instance = new BluetoothA2dpHidlEnvironment;
+        return instance;
+    }
+
+    virtual void registerTestServices() override { registerTestService<IBluetoothAudioOffload>(); }
+
+   private:
+    BluetoothA2dpHidlEnvironment() {}
+};
+
+// The main test class for Bluetooth A2DP HIDL HAL.
+class BluetoothA2dpHidlTest : public ::testing::VtsHalHidlTargetTestBase {
+   public:
+    virtual void SetUp() override {
+        // currently test passthrough mode only
+        audio_offload = ::testing::VtsHalHidlTargetTestBase::getService<IBluetoothAudioOffload>(
+            BluetoothA2dpHidlEnvironment::Instance()->getServiceName<IBluetoothAudioOffload>());
+        ASSERT_NE(audio_offload, nullptr);
+
+        audio_host = new BluetoothAudioHost(*this);
+        ASSERT_NE(audio_host, nullptr);
+
+        codec.codecType = CodecType::AAC;
+        codec.sampleRate = SampleRate::RATE_44100;
+        codec.bitsPerSample = BitsPerSample::BITS_16;
+        codec.channelMode = ChannelMode::STEREO;
+        codec.encodedAudioBitrate = 320000;
+        codec.peerMtu = 1000;
+    }
+
+    virtual void TearDown() override {}
+
+    // A simple test implementation of IBluetoothAudioHost.
+    class BluetoothAudioHost
+        : public ::testing::VtsHalHidlTargetCallbackBase<BluetoothA2dpHidlTest>,
+          public IBluetoothAudioHost {
+        BluetoothA2dpHidlTest& parent_;
+
+       public:
+        BluetoothAudioHost(BluetoothA2dpHidlTest& parent) : parent_(parent){};
+        virtual ~BluetoothAudioHost() = default;
+
+        Return<void> startStream() override {
+            parent_.audio_offload->streamStarted(Status::SUCCESS);
+            return Void();
+        };
+
+        Return<void> suspendStream() override {
+            parent_.audio_offload->streamSuspended(Status::SUCCESS);
+            return Void();
+        };
+
+        Return<void> stopStream() override { return Void(); };
+    };
+
+    // audio_host is for the Audio HAL to send stream start/suspend/stop commands to Bluetooth
+    sp<IBluetoothAudioHost> audio_host;
+    // audio_offload is for the Bluetooth HAL to report session started/ended and handled audio
+    // stream started/suspended
+    sp<IBluetoothAudioOffload> audio_offload;
+    // codec is the currently used codec
+    CodecConfiguration codec;
+};
+
+// Empty test: Initialize()/Close() are called in SetUp()/TearDown().
+TEST_F(BluetoothA2dpHidlTest, InitializeAndClose) {}
+
+// Test start and end session
+TEST_F(BluetoothA2dpHidlTest, StartAndEndSession) {
+    EXPECT_EQ(Status::SUCCESS, audio_offload->startSession(audio_host, codec));
+    audio_offload->endSession();
+}
+
+int main(int argc, char** argv) {
+    ::testing::AddGlobalTestEnvironment(BluetoothA2dpHidlEnvironment::Instance());
+    ::testing::InitGoogleTest(&argc, argv);
+    BluetoothA2dpHidlEnvironment::Instance()->init(&argc, argv);
+    int status = RUN_ALL_TESTS();
+    LOG(INFO) << "Test result = " << status;
+    return status;
+}
diff --git a/camera/device/3.2/default/CameraDeviceSession.cpp b/camera/device/3.2/default/CameraDeviceSession.cpp
index 5f89cde..60a57cd 100644
--- a/camera/device/3.2/default/CameraDeviceSession.cpp
+++ b/camera/device/3.2/default/CameraDeviceSession.cpp
@@ -645,7 +645,10 @@
                     result.fmqResultSize = result.result.size();
                     result.result.resize(0);
                 } else {
-                    ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__);
+                    ALOGW("%s: couldn't utilize fmq, fall back to hwbinder, result size: %zu,"
+                    "shared message queue available size: %zu",
+                        __FUNCTION__, result.result.size(),
+                        mResultMetadataQueue->availableToWrite());
                     result.fmqResultSize = 0;
                 }
             }
diff --git a/camera/provider/2.4/default/CameraProvider.cpp b/camera/provider/2.4/default/CameraProvider.cpp
index 8e37b26..6313939 100644
--- a/camera/provider/2.4/default/CameraProvider.cpp
+++ b/camera/provider/2.4/default/CameraProvider.cpp
@@ -298,7 +298,8 @@
         return true;
     }
 
-    mPreferredHal3MinorVersion = property_get_int32("ro.camera.wrapper.hal3TrebleMinorVersion", 3);
+    mPreferredHal3MinorVersion =
+        property_get_int32("ro.vendor.camera.wrapper.hal3TrebleMinorVersion", 3);
     ALOGV("Preferred HAL 3 minor version is %d", mPreferredHal3MinorVersion);
     switch(mPreferredHal3MinorVersion) {
         case 2:
diff --git a/camera/provider/2.4/vts/functional/Android.bp b/camera/provider/2.4/vts/functional/Android.bp
index 08b9222..ead4083 100644
--- a/camera/provider/2.4/vts/functional/Android.bp
+++ b/camera/provider/2.4/vts/functional/Android.bp
@@ -38,8 +38,11 @@
         "android.hardware.camera.device@3.3",
         "android.hardware.camera.device@3.4",
         "android.hardware.camera.provider@2.4",
+        "android.hardware.graphics.allocator@2.0",
         "android.hardware.graphics.common@1.0",
         "android.hardware.graphics.mapper@2.0",
+        "android.hidl.allocator@1.0",
         "libgrallocusage",
+        "libhidlmemory",
     ],
 }
diff --git a/camera/provider/2.4/vts/functional/VtsHalCameraProviderV2_4TargetTest.cpp b/camera/provider/2.4/vts/functional/VtsHalCameraProviderV2_4TargetTest.cpp
index 5feec87..637e280 100644
--- a/camera/provider/2.4/vts/functional/VtsHalCameraProviderV2_4TargetTest.cpp
+++ b/camera/provider/2.4/vts/functional/VtsHalCameraProviderV2_4TargetTest.cpp
@@ -48,6 +48,13 @@
 #include <system/camera_metadata.h>
 #include <ui/GraphicBuffer.h>
 
+#include <android/hardware/graphics/allocator/2.0/IAllocator.h>
+#include <android/hardware/graphics/mapper/2.0/IMapper.h>
+#include <android/hardware/graphics/mapper/2.0/types.h>
+#include <android/hidl/allocator/1.0/IAllocator.h>
+#include <android/hidl/memory/1.0/IMapper.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+
 #include <VtsHalHidlTargetTestBase.h>
 #include <VtsHalHidlTargetTestEnvBase.h>
 
@@ -105,6 +112,9 @@
 using ::android::hardware::camera::device::V1_0::HandleTimestampMessage;
 using ::android::hardware::MessageQueue;
 using ::android::hardware::kSynchronizedReadWrite;
+using ::android::hidl::allocator::V1_0::IAllocator;
+using ::android::hidl::memory::V1_0::IMemory;
+using ::android::hidl::memory::V1_0::IMapper;
 using ResultMetadataQueue = MessageQueue<uint8_t, kSynchronizedReadWrite>;
 using ::android::hidl::manager::V1_0::IServiceManager;
 
@@ -621,6 +631,8 @@
     void setParameters(
             const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device,
             const CameraParameters &cameraParams);
+    void allocateGraphicBuffer(uint32_t width, uint32_t height, uint64_t usage,
+            PixelFormat format, hidl_handle *buffer_handle /*out*/);
     void waitForFrameLocked(DataCallbackMsg msgFrame,
             std::unique_lock<std::mutex> &l);
     void openEmptyDeviceSession(const std::string &name,
@@ -3297,15 +3309,15 @@
                                                        });
         ASSERT_TRUE(ret.isOk());
 
-        sp<GraphicBuffer> gb = new GraphicBuffer(
-            previewStream.width, previewStream.height,
-            static_cast<int32_t>(halStreamConfig.streams[0].overrideFormat), 1,
-            android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
-                                            halStreamConfig.streams[0].consumerUsage));
-        ASSERT_NE(nullptr, gb.get());
+        hidl_handle buffer_handle;
+        allocateGraphicBuffer(previewStream.width, previewStream.height,
+                android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
+                    halStreamConfig.streams[0].consumerUsage),
+                halStreamConfig.streams[0].overrideFormat, &buffer_handle);
+
         StreamBuffer outputBuffer = {halStreamConfig.streams[0].id,
                                      bufferId,
-                                     hidl_handle(gb->getNativeBuffer()->handle),
+                                     buffer_handle,
                                      BufferStatus::OK,
                                      nullptr,
                                      nullptr};
@@ -3497,20 +3509,20 @@
         InFlightRequest inflightReq = {static_cast<ssize_t> (halStreamConfig.streams.size()), false,
             supportsPartialResults, partialResultCount, resultQueue};
 
-        std::vector<sp<GraphicBuffer>> graphicBuffers;
+        std::vector<hidl_handle> graphicBuffers;
         graphicBuffers.reserve(halStreamConfig.streams.size());
         ::android::hardware::hidl_vec<StreamBuffer> outputBuffers;
         outputBuffers.resize(halStreamConfig.streams.size());
         size_t k = 0;
         for (const auto& halStream : halStreamConfig.streams) {
-            sp<GraphicBuffer> gb = new GraphicBuffer(previewStream.width, previewStream.height,
-                    static_cast<int32_t>(halStream.v3_3.v3_2.overrideFormat), 1,
-                    android_convertGralloc1To0Usage(
-                        halStream.v3_3.v3_2.producerUsage, halStream.v3_3.v3_2.consumerUsage));
-            ASSERT_NE(nullptr, gb.get());
-            graphicBuffers.push_back(gb);
-            outputBuffers[k] = {halStream.v3_3.v3_2.id, bufferId,
-                hidl_handle(gb->getNativeBuffer()->handle), BufferStatus::OK, nullptr, nullptr};
+            hidl_handle buffer_handle;
+            allocateGraphicBuffer(previewStream.width, previewStream.height,
+                    android_convertGralloc1To0Usage(halStream.v3_3.v3_2.producerUsage,
+                        halStream.v3_3.v3_2.consumerUsage),
+                    halStream.v3_3.v3_2.overrideFormat, &buffer_handle);
+            graphicBuffers.push_back(buffer_handle);
+            outputBuffers[k] = {halStream.v3_3.v3_2.id, bufferId, buffer_handle,
+                BufferStatus::OK, nullptr, nullptr};
             bufferId++;
             k++;
         }
@@ -3689,7 +3701,7 @@
 
         ::android::hardware::camera::common::V1_0::helper::CameraMetadata requestMeta;
         StreamBuffer emptyInputBuffer = {-1, 0, nullptr, BufferStatus::ERROR, nullptr, nullptr};
-        sp<GraphicBuffer> buffers[kBurstFrameCount];
+        hidl_handle buffers[kBurstFrameCount];
         StreamBuffer outputBuffers[kBurstFrameCount];
         CaptureRequest requests[kBurstFrameCount];
         InFlightRequest inflightReqs[kBurstFrameCount];
@@ -3699,15 +3711,13 @@
             std::unique_lock<std::mutex> l(mLock);
 
             isoValues[i] = ((i % 2) == 0) ? isoRange.data.i32[0] : isoRange.data.i32[1];
-            buffers[i] = new GraphicBuffer( previewStream.width, previewStream.height,
-                static_cast<int32_t>(halStreamConfig.streams[0].overrideFormat), 1,
-                android_convertGralloc1To0Usage( halStreamConfig.streams[0].producerUsage,
-                    halStreamConfig.streams[0].consumerUsage));
-            ASSERT_NE(nullptr, buffers[i].get());
+            allocateGraphicBuffer(previewStream.width, previewStream.height,
+                    android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
+                        halStreamConfig.streams[0].consumerUsage),
+                    halStreamConfig.streams[0].overrideFormat, &buffers[i]);
 
             outputBuffers[i] = {halStreamConfig.streams[0].id, bufferId + i,
-                hidl_handle( buffers[i]->getNativeBuffer()->handle), BufferStatus::OK, nullptr,
-                nullptr};
+                buffers[i], BufferStatus::OK, nullptr, nullptr};
             requestMeta.append(reinterpret_cast<camera_metadata_t *> (settings.data()));
 
             // Disable all 3A routines
@@ -3795,15 +3805,15 @@
                 &supportsPartialResults /*out*/,
                 &partialResultCount /*out*/);
 
-        sp<GraphicBuffer> gb = new GraphicBuffer(
-            previewStream.width, previewStream.height,
-            static_cast<int32_t>(halStreamConfig.streams[0].overrideFormat), 1,
-            android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
-                                            halStreamConfig.streams[0].consumerUsage));
+        hidl_handle buffer_handle;
+        allocateGraphicBuffer(previewStream.width, previewStream.height,
+                android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
+                    halStreamConfig.streams[0].consumerUsage),
+                halStreamConfig.streams[0].overrideFormat, &buffer_handle);
 
         StreamBuffer outputBuffer = {halStreamConfig.streams[0].id,
                                      bufferId,
-                                     hidl_handle(gb->getNativeBuffer()->handle),
+                                     buffer_handle,
                                      BufferStatus::OK,
                                      nullptr,
                                      nullptr};
@@ -3953,15 +3963,15 @@
                                                        });
         ASSERT_TRUE(ret.isOk());
 
-        sp<GraphicBuffer> gb = new GraphicBuffer(
-            previewStream.width, previewStream.height,
-            static_cast<int32_t>(halStreamConfig.streams[0].overrideFormat), 1,
-            android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
-                                            halStreamConfig.streams[0].consumerUsage));
-        ASSERT_NE(nullptr, gb.get());
+        hidl_handle buffer_handle;
+        allocateGraphicBuffer(previewStream.width, previewStream.height,
+                android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
+                    halStreamConfig.streams[0].consumerUsage),
+                halStreamConfig.streams[0].overrideFormat, &buffer_handle);
+
         StreamBuffer outputBuffer = {halStreamConfig.streams[0].id,
                                      bufferId,
-                                     hidl_handle(gb->getNativeBuffer()->handle),
+                                     buffer_handle,
                                      BufferStatus::OK,
                                      nullptr,
                                      nullptr};
@@ -4794,6 +4804,44 @@
     ASSERT_EQ(Status::OK, returnStatus);
 }
 
+void CameraHidlTest::allocateGraphicBuffer(uint32_t width, uint32_t height, uint64_t usage,
+        PixelFormat format, hidl_handle *buffer_handle /*out*/) {
+    ASSERT_NE(buffer_handle, nullptr);
+
+    sp<android::hardware::graphics::allocator::V2_0::IAllocator> allocator =
+        android::hardware::graphics::allocator::V2_0::IAllocator::getService();
+    ASSERT_NE(nullptr, allocator.get());
+
+    sp<android::hardware::graphics::mapper::V2_0::IMapper> mapper =
+        android::hardware::graphics::mapper::V2_0::IMapper::getService();
+    ASSERT_NE(mapper.get(), nullptr);
+
+    android::hardware::graphics::mapper::V2_0::IMapper::BufferDescriptorInfo descriptorInfo {};
+    descriptorInfo.width = width;
+    descriptorInfo.height = height;
+    descriptorInfo.layerCount = 1;
+    descriptorInfo.format = format;
+    descriptorInfo.usage = usage;
+
+    ::android::hardware::hidl_vec<uint32_t> descriptor;
+    auto ret = mapper->createDescriptor(
+        descriptorInfo, [&descriptor](android::hardware::graphics::mapper::V2_0::Error err,
+                            ::android::hardware::hidl_vec<uint32_t> desc) {
+            ASSERT_EQ(err, android::hardware::graphics::mapper::V2_0::Error::NONE);
+            descriptor = desc;
+        });
+    ASSERT_TRUE(ret.isOk());
+
+    ret = allocator->allocate(descriptor, 1u,
+        [&](android::hardware::graphics::mapper::V2_0::Error err, uint32_t /*stride*/,
+            const ::android::hardware::hidl_vec<::android::hardware::hidl_handle>& buffers) {
+            ASSERT_EQ(android::hardware::graphics::mapper::V2_0::Error::NONE, err);
+            ASSERT_EQ(buffers.size(), 1u);
+            *buffer_handle = buffers[0];
+        });
+    ASSERT_TRUE(ret.isOk());
+}
+
 int main(int argc, char **argv) {
   ::testing::AddGlobalTestEnvironment(CameraHidlEnvironment::Instance());
   ::testing::InitGoogleTest(&argc, argv);
diff --git a/cas/1.0/default/CasImpl.cpp b/cas/1.0/default/CasImpl.cpp
index 2ac1c4f..178020e 100644
--- a/cas/1.0/default/CasImpl.cpp
+++ b/cas/1.0/default/CasImpl.cpp
@@ -31,19 +31,8 @@
 namespace V1_0 {
 namespace implementation {
 
-struct CasImpl::PluginHolder : public RefBase {
-public:
-    explicit PluginHolder(CasPlugin *plugin) : mPlugin(plugin) {}
-    ~PluginHolder() { if (mPlugin != NULL) delete mPlugin; }
-    CasPlugin* get() { return mPlugin; }
-
-private:
-    CasPlugin *mPlugin;
-    DISALLOW_EVIL_CONSTRUCTORS(PluginHolder);
-};
-
 CasImpl::CasImpl(const sp<ICasListener> &listener)
-    : mPluginHolder(NULL), mListener(listener) {
+    : mListener(listener) {
     ALOGV("CTOR");
 }
 
@@ -69,7 +58,8 @@
 
 void CasImpl::init(const sp<SharedLibrary>& library, CasPlugin *plugin) {
     mLibrary = library;
-    mPluginHolder = new PluginHolder(plugin);
+    std::shared_ptr<CasPlugin> holder(plugin);
+    std::atomic_store(&mPluginHolder, holder);
 }
 
 void CasImpl::onEvent(
@@ -88,22 +78,22 @@
 
 Return<Status> CasImpl::setPrivateData(const HidlCasData& pvtData) {
     ALOGV("%s", __FUNCTION__);
-    sp<PluginHolder> holder = mPluginHolder;
-    if (holder == NULL) {
+    std::shared_ptr<CasPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
         return toStatus(INVALID_OPERATION);
     }
-    return toStatus(holder->get()->setPrivateData(pvtData));
+    return toStatus(holder->setPrivateData(pvtData));
 }
 
 Return<void> CasImpl::openSession(openSession_cb _hidl_cb) {
     ALOGV("%s", __FUNCTION__);
     CasSessionId sessionId;
 
-    sp<PluginHolder> holder = mPluginHolder;
+    std::shared_ptr<CasPlugin> holder = std::atomic_load(&mPluginHolder);
     status_t err = INVALID_OPERATION;
-    if (holder != NULL) {
-        err = holder->get()->openSession(&sessionId);
-        holder.clear();
+    if (holder.get() != nullptr) {
+        err = holder->openSession(&sessionId);
+        holder.reset();
     }
 
     _hidl_cb(toStatus(err), sessionId);
@@ -115,87 +105,87 @@
         const HidlCasSessionId &sessionId, const HidlCasData& pvtData) {
     ALOGV("%s: sessionId=%s", __FUNCTION__,
             sessionIdToString(sessionId).string());
-    sp<PluginHolder> holder = mPluginHolder;
-    if (holder == NULL) {
+    std::shared_ptr<CasPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
         return toStatus(INVALID_OPERATION);
     }
-    return toStatus(
-            holder->get()->setSessionPrivateData(
-                    sessionId, pvtData));
+    return toStatus(holder->setSessionPrivateData(sessionId, pvtData));
 }
 
 Return<Status> CasImpl::closeSession(const HidlCasSessionId &sessionId) {
     ALOGV("%s: sessionId=%s", __FUNCTION__,
             sessionIdToString(sessionId).string());
-    sp<PluginHolder> holder = mPluginHolder;
-    if (holder == NULL) {
+    std::shared_ptr<CasPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
         return toStatus(INVALID_OPERATION);
     }
-    return toStatus(holder->get()->closeSession(sessionId));
+    return toStatus(holder->closeSession(sessionId));
 }
 
 Return<Status> CasImpl::processEcm(
         const HidlCasSessionId &sessionId, const HidlCasData& ecm) {
     ALOGV("%s: sessionId=%s", __FUNCTION__,
             sessionIdToString(sessionId).string());
-    sp<PluginHolder> holder = mPluginHolder;
-    if (holder == NULL) {
+    std::shared_ptr<CasPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
         return toStatus(INVALID_OPERATION);
     }
 
-    return toStatus(holder->get()->processEcm(sessionId, ecm));
+    return toStatus(holder->processEcm(sessionId, ecm));
 }
 
 Return<Status> CasImpl::processEmm(const HidlCasData& emm) {
     ALOGV("%s", __FUNCTION__);
-    sp<PluginHolder> holder = mPluginHolder;
-    if (holder == NULL) {
+    std::shared_ptr<CasPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
         return toStatus(INVALID_OPERATION);
     }
 
-    return toStatus(holder->get()->processEmm(emm));
+    return toStatus(holder->processEmm(emm));
 }
 
 Return<Status> CasImpl::sendEvent(
         int32_t event, int32_t arg,
         const HidlCasData& eventData) {
     ALOGV("%s", __FUNCTION__);
-    sp<PluginHolder> holder = mPluginHolder;
-    if (holder == NULL) {
+    std::shared_ptr<CasPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
         return toStatus(INVALID_OPERATION);
     }
 
-    status_t err = holder->get()->sendEvent(event, arg, eventData);
+    status_t err = holder->sendEvent(event, arg, eventData);
     return toStatus(err);
 }
 
 Return<Status> CasImpl::provision(const hidl_string& provisionString) {
     ALOGV("%s: provisionString=%s", __FUNCTION__, provisionString.c_str());
-    sp<PluginHolder> holder = mPluginHolder;
-    if (holder == NULL) {
+    std::shared_ptr<CasPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
         return toStatus(INVALID_OPERATION);
     }
 
-    return toStatus(holder->get()->provision(String8(provisionString.c_str())));
+    return toStatus(holder->provision(String8(provisionString.c_str())));
 }
 
 Return<Status> CasImpl::refreshEntitlements(
         int32_t refreshType,
         const HidlCasData& refreshData) {
     ALOGV("%s", __FUNCTION__);
-    sp<PluginHolder> holder = mPluginHolder;
-    if (holder == NULL) {
+    std::shared_ptr<CasPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
         return toStatus(INVALID_OPERATION);
     }
 
-    status_t err = holder->get()->refreshEntitlements(refreshType, refreshData);
+    status_t err = holder->refreshEntitlements(refreshType, refreshData);
     return toStatus(err);
 }
 
 Return<Status> CasImpl::release() {
-    ALOGV("%s: plugin=%p", __FUNCTION__,
-            mPluginHolder != NULL ? mPluginHolder->get() : NULL);
-    mPluginHolder.clear();
+    ALOGV("%s: plugin=%p", __FUNCTION__, mPluginHolder.get());
+
+    std::shared_ptr<CasPlugin> holder(nullptr);
+    std::atomic_store(&mPluginHolder, holder);
+
     return Status::OK;
 }
 
diff --git a/cas/1.0/default/CasImpl.h b/cas/1.0/default/CasImpl.h
index 841d64e..d792838 100644
--- a/cas/1.0/default/CasImpl.h
+++ b/cas/1.0/default/CasImpl.h
@@ -88,7 +88,7 @@
 private:
     struct PluginHolder;
     sp<SharedLibrary> mLibrary;
-    sp<PluginHolder> mPluginHolder;
+    std::shared_ptr<CasPlugin> mPluginHolder;
     sp<ICasListener> mListener;
 
     DISALLOW_EVIL_CONSTRUCTORS(CasImpl);
diff --git a/cas/1.0/default/DescramblerImpl.cpp b/cas/1.0/default/DescramblerImpl.cpp
index 36699ba..1f89933 100644
--- a/cas/1.0/default/DescramblerImpl.cpp
+++ b/cas/1.0/default/DescramblerImpl.cpp
@@ -50,12 +50,12 @@
 
 DescramblerImpl::DescramblerImpl(
         const sp<SharedLibrary>& library, DescramblerPlugin *plugin) :
-        mLibrary(library), mPlugin(plugin) {
-    ALOGV("CTOR: mPlugin=%p", mPlugin);
+        mLibrary(library), mPluginHolder(plugin) {
+    ALOGV("CTOR: plugin=%p", mPluginHolder.get());
 }
 
 DescramblerImpl::~DescramblerImpl() {
-    ALOGV("DTOR: mPlugin=%p", mPlugin);
+    ALOGV("DTOR: plugin=%p", mPluginHolder.get());
     release();
 }
 
@@ -63,12 +63,22 @@
     ALOGV("%s: sessionId=%s", __FUNCTION__,
             sessionIdToString(sessionId).string());
 
-    return toStatus(mPlugin->setMediaCasSession(sessionId));
+    std::shared_ptr<DescramblerPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
+        return toStatus(INVALID_OPERATION);
+    }
+
+    return toStatus(holder->setMediaCasSession(sessionId));
 }
 
 Return<bool> DescramblerImpl::requiresSecureDecoderComponent(
         const hidl_string& mime) {
-    return mPlugin->requiresSecureDecoderComponent(String8(mime.c_str()));
+    std::shared_ptr<DescramblerPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
+        return false;
+    }
+
+    return holder->requiresSecureDecoderComponent(String8(mime.c_str()));
 }
 
 static inline bool validateRangeForSize(
@@ -86,12 +96,23 @@
         descramble_cb _hidl_cb) {
     ALOGV("%s", __FUNCTION__);
 
+    // Get a local copy of the shared_ptr for the plugin. Note that before
+    // calling the HIDL callback, this shared_ptr must be manually reset,
+    // since the client side could proceed as soon as the callback is called
+    // without waiting for this method to go out of scope.
+    std::shared_ptr<DescramblerPlugin> holder = std::atomic_load(&mPluginHolder);
+    if (holder.get() == nullptr) {
+        _hidl_cb(toStatus(INVALID_OPERATION), 0, NULL);
+        return Void();
+    }
+
     sp<IMemory> srcMem = mapMemory(srcBuffer.heapBase);
 
     // Validate if the offset and size in the SharedBuffer is consistent with the
     // mapped ashmem, since the offset and size is controlled by client.
     if (srcMem == NULL) {
         ALOGE("Failed to map src buffer.");
+        holder.reset();
         _hidl_cb(toStatus(BAD_VALUE), 0, NULL);
         return Void();
     }
@@ -100,6 +121,7 @@
         ALOGE("Invalid src buffer range: offset %llu, size %llu, srcMem size %llu",
                 srcBuffer.offset, srcBuffer.size, (uint64_t)srcMem->getSize());
         android_errorWriteLog(0x534e4554, "67962232");
+        holder.reset();
         _hidl_cb(toStatus(BAD_VALUE), 0, NULL);
         return Void();
     }
@@ -117,6 +139,7 @@
                 "srcOffset %llu, totalBytesInSubSamples %llu, srcBuffer size %llu",
                 srcOffset, totalBytesInSubSamples, srcBuffer.size);
         android_errorWriteLog(0x534e4554, "67962232");
+        holder.reset();
         _hidl_cb(toStatus(BAD_VALUE), 0, NULL);
         return Void();
     }
@@ -135,6 +158,7 @@
                     "dstOffset %llu, totalBytesInSubSamples %llu, srcBuffer size %llu",
                     dstOffset, totalBytesInSubSamples, srcBuffer.size);
             android_errorWriteLog(0x534e4554, "67962232");
+            holder.reset();
             _hidl_cb(toStatus(BAD_VALUE), 0, NULL);
             return Void();
         }
@@ -146,7 +170,7 @@
     // Casting hidl SubSample to DescramblerPlugin::SubSample, but need
     // to ensure structs are actually idential
 
-    int32_t result = mPlugin->descramble(
+    int32_t result = holder->descramble(
             dstBuffer.type != BufferType::SHARED_MEMORY,
             (DescramblerPlugin::ScramblingControl)scramblingControl,
             subSamples.size(),
@@ -157,17 +181,17 @@
             dstOffset,
             NULL);
 
+    holder.reset();
     _hidl_cb(toStatus(result >= 0 ? OK : result), result, NULL);
     return Void();
 }
 
 Return<Status> DescramblerImpl::release() {
-    ALOGV("%s: mPlugin=%p", __FUNCTION__, mPlugin);
+    ALOGV("%s: plugin=%p", __FUNCTION__, mPluginHolder.get());
 
-    if (mPlugin != NULL) {
-        delete mPlugin;
-        mPlugin = NULL;
-    }
+    std::shared_ptr<DescramblerPlugin> holder(nullptr);
+    std::atomic_store(&mPluginHolder, holder);
+
     return Status::OK;
 }
 
diff --git a/cas/1.0/default/DescramblerImpl.h b/cas/1.0/default/DescramblerImpl.h
index d3b146e..305f115 100644
--- a/cas/1.0/default/DescramblerImpl.h
+++ b/cas/1.0/default/DescramblerImpl.h
@@ -55,7 +55,7 @@
 
 private:
     sp<SharedLibrary> mLibrary;
-    DescramblerPlugin *mPlugin;
+    std::shared_ptr<DescramblerPlugin> mPluginHolder;
 
     DISALLOW_EVIL_CONSTRUCTORS(DescramblerImpl);
 };
diff --git a/cas/1.0/default/MediaCasService.cpp b/cas/1.0/default/MediaCasService.cpp
index ca43224..dbdd008 100644
--- a/cas/1.0/default/MediaCasService.cpp
+++ b/cas/1.0/default/MediaCasService.cpp
@@ -69,7 +69,7 @@
     if (mCasLoader.findFactoryForScheme(CA_system_id, &library, &factory)) {
         CasPlugin *plugin = NULL;
         sp<CasImpl> casImpl = new CasImpl(listener);
-        if (factory->createPlugin(CA_system_id, (uint64_t)casImpl.get(),
+        if (factory->createPlugin(CA_system_id, casImpl.get(),
                 &CasImpl::OnEvent, &plugin) == OK && plugin != NULL) {
             casImpl->init(library, plugin);
             result = casImpl;
diff --git a/configstore/1.0/default/seccomp_policy/configstore@1.0-arm64.policy b/configstore/1.0/default/seccomp_policy/configstore@1.0-arm64.policy
index f2dd892..d523a1a 100644
--- a/configstore/1.0/default/seccomp_policy/configstore@1.0-arm64.policy
+++ b/configstore/1.0/default/seccomp_policy/configstore@1.0-arm64.policy
@@ -42,6 +42,7 @@
 rt_sigreturn: 1
 getrlimit: 1
 madvise: 1
+getdents64: 1
 clock_gettime: 1
 
 # used during process crash by crash_dump to dump process info
diff --git a/current.txt b/current.txt
index 5aa6259..e79e2d6 100644
--- a/current.txt
+++ b/current.txt
@@ -241,11 +241,11 @@
 86ba9c03978b79a742e990420bc5ced0673d25a939f82572996bef92621e2014 android.hardware.cas@1.0::IMediaCasService
 503da837d1a67cbdb7c08a033e927e5430ae1b159d98bf72c6336b4dcc5e76f5 android.hardware.cas.native@1.0::types
 619600109232ed64b827c8a11beed8070b1827ae464547d7aa146cf0473b4bca android.hardware.cas.native@1.0::IDescrambler
-246a56d37d57a47224562c9d077b4a2886ce6242b9311bd98a17325944c280d7 android.hardware.neuralnetworks@1.0::types
 93eb3757ceaf21590fa4cd1d4a7dfe3b3794af5396100a6d25630879352abce9 android.hardware.neuralnetworks@1.0::IDevice
 f66f9a38541bf92001d3adcce678cd7e3da2262124befb460b1c9aea9492813b android.hardware.neuralnetworks@1.0::IExecutionCallback
 953607822954435874f4b81686440a604e2a88cdd2d9164c6293f3d5772510d7 android.hardware.neuralnetworks@1.0::IPreparedModel
 73e03573494ba96f0e711ab7f1956c5b2d54c3da690cd7ecf4d6d0f287447730 android.hardware.neuralnetworks@1.0::IPreparedModelCallback
+246a56d37d57a47224562c9d077b4a2886ce6242b9311bd98a17325944c280d7 android.hardware.neuralnetworks@1.0::types
 f4945e397b5dea41bb64518dfde59be71245d8a125fd1e0acffeb57ac7b08fed android.hardware.thermal@1.1::IThermal
 c8bc853546dd55584611def2a9fa1d99f657e3366c976d2f60fe6b8aa6d2cb87 android.hardware.thermal@1.1::IThermalCallback
 
@@ -258,7 +258,9 @@
 fb92e2b40f8e9d494e8fd3b4ac18499a3216342e7cff160714c3bbf3660b6e79 android.hardware.gnss@1.0::IGnssConfiguration
 251594ea9b27447bfa005ebd806e58fb0ae4aad84a69938129c9800ec0c64eda android.hardware.gnss@1.0::IGnssMeasurementCallback
 4e7169919d24fbe5573e5bcd683d0bd7abf553a4e6c34c41f9dfc1e12050db07 android.hardware.gnss@1.0::IGnssNavigationMessageCallback
-08ae9fc24f21f809e9b8501dfbc803662fcd6a8d8e1fb71d9dd7c0c4c6f5d556 android.hardware.neuralnetworks@1.0::types
+5804ca86611d72e5481f022b3a0c1b334217f2e4988dad25730c42af2d1f4d1c android.hardware.neuralnetworks@1.0::IDevice
+12e8dca4ab7d8aadd0ef8f1b438021938e2396139e85db2ed65783b08800aa52 android.hardware.neuralnetworks@1.0::IExecutionCallback
+702f9a4cd3b7486a4b04f7155b737757ac2ca4b3548976d5782ad3cae9ff9780 android.hardware.neuralnetworks@1.0::types
 d4840db8efabdf1e4b344fc981cd36e5fe81a39aff6e199f6d06c1c8da413efd android.hardware.radio@1.0::types
 b280c4704dfcc548a9bf127b59b7c3578f460c50cce70a06b66fe0df8b27cff0 android.hardware.wifi@1.0::types
 
@@ -286,7 +288,7 @@
 3661fa0623056922fdc4235ac5a9c91a2d066ab6f1ab4297e3b240fe302ba500 android.hardware.audio.effect@4.0::IPresetReverbEffect
 e88e520f8c98a62fccd8d5316c6687808f775de145d1405a7a9a66587ee6a001 android.hardware.audio.effect@4.0::IVirtualizerEffect
 fe28829dab10d171783b79ac9cc45412739f8ff275e90228d7c6370ef189b859 android.hardware.audio.effect@4.0::IVisualizerEffect
-5d92f6fd58d40c56611bb12f03be6af9bcf2bb73dfb35b77a99bbf2c3ea5439b android.hardware.audio.effect@4.0::types
+21c8a702579356480236c6851b5b2c16b9bd369ce12bdd6ffdc4626a89f34f73  android.hardware.audio.effect@4.0::types
 42a06dc288f61b0690580f3d37b30b663c31d74d50bb58d0772386b550d5faab android.hardware.authsecret@1.0::IAuthSecret
 a0f93c768c353cecee6237fe479bce47404eb10b629fafe07e32a054fd67f2af android.hardware.automotive.audiocontrol@1.0::IAudioControl
 ca515ff4b63c80cf5ad7b3395c997c57d6c56157361f6c367d1c96f23cc4860a android.hardware.automotive.audiocontrol@1.0::types
@@ -336,8 +338,8 @@
 b8c7ed58aa8740361e63d0ce9e7c94227572a629f356958840b34809d2393a7c android.hardware.media.bufferpool@1.0::IClientManager
 4a2c0dc82780e6c90731725a103feab8ab6ecf85a64e049b9cbd2b2c61620fe1 android.hardware.media.bufferpool@1.0::IConnection
 6aef1218e5949f867b0104752ac536c1b707222a403341720de90141df129e3e android.hardware.media.bufferpool@1.0::types
-1529409ed76ae87facab152b770495e9e62544fcc5215daabf146c28d588bab9 android.hardware.neuralnetworks@1.1::IDevice
-e808a6f61cd7b47887c599d8843e67a2dcbf4ec5aadd5d22fdce93020070ef1b android.hardware.neuralnetworks@1.1::types
+3e4d8e0085ebe8549efb8ad4b8b400a141a3fa3f47ae23696b3e05a1612eb003 android.hardware.neuralnetworks@1.1::IDevice
+50db076b03a6760557fc60ef433ba9dd2ff983cf3305eeb504b0fff3eaa604ff android.hardware.neuralnetworks@1.1::types
 8d3d86da0bfa4bf070970d8303c659f67f35d670c287d45a3f542e4fedadd578 android.hardware.nfc@1.1::INfc
 e85f566698d2a2c28100e264fcf2c691a066756ddf8dd341d009ff50cfe10614 android.hardware.nfc@1.1::INfcClientCallback
 5e278fcaa3287d397d8eebe1c22aaa28150f5caae1cf9381cd6dc32cb37899c5 android.hardware.nfc@1.1::types
diff --git a/health/2.0/README b/health/2.0/README
index 2281f98..11e6a7a 100644
--- a/health/2.0/README
+++ b/health/2.0/README
@@ -71,6 +71,7 @@
     class hal
     user system
     group system
+    file /dev/kmsg w
 
 5. Create device/<manufacturer>/<device>/health/HealthService.cpp:
 
diff --git a/health/2.0/vts/functional/VtsHalHealthV2_0TargetTest.cpp b/health/2.0/vts/functional/VtsHalHealthV2_0TargetTest.cpp
index 972bc7f..c5431e4 100644
--- a/health/2.0/vts/functional/VtsHalHealthV2_0TargetTest.cpp
+++ b/health/2.0/vts/functional/VtsHalHealthV2_0TargetTest.cpp
@@ -190,18 +190,6 @@
     return true;
 }
 
-bool verifyDiskStats(const hidl_vec<struct DiskStats>& stats) {
-    for (size_t i = 0; i < stats.size(); i++) {
-        if (!(stats[i].reads > 0 && stats[i].readMerges > 0 && stats[i].readSectors > 0 &&
-              stats[i].readTicks > 0 && stats[i].writes > 0 && stats[i].writeMerges > 0 &&
-              stats[i].writeSectors > 0 && stats[i].writeTicks > 0 && stats[i].ioTicks > 0)) {
-            return false;
-        }
-    }
-
-    return true;
-}
-
 template <typename T>
 bool verifyEnum(T value) {
     for (auto it : hidl_enum_iterator<T>()) {
@@ -214,7 +202,7 @@
 }
 
 bool verifyHealthInfo(const HealthInfo& health_info) {
-    if (!verifyStorageInfo(health_info.storageInfos) || !verifyDiskStats(health_info.diskStats)) {
+    if (!verifyStorageInfo(health_info.storageInfos)) {
         return false;
     }
 
@@ -264,7 +252,7 @@
         EXPECT_VALID_OR_UNSUPPORTED_PROP(result, toString(value), verifyStorageInfo(value));
     }));
     EXPECT_OK(mHealth->getDiskStats([](auto result, auto& value) {
-        EXPECT_VALID_OR_UNSUPPORTED_PROP(result, toString(value), verifyDiskStats(value));
+        EXPECT_VALID_OR_UNSUPPORTED_PROP(result, toString(value), true);
     }));
     EXPECT_OK(mHealth->getHealthInfo([](auto result, auto& value) {
         EXPECT_VALID_OR_UNSUPPORTED_PROP(result, toString(value), verifyHealthInfo(value));
diff --git a/keymaster/3.0/vts/functional/keymaster_hidl_hal_test.cpp b/keymaster/3.0/vts/functional/keymaster_hidl_hal_test.cpp
index fbe5237..3a181a9 100644
--- a/keymaster/3.0/vts/functional/keymaster_hidl_hal_test.cpp
+++ b/keymaster/3.0/vts/functional/keymaster_hidl_hal_test.cpp
@@ -2918,28 +2918,6 @@
 }
 
 /*
- * EncryptionOperationsTest.AesEcbWithUserId
- *
- * Verifies that AES ECB mode works when Tag::USER_ID is specified.
- */
-TEST_F(EncryptionOperationsTest, AesEcbWithUserId) {
-    string key = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-    ASSERT_EQ(ErrorCode::OK, ImportKey(AuthorizationSetBuilder()
-                                           .Authorization(TAG_NO_AUTH_REQUIRED)
-                                           .Authorization(TAG_USER_ID, 0)
-                                           .AesEncryptionKey(key.size() * 8)
-                                           .EcbMode()
-                                           .Padding(PaddingMode::PKCS7),
-                                       KeyFormat::RAW, key));
-
-    string message = "Hello World!";
-    auto params = AuthorizationSetBuilder().BlockMode(BlockMode::ECB).Padding(PaddingMode::PKCS7);
-    string ciphertext = EncryptMessage(message, params);
-    string plaintext = DecryptMessage(ciphertext, params);
-    EXPECT_EQ(message, plaintext);
-}
-
-/*
  * EncryptionOperationsTest.AesEcbRoundTripSuccess
  *
  * Verifies that AES encryption fails in the correct way when an unauthorized mode is specified.
diff --git a/keymaster/4.0/vts/functional/HmacKeySharingTest.cpp b/keymaster/4.0/vts/functional/HmacKeySharingTest.cpp
index 96c47a8..f159796 100644
--- a/keymaster/4.0/vts/functional/HmacKeySharingTest.cpp
+++ b/keymaster/4.0/vts/functional/HmacKeySharingTest.cpp
@@ -136,6 +136,7 @@
 
     responses = computeSharedHmac(all_keymasters(), params);
     ASSERT_GT(responses.size(), 0U);
+    ASSERT_EQ(32U, responses[0].sharing_check.size());
     verifyResponses(responses[0].sharing_check, responses);
 }
 
@@ -216,7 +217,11 @@
     // matter what value is in the additional byte; it changes the seed regardless.
     auto param_to_tweak = rand() % params.size();
     auto& to_tweak = params[param_to_tweak].seed;
-    to_tweak.resize(to_tweak.size() + 1);
+    ASSERT_TRUE(to_tweak.size() == 32 || to_tweak.size() == 0);
+    if (!to_tweak.size()) {
+        to_tweak.resize(32);  // Contents don't matter; a little randomization is nice.
+    }
+    to_tweak[0]++;
 
     responses = computeSharedHmac(all_keymasters(), params);
     for (size_t i = 0; i < responses.size(); ++i) {
diff --git a/neuralnetworks/1.0/IDevice.hal b/neuralnetworks/1.0/IDevice.hal
index 49c2967..62fb2ba 100644
--- a/neuralnetworks/1.0/IDevice.hal
+++ b/neuralnetworks/1.0/IDevice.hal
@@ -36,7 +36,7 @@
     /**
      * Gets the supported operations in a model.
      *
-     * getSupportedSubgraph indicates which operations of a model are fully
+     * getSupportedOperations indicates which operations of a model are fully
      * supported by the vendor driver. If an operation may not be supported for
      * any reason, getSupportedOperations must return false for that operation.
      *
diff --git a/neuralnetworks/1.0/IExecutionCallback.hal b/neuralnetworks/1.0/IExecutionCallback.hal
index ef0f454..9c06166 100644
--- a/neuralnetworks/1.0/IExecutionCallback.hal
+++ b/neuralnetworks/1.0/IExecutionCallback.hal
@@ -28,7 +28,7 @@
      * ErrorStatus resulting from the execution. If the asynchronous task
      * is not launched, notify must be invoked with the appropriate error.
      *
-     * @return param Error status returned from launching the asynchronous task
+     * @param status Error status returned from launching the asynchronous task
      *               (if the launch fails) or from the asynchronous task itself
      *               (if the launch succeeds). Must be:
      *               - NONE if the asynchronous execution was successful
diff --git a/neuralnetworks/1.0/types.hal b/neuralnetworks/1.0/types.hal
index c97a00b..8c07fcc 100644
--- a/neuralnetworks/1.0/types.hal
+++ b/neuralnetworks/1.0/types.hal
@@ -24,38 +24,40 @@
  * Types prefaced with TENSOR_* must be used for tensor data (i.e., tensors
  * with at least one dimension). Types not prefaced by TENSOR_* represent
  * scalar values and must have no dimensions.
+ *
+ * Although many types are defined, most operators accept just a few
+ * types. Most used are {@link OperandType::TENSOR_FLOAT32},
+ * {@link OperandType::TENSOR_QUANT8_ASYMM},
+ * and {@link OperandType::INT32}.
  */
 enum OperandType : int32_t {
-    /**
-     * The following entries are used to declare scalars.
-     */
+    /** A 32 bit floating point scalar value. */
     FLOAT32             = 0,
+    /** A signed 32 bit integer scalar value. */
     INT32               = 1,
+    /** An unsigned 32 bit integer scalar value. */
     UINT32              = 2,
 
-    /**
-     * The following entries are used to declare tensors.
-     */
+    /** A tensor of 32 bit floating point values. */
     TENSOR_FLOAT32      = 3,
+    /** A tensor of 32 bit integer values. */
     TENSOR_INT32        = 4,
-
-    /**
-     * A tensor of 8 bit integers that represent real numbers.
+    /** A tensor of 8 bit integers that represent real numbers.
      *
      * Attached to this tensor are two numbers that can be used to convert the
      * 8 bit integer to the real value and vice versa. These two numbers are:
-     * - scale: a 32 bit floating point value
-     * - zero_value: a 32 bit integer
+     * - scale: a 32 bit floating point value greater than zero.
+     * - zeroPoint: a 32 bit integer, in range [0, 255].
      *
      * The formula is:
-     * real_value = (integer_value - zero_value) * scale.
+     * real_value = (integer_value - zeroPoint) * scale.
      */
     TENSOR_QUANT8_ASYMM = 5,
 
-    /**
-     * The following entries are OEM specific operand types.
-     */
+    /** OEM specific scalar value. */
     OEM                 = 10000,
+
+    /** A tensor of OEM specific values. */
     TENSOR_OEM_BYTE     = 10001,
 };
 
@@ -66,9 +68,9 @@
  */
 enum OperationType : int32_t {
     /**
-     * Adds two tensors, elment-wise.
+     * Adds two tensors, element-wise.
      *
-     * Takes two input tensors of identical type and compatible dimensions.  The output
+     * Takes two input tensors of identical type and compatible dimensions. The output
      * is the sum of both input tensors, optionally modified by an activation function.
      *
      * Two dimensions are compatible when:
@@ -79,22 +81,25 @@
      * It starts with the trailing dimensions, and works its way forward.
      *
      * Example:
-     *     input1.dimension =    {4, 1, 2}
+     *
+     *     input1.dimension = {4, 1, 2}
      *     input2.dimension = {5, 4, 3, 1}
      *     output.dimension = {5, 4, 3, 2}
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * 0: A tensor.
-     * 1: A tensor of the same type, and compatible dimensions as input0.
-     * 2: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
-     *    Specifies the activation to invoke on the result of each addition.
+     * * 0: A tensor.
+     * * 1: A tensor of the same type, and compatible dimensions as input0.
+     * * 2: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
      *
-     * Ouputs:
-     * 0: The sum, a tensor of the same type as input0.
+     * Outputs:
+     * * 0: The sum, a tensor of the same type as input0.
      */
     ADD = 0,
 
@@ -103,29 +108,50 @@
      *
      * The output dimensions are functions of the filter dimensions, stride, and padding.
      *
-     * The values in output Tensor is computed as:
+     * The values in the output tensor are computed as:
+     *
      *     output[batch, row, col, channel] =
      *         sum_{i, j}(input[batch, row + i, col + j, channel]) / sum(1)
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
-     * Supported tensor rank: 4, with "NHWC" data layout.
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
      *
-     * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
-     * 1: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
-     * 2: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
-     * 3: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
-     * 4: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
-     * 5: An INT32 value, specifying the output stride in the ‘width’ dimension.
-     * 6: An INT32 value, specifying the output stride in the ‘height’ dimension.
-     * 7: An INT32 value, specifying the filter width.
-     * 8: An INT32 value, specifying the filter height.
-     * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
-     *    Specifies the activation to invoke on the result of each addition.
+     * Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width, and Channels)
+     * data layout.
      *
-     * Ouputs:
-     * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth].
+     * Both explicit padding and implicit padding are supported.
+     *
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
+     * * 1: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
+     * * 2: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
+     * * 3: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
+     * * 4: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
+     * * 5: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 6: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 7: An INT32 value, specifying the filter width.
+     * * 8: An INT32 value, specifying the filter height.
+     * * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
+     * * 1: An INT32 value, specifying the implicit padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 2: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 3: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 4: An INT32 value, specifying the filter width.
+     * * 5: An INT32 value, specifying the filter height.
+     * * 6: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth].
      */
     AVERAGE_POOL_2D = 1,
 
@@ -135,19 +161,21 @@
      * The input tensors must have identical type and the same dimensions except the
      * dimension along the concatenation axis.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * 0 ~ n: The list on n input tensors, of shape [D0, D1, ..., Daxis(i), ..., Dm]
-     * n+1: An INT32 value, specifying the concatenation axis.
-     * n+2: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
-     *    Specifies the activation to invoke on the result of each addition.
+     * * 0 ~ n-1: The list of n input tensors, of shape [D0, D1, ..., Daxis(i), ..., Dm].
+     *            For inputs of {@link OperandType::TENSOR_QUANT8_ASYMM} type, all
+     *            input tensors must have the same scale and zeroPoint.
+     * * n: An INT32 value, specifying the concatenation axis.
      *
-     * Ouputs:
-     * 0: The output, a tensor of the same type as the input tensors.
-          The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
+     * Outputs:
+     * * 0: The output, a tensor of the same type as the input tensors.
+     *      The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
      */
     CONCATENATION = 2,
 
@@ -159,7 +187,8 @@
      *
      * The output dimensions are functions of the filter dimensions, stride, and padding.
      *
-     * The values in output Tensor is computed as:
+     * The values in the output tensor are computed as:
+     *
      *     output[batch, row, col, channel] =
      *         sum_{i, j} (
      *             input[batch, row + i, col + j, k] *
@@ -167,77 +196,135 @@
      *             bias[channel]
      *         )
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: 4, with "NHWC" data layout.
      *
-     * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
-     * 1: A 4-D tensor, of shape [depth_out, filter_height, filter_width, depth_in],
-     *    specifying the filter.
-     * 2: A 1-D tensor, of shape [depth_out], specifying the bias.
-     *    For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should
-     *    also be of {@link OperandType::TENSOR_FLOAT32}.
-     *    For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias
-     *    should be of {@link OperandType::TENSOR_INT32}.
-     * 3: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
-     * 4: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
-     * 5: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
-     * 6: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
-     * 7: An INT32 value, specifying the output stride in the ‘width’ dimension.
-     * 8: An INT32 value, specifying the output stride in the ‘height’ dimension.
-     * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
-     *    Specifies the activation to invoke on the result of each addition.
+     * Both explicit padding and implicit padding are supported.
      *
-     * Ouputs:
-     * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth_out].
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
+     * * 1: A 4-D tensor, of shape [depth_out, filter_height, filter_width, depth_in],
+     *      specifying the filter.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias.
+     *      For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should
+     *      also be of {@link OperandType::TENSOR_FLOAT32}.
+     *      For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
+     *      bias_scale == input_scale * filter_scale.
+     * * 3: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
+     * * 4: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
+     * * 5: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
+     * * 6: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
+     * * 7: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 8: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
+     * * 1: A 4-D tensor, of shape [depth_out, filter_height, filter_width, depth_in],
+     *      specifying the filter.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias.
+     *      For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should
+     *      also be of {@link OperandType::TENSOR_FLOAT32}.
+     *      For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
+     *      bias_scale == input_scale * filter_scale.
+     * * 3: An INT32 value, specifying the implicit padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 4: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 5: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 6: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth_out].
+     *      For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the following
+     *      condition must be satisfied: output_scale > input_scale * filter_scale.
      */
     CONV_2D = 3,
 
     /**
-     * Performs an depthwise 2-D convolution operation.
+     * Performs a depthwise 2-D convolution operation.
      *
      * Given an input tensor of shape [batches, height, width, depth_in] and a filter
-     * tensor of shape [depth_out, filter_height, filter_width, depth_in] containing
-     * in_channels convolutional filters of depth 1, DEPTHWISE_CONV applies a different
+     * tensor of shape [1, filter_height, filter_width, depth_out] containing
+     * depth_out convolutional filters of depth 1, DEPTHWISE_CONV applies a different
      * filter to each input channel (expanding from 1 channel to channel_multiplier channels
      * for each), then concatenates the results together.
      *
      * The output has depth_out = depth_in * depth_multiplier channels.
      * The output dimensions are functions of the filter dimensions, stride, and padding.
      *
-     * The values in output Tensor is computed as:
+     * The values in the output tensor are computed as:
+     *
      *     output[b, i, j, k * channel_multiplier + q] =
      *         sum_{di, dj} (
      *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
-     *             filter[di, dj, k, q]
+     *             filter[1, di, dj, k * channel_multiplier + q]
      *         )
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: 4, with "NHWC" data layout.
      *
-     * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
-     * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
-     *    specifying the filter.
-     * 2: A 1-D tensor, of shape [depth_out], specifying the bias.
-     *    For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should
-     *    also be of {@link OperandType::TENSOR_FLOAT32}.
-     *    For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias
-     *    should be of {@link OperandType::TENSOR_INT32}.
-     * 3: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
-     * 4: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
-     * 5: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
-     * 6: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
-     * 7: An INT32 value, specifying the output stride in the ‘width’ dimension.
-     * 8: An INT32 value, specifying the output stride in the ‘height’ dimension.
-     * 9: An INT32 value, specifying the depthwise multiplier.
-     * 10: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
-     *    Specifies the activation to invoke on the result of each addition.
+     * Both explicit padding and implicit padding are supported.
      *
-     * Ouputs:
-     * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth_out].
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
+     * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
+     *      specifying the filter.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias.
+     *      For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should
+     *      also be of {@link OperandType::TENSOR_FLOAT32}.
+     *      For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
+     *      bias_scale == input_scale * filter_scale.
+     * * 3: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
+     * * 4: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
+     * * 5: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
+     * * 6: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
+     * * 7: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 8: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 9: An INT32 value, specifying the depthwise multiplier.
+     * * 10: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *       Specifies the activation to invoke on the result of each addition.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
+     * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
+     *      specifying the filter.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias.
+     *      For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should
+     *      also be of {@link OperandType::TENSOR_FLOAT32}.
+     *      For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
+     *      bias_scale == input_scale * filter_scale.
+     * * 3: An INT32 value, specifying the implicit padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 4: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 5: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 6: An INT32 value, specifying the depthwise multiplier.
+     * * 7: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *       Specifies the activation to invoke on the result of each addition.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth_out].
+     *      For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the following
+     *      condition must be satisfied: output_scale > input_scale * filter_scale.
      */
     DEPTHWISE_CONV_2D = 4,
 
@@ -255,18 +342,20 @@
      * input_height * block_size.
      * The depth of the input tensor must be divisible by block_size * block_size
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: 4, with "NHWC" data layout.
      *
      * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
-     * 1: An INT32 value, specifying the block_size. block_size must be >=1 and
-     *    block_size * block_size must be a divisor of the input depth.
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
+     * * 1: An INT32 value, specifying the block_size. block_size must be >=1 and
+     *      block_size * block_size must be a divisor of the input depth.
      *
-     * Ouputs:
-     * 0: The output 4-D tensor, of shape [batch, height*block_size, width*block_size,
-     *    depth/(block_size*block_size)].
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batch, height*block_size, width*block_size,
+     *      depth/(block_size*block_size)].
      */
     DEPTH_TO_SPACE = 5,
 
@@ -274,53 +363,69 @@
      * Dequantizes the input tensor.
      *
      * The formula is:
-     *     output = (input - zero_value) * scale.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *     output = (input - zeroPoint) * scale.
+     *
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * 0: A tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}.
+     * * 0: A tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}.
      *
-     * Ouputs:
-     * 0: The output tensor of same shape as input0, but with type
-          {@link OperandType::TENSOR_FLOAT32}.
+     * Outputs:
+     * * 0: The output tensor of same shape as input0, but with type
+     *      {@link OperandType::TENSOR_FLOAT32}.
      */
     DEQUANTIZE = 6,
 
     /**
-     * Looks up items from a given tensor.
+     * Looks up sub-tensors in the input tensor.
      *
-     * Each item in the output is a raw copy of the corresponding item in
-     * the input “values”. If the the given “lookup” indices are out of bounds,
-     * the op will fail and an error will be reported.
+     * This operator takes for input a tensor of values (Values) and
+     * a one-dimensional tensor of selection indices (Lookups).
+     * The output tensor is the concatenation of sub-tensors of Values as
+     * selected by Lookups.
+     *
+     * Think of Values as being sliced along its first dimension:
+     * The entries in Lookups select which slices are concatenated together
+     * to create the output tensor.
+     *
+     * For example, if Values has shape of [40, 200, 300] and
+     * Lookups has shape of [3], all three values found in Lookups are
+     * expected to be between 0 and 39. The resulting tensor must
+     * have shape of [3, 200, 300].
+     *
+     * If a value in Lookups is out of bounds, the operation must fail
+     * and an error must be reported.
      *
      * Inputs:
-     * * 0: Values. An n-D tensor of any type X (where n >= 2). E.g., if n is 2,
-     *      then the shape would be [lookup_dimension, values_dimension], where
-     *      “lookup_dimension” corresponds to the indexing dimension in the lookup
-     *      table, and “values_dimension” to the contents.
-     * * 1: Lookups. An 1-D tensor of type T, of shape [lookup_size], where
-     *      “lookup_size” is the number of elements to look for, and each entry
-     *      corresponds to the first dimension of the “values” tensor.
+     * * 0: Lookups. A 1-D tensor of {@link OperandType::TENSOR_INT32} type.
+     *      The values are indices into the first dimension of Values.
+     * * 1: Values. An n-D tensor, where n >= 2, from which sub-tensors are
+     *      extracted.
      *
      * Output:
-     * * 0: A n-D tensor of type X and the same rank and shape as the “values”
-     *      tensor, except for the first dimension which has size “lookup_size”.
+     * * 0: A n-D tensor with the same rank and shape as the Values
+     *      tensor, except for the first dimension which has the same size
+     *      as Lookups' only dimension.
      */
     EMBEDDING_LOOKUP = 7,
 
     /**
      * Computes element-wise floor() on the input tensor.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * 0: A tensor.
+     * * 0: A tensor.
      *
-     * Ouputs:
-     * 0: The output, a tensor of the same type and dimensions as input0.
+     * Outputs:
+     * * 0: The output tensor, of the same type and dimensions as the input tensor.
      */
     FLOOR = 8,
 
@@ -329,66 +434,104 @@
      * tensor with each element in the output tensor.
      *
      * This layer implements the operation:
+     *
      *     outputs = activation(inputs * weights’ + bias)
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * 0: A tensor, specifying the input. If rank is greater than 2, then it gets flattened to
-     *    a 2-D Tensor. The 2-D Tensor is handled as if dimensions corresponded to shape
-     *    [batch_size, input_size], where “batch_size” corresponds to the batching dimension,
-     *    and “input_size” is the size of the input.
-     * 1: A 2-D tensor, specifying the weights, of shape [num_units, input_size], where “num_units”
-     *    corresponds to the number of output nodes.
-     * 2: A 1-D tensor, of shape [num_units], specifying the bias.
-     *    For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should
-     *    also be of {@link OperandType::TENSOR_FLOAT32}.
-     *    For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias
-     *    should be of {@link OperandType::TENSOR_INT32}.
-     * 3: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
-     *    Specifies the activation to invoke on the result of each addition.
+     * * 0: A tensor, specifying the input. If rank is greater than 2, then it gets flattened to
+     *      a 2-D Tensor. The 2-D Tensor is handled as if dimensions corresponded to shape
+     *      [batch_size, input_size], where “batch_size” corresponds to the batching dimension,
+     *      and “input_size” is the size of the input.
+     * * 1: A 2-D tensor, specifying the weights, of shape [num_units, input_size], where
+     *      "num_units" corresponds to the number of output nodes.
+     * * 2: A 1-D tensor, of shape [num_units], specifying the bias.
+     *      For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should
+     *      also be of {@link OperandType::TENSOR_FLOAT32}.
+     *      For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
+     *      bias_scale == input_scale * filter_scale.
+     * * 3: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
      *
-     * Ouputs:
-     * 0: The output tensor, of shape [batch_size, num_units].
+     * Outputs:
+     * * 0: The output tensor, of shape [batch_size, num_units].
+     *      For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the following
+     *      condition must be satisfied: output_scale > input_scale * filter_scale.
      */
     FULLY_CONNECTED = 9,
 
     /**
-     * Looks up values of a hash table with given keys.
+     * Looks up sub-tensors in the input tensor using a key-value map.
+     *
+     * This operator takes for input a tensor of values (Values),
+     * a one-dimensional tensor of selection values (Lookups) and
+     * a one-dimensional tensor that maps these values to Values
+     * indexes. The output tensor is the concatenation of sub-tensors of
+     * Values as selected by Lookups via Keys.
+     *
+     * Think of Values as being sliced along its outer-most dimension.
+     * The output is a concatenation of selected slices, with one slice
+     * for each entry of Lookups. The slice selected is the one at the
+     * same index as the Maps entry that matches the value in Lookups.
+     *
+     * For a hit, the corresponding sub-tensor of Values is included
+     * in the Output tensor. For a miss, the corresponding sub-tensor in
+     * Output must have zero values.
+     *
+     * For example, if Values has shape of [40, 200, 300],
+     * Keys should have a shape of [40]. If Lookups tensor has shape
+     * of [3], three slices are being concatenated, so the resulting tensor
+     * must have the shape of [3, 200, 300]. If the first entry in Lookups
+     * has the value 123456, that value must be located in Keys tensor.
+     * If the sixth entry of Keys contains 123456, the sixth slice of Values
+     * must be selected. If no entry in Keys has 123456, a slice of zeroes
+     * must be concatenated.
      *
      * Inputs:
-     * * 0: Lookups. A 1-D int32 tensor with shape [ k ].
-     * * 1: Keys. A 1-D int32 tensor with shape [ n ], *MUST* be sorted in
-     *      ascending order.
-     * * 2: Values. A tensor with shape [ n … ].
+     * * 0: Lookups. A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [ k ].
+     * * 1: Keys. A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [ n ];
+     *      Keys and Values pair represent a map, i.e., the ith element
+     *      in Keys (Keys[i]) is the key to select the ith sub-tensor
+     *      in Values (Values[i]), where 0 <= i <= n-1.
+     *      Keys tensor *MUST* be sorted in ascending order.
+     * * 2: Values. A tensor with shape of [ n, … ]; i.e., the first dimension must be n.
      *
      * Outputs:
      * * 0: Output. A tensor with shape [ k …].
-     * * 1: Hits. A uint8 tensor with shape [ k ] indicates whether the lookup
-     *      hits or not.
+     * * 1: Hits. A boolean tensor with shape [ k ] indicates whether the lookup
+     *      hits (True) or not (False).
+     *      Stored as {@link OperandType::TENSOR_QUANT8_ASYMM} with offset 0 and scale 1.0f.
+     *      A non-zero byte represents True, a hit. A zero indicates otherwise.
      */
     HASHTABLE_LOOKUP = 10,
 
     /**
-     * Applies L2 normalization along a the depth dimension.
+     * Applies L2 normalization along the depth dimension.
      *
-     * The values in output Tensor is computed as:
+     * The values in the output tensor are computed as:
+     *
      *     output[batch, row, col, channel] =
      *         input[batch, row, col, channel] /
      *         sqrt(sum_{c} pow(input[batch, row, col, c], 2))
      *
-     * For x with more dimensions, independently normalizes each 1-D slice along dimension dim.
+     * For input tensor with more dimensions, independently normalizes each 1-D slice along dimension dim.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     * Supported tensor rank: 4, with "NHWC" data layout.
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: 4, with "NHWC" data layout (i.e., Num_samples, Height, Width, and Channels).
      *
      * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth].
      *
-     * Ouputs:
-     * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth].
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth].
      */
     L2_NORMALIZATION = 11,
 
@@ -397,28 +540,48 @@
      *
      * The output dimensions are functions of the filter dimensions, stride, and padding.
      *
-     * The values in output Tensor is computed as:
+     * The values in the output tensor are computed as:
+     *
      *     output[batch, row, col, channel] =
      *         sqrt(sum_{i, j} pow(input[batch, row + i, col + j, channel], 2) / sum(1))
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
      * Supported tensor rank: 4, with "NHWC" data layout.
      *
-     * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
-     * 1: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
-     * 2: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
-     * 3: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
-     * 4: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
-     * 5: An INT32 value, specifying the output stride in the ‘width’ dimension.
-     * 6: An INT32 value, specifying the output stride in the ‘height’ dimension.
-     * 7: An INT32 value, specifying the filter width.
-     * 8: An INT32 value, specifying the filter height.
-     * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
-     *    Specifies the activation to invoke on the result of each addition.
+     * Both explicit padding and implicit padding are supported.
      *
-     * Ouputs:
-     * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth].
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
+     * * 1: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
+     * * 2: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
+     * * 3: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
+     * * 4: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
+     * * 5: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 6: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 7: An INT32 value, specifying the filter width.
+     * * 8: An INT32 value, specifying the filter height.
+     * * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
+     * * 1: An INT32 value, specifying the implicit padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 2: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 3: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 4: An INT32 value, specifying the filter width.
+     * * 5: An INT32 value, specifying the filter height.
+     * * 6: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth].
      */
     L2_POOL_2D = 12,
 
@@ -429,41 +592,49 @@
      * dimension), and each vector is normalized independently. Within a given vector,
      * each component is divided by the weighted, squared sum of inputs within depth_radius.
      *
-     * In details:
+     * The output is calculated using this formula:
+     *
      *     sqr_sum[a, b, c, d] =
      *         sum(pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2)
      *     output = input / pow((bias + alpha * sqr_sum), beta)
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
      * Supported tensor rank: 4, with "NHWC" data layout.
      *
      * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
-     * 1: An INT32 value, specifying the radius of the normalization window.
-     * 2: A FLOAT32 value, specifying the bias, must not be zero.
-     * 3: A FLOAT32 value, specifying the scale factor, alpha.
-     * 4: A FLOAT32 value, specifying the exponent, beta.
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
+     * * 1: An INT32 value, specifying the radius of the normalization window.
+     * * 2: A FLOAT32 value, specifying the bias, must not be zero.
+     * * 3: A FLOAT32 value, specifying the scale factor, alpha.
+     * * 4: A FLOAT32 value, specifying the exponent, beta.
      *
-     * Ouputs:
-     * 0: The output tensor of same shape as input0.
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
      */
     LOCAL_RESPONSE_NORMALIZATION = 13,
 
     /**
      * Computes sigmoid activation on the input tensor element-wise.
      *
-     * In details:
+     * The output is calculated using this formula:
+     *
      *     output = 1 / (1 + exp(-input))
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input.
      *
-     * Ouputs:
-     * 0: The output tensor of same shape as input0.
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *      For {@link OperandType::TENSOR_QUANT8_ASYMM} type,
+     *      the scale must be 1.f / 256 and the zeroPoint must be 0.
      */
     LOGISTIC = 14,
 
@@ -502,102 +673,165 @@
     LSH_PROJECTION = 15,
 
     /**
-     * Long short-term memory unit (LSTM) recurrent network layer.
+     * Performs a single time step in a Long Short-Term Memory (LSTM) layer
      *
-     * The default non-peephole implementation is based on:
-     * http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
+     * The LSTM operation is described by the following equations.
+     *
+     * \f{eqnarray*}{
+     * i_t =& \sigma(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}C_{t-1}+b_i) & \\
+     * f_t =& \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}C_{t-1}+b_f) & \\
+     * C_t =& clip(f_t \odot C_{t-1} + i_t \odot g(W_{xc}x_t+W_{hc}h_{t-1}+b_c),\ t_{cell})& \\
+     * o_t =& \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}C_t+b_o)& \\
+     *      & clip(W_{proj}(o_t \odot g(C_t))+b_{proj},\ t_{proj}) & if\ there\ is\ a\ projection; \\
+     * h_t =& & \\
+     *      & o_t \odot g(C_t) & otherwise. \\
+     * \f}
+     * Where:
+     * * \f$x_t\f$ is the input,
+     * * \f$i_t\f$ is the input gate,
+     * * \f$f_t\f$ is the forget gate,
+     * * \f$C_t\f$ is the cell state,
+     * * \f$o_t\f$ is the output,
+     * * \f$h_t\f$ is the output state,
+     * * \f$\sigma\f$ is the logistic sigmoid function,
+     * * \f$g\f$ is the cell input and cell output activation function, usually \f$tahn\f$,
+     * * \f$W_{xi}\f$ is the input-to-input weight matrix,
+     * * \f$W_{hi}\f$ is the recurrent to input weight matrix,
+     * * \f$W_{ci}\f$ is the cell-to-input weight matrix,
+     * * \f$b_i\f$ is the input gate bias,
+     * * \f$W_{xf}\f$ is the input-to-forget weight matrix,
+     * * \f$W_{hf}\f$ is the recurrent-to-forget weight matrix,
+     * * \f$W_{cf}\f$ is the cell-to-forget weight matrix,
+     * * \f$b_f\f$ is the forget gate bias,
+     * * \f$W_{xc}\f$ is the input-to-cell weight matrix,
+     * * \f$W_{hc}\f$ is the recurrent-to-cell weight matrix,
+     * * \f$b_c\f$ is the cell bias,
+     * * \f$W_{xo}\f$ is the input-to-output weight matrix,
+     * * \f$W_{ho}\f$ is the recurrent-to-output weight matrix,
+     * * \f$W_{co}\f$ is the cell-to-output weight matrix,
+     * * \f$b_o\f$ is the output gate bias,
+     * * \f$W_{proj}\f$ is the projection weight matrix,
+     * * \f$b_{proj}\f$ is the projection bias,
+     * * \f$t_{cell}\f$ is the threshold for clipping the cell state, and
+     * * \f$t_{proj}\f$ is the threshold for clipping the projected output.
+     * * \f$\odot\f$ is the <a href="https://en.wikipedia.org/wiki/Hadamard_product_(matrices)">
+     *   Hadamard product</a> that takes two matrices and produces another
+     *   matrix, each element of which is the product of the corresponding
+     *   elements of the input matrices.
+     *
+     * The operation has the following independently optional inputs:
+     * * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights (\f$W_{hi}\f$),
+     *   cell-to-input (\f$W_{ci}\f$) weights, and input gate bias (\f$b_i\f$) either all have values,
+     *   or none of them have values (i.e., all set to null). If they have no
+     *   values, coupling of input and forget gates (CIFG) is used, in which case
+     *   the input gate (\f$i_t\f$) is calculated using the following equation instead.
+     *   \f{eqnarray*}{
+     *   i_t = 1 - f_t
+     *   \f}
+     * * The cell-to-input weights (\f$W_{ci}\f$), cell-to-forget weights (\f$W_{cf}\f$), and cell-to-output
+     *   weights (\f$W_{co}\f$) either all have values or none of them have values.
+     *   If they have values, the peephole optimization is used.
+     * * The projection weights (\f$W_{proj}\f$) is required only for the recurrent projection
+     *   layer, and should otherwise have no value.
+     * * The projection bias (\f$b_{proj}\f$) may (but not required to) have a value if the
+     *   recurrent projection layer exists, and should otherwise have no value.
+     *
+     * References:
+     *
+     * The default non-peephole non-CIFG implementation is based on:
+     * http://www.bioinf.jku.at/publications/older/2604.pdf
      * S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural
      * Computation, 9(8):1735-1780, 1997.
      *
-     * The peephole implementation is based on:
+     * The peephole implementation and projection layer is based on:
      * https://research.google.com/pubs/archive/43905.pdf
      * Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory
      * recurrent neural network architectures for large scale acoustic modeling."
      * INTERSPEECH, 2014.
+     * (However, the concept of peephole optimization was introduced in work
+     * prior to this paper.)
      *
      * The coupling of input and forget gate (CIFG) is based on:
      * http://arxiv.org/pdf/1503.04069.pdf
      * Greff et al. "LSTM: A Search Space Odyssey"
      *
-     * The class has the following independently optional inputs:
-     * * If input gate (if CIFG): “input_to_forget_weights”,
-     *   “recurrent_to_input_weights”, “cell_to_input_weights”, “input_gate_bias”.
-     * * If no peephole connections: “cell_to_input_weights”,
-     *   “cell_to_forget_weights”, “cell_to_output_weights”.
-     * * If no projection layer: “projection_weights” and “projection_bias”.
-     * * If no projection bias: “projection_bias”.
-     *
-     * Supported tensor types:
+     * Supported tensor types (type T):
      * * {@link OperandType::TENSOR_FLOAT32}
      *
      * Inputs:
-     * * 0: Input.
+     * * 0: The input (\f$x_t\f$).
      *      A 2-D tensor of type T, of shape [batch_size, input_size], where
      *      “batch_size” corresponds to the batching dimension, and “input_size”
      *      is the size of the input.
-     * * 1: input_to_input_weights.
+     * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
      *      A 2-D tensor of type T, of shape [num_units, input_size], where
      *      “num_units” corresponds to the number of cell units.
-     * * 2: input_to_forget_weights.
+     * * 2: The input-to-forget weights (\f$W_{xf}\f$).
      *      A 2-D tensor of type T, of shape [num_units, input_size].
-     * * 3: input_to_cell_weights.
+     * * 3: The input-to-cell weights (\f$W_{xc}\f$).
      *      A 2-D tensor of type T, of shape [num_units, input_size].
-     * * 4: input_to_output_weights.
+     * * 4: The input-to-output weights (\f$W_{xo}\f$).
      *      A 2-D tensor of type T, of shape [num_units, input_size].
-     * * 5: recurrent_to_input_weights.
+     * * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
      *      A 2-D tensor of type T, of shape [num_units, output_size], where
      *      “output_size” corresponds to either the number of cell units (i.e.,
      *      “num_units”), or the second dimension of the “projection_weights”, if
      *      defined.
-     * * 6: recurrent_to_forget_weights.
+     * * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
      *      A 2-D tensor of type T, of shape [num_units, output_size].
-     * * 7: recurrent_to_cell_weights.
+     * * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
      *      A 2-D tensor of type T, of shape [num_units, output_size].
-     * * 8: recurrent_to_output_weights.
+     * * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
      *      A 2-D tensor of type T, of shape [num_units, output_size].
-     * * 9: cell_to_input_weights.
+     * * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
      *      A 1-D tensor of type T, of shape [num_units].
-     * * 10:cell_to_forget_weights.
+     * * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
      *      A 1-D tensor of type T, of shape [num_units].
-     * * 11:cell_to_output_weights.
+     * * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
      *      A 1-D tensor of type T, of shape [num_units].
-     * * 12:input_gate_bias.
+     * * 12:The input gate bias (\f$b_i\f$). Optional.
      *      A 1-D tensor of type T, of shape [num_units].
-     * * 13:forget_gate_bias.
+     * * 13:The forget gate bias (\f$b_f\f$).
      *      A 1-D tensor of type T, of shape [num_units].
-     * * 14:cell_bias.
+     * * 14:The cell bias (\f$b_c\f$).
      *      A 1-D tensor of type T, of shape [num_units].
-     * * 15:output_gate_bias.
+     * * 15:The output gate bias (\f$b_o\f$).
      *      A 1-D tensor of type T, of shape [num_units].
-     * * 16:projection_weights.
+     * * 16:The projection weights (\f$W_{proj}\f$). Optional.
      *      A 2-D tensor of type T, of shape [output_size, num_units].
-     * * 17:projection_bias.
+     * * 17:The projection bias (\f$b_{proj}\f$). Optional.
      *      A 1-D tensor of type T, of shape [output_size].
-     *
-     * Parameters:
-     * * 18:fused_activation_function.
-     *      An (optional) ActivationFunctionType indicating the activation
-     *      function.
-     *      If “NONE” is specified then it results in a linear activation.
-     * * 19:cell_clip.
-     *      A clipping threshold for the cell state, such that values are bound
+     * * 18:The output state (in) (\f$h_{t-1}\f$).
+     *      A 2-D tensor of type T, of shape [batch_size, output_size].
+     * * 19:The cell state (in) (\f$C_{t-1}\f$).
+     *      A 2-D tensor of type T, of shape [batch_size, num_units].
+     * * 20:The activation function (\f$g\f$).
+     *      A value indicating the activation function:
+     *      <ul>
+     *      <li>0: None;
+     *      <li>1: Relu;
+     *      <li>3: Relu6;
+     *      <li>4: Tanh;
+     *      <li>6: Sigmoid.
+     *      </ul>
+     * * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such that values are bound
      *      within [-cell_clip, cell_clip]. If set to 0.0 then clipping is
      *      disabled.
-     * * 20:proj_clip.
-     *      A clipping threshold for the output from the projection layer, such
+     * * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the projection layer, such
      *      that values are bound within [-proj_clip, proj_clip]. If set to 0.0
      *      then clipping is disabled.
      *
      * Outputs:
-     * * 0: scratch_buffer.
-     *      A 3-D tensor of type T, of shape [batch_size, num_cell, 4].
-     * * 1: output_state.
+     * * 0: The scratch buffer.
+     *      A 2-D tensor of type T, of shape [batch_size, num_units * 4] with
+     *      CIFG, or [batch_size, num_units * 3] without CIFG.
+     * * 1: The output state (out) (\f$h_t\f$).
      *      A 2-D tensor of type T, of shape [batch_size, output_size].
-     * * 2: cell_state.
+     * * 2: The cell state (out) (\f$C_t\f$).
      *      A 2-D tensor of type T, of shape [batch_size, num_units].
-     * * 3: output.
+     * * 3: The output (\f$o_t\f$).
      *      A 2-D tensor of type T, of shape [batch_size, output_size]. This is
-     *      effectively the same as the current “output_state” value.
+     *      effectively the same as the current “output state (out)” value.
      */
     LSTM = 16,
 
@@ -606,36 +840,56 @@
      *
      * The output dimensions are functions of the filter dimensions, stride, and padding.
      *
-     * The values in output Tensor is computed as:
+     * The values in the output tensor are computed as:
+     *
      *     output[batch, row, col, channel] =
      *         max_{i, j} (input[batch, row + i, col + j, channel])
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: 4, with "NHWC" data layout.
      *
-     * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
-     * 1: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
-     * 2: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
-     * 3: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
-     * 4: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
-     * 5: An INT32 value, specifying the output stride in the ‘width’ dimension.
-     * 6: An INT32 value, specifying the output stride in the ‘height’ dimension.
-     * 7: An INT32 value, specifying the filter width.
-     * 8: An INT32 value, specifying the filter height.
-     * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
-     *    Specifies the activation to invoke on the result of each addition.
+     * Both explicit padding and implicit padding are supported.
      *
-     * Ouputs:
-     * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth].
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
+     * * 1: An INT32 value, specifying the padding on the left, in the ‘width’ dimension.
+     * * 2: An INT32 value, specifying the padding on the right,in the ‘width’ dimension.
+     * * 3: An INT32 value, specifying the padding on the top, in the ‘height’ dimension.
+     * * 4: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension.
+     * * 5: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 6: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 7: An INT32 value, specifying the filter width.
+     * * 8: An INT32 value, specifying the filter height.
+     * * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
+     * * 1: An INT32 value, specifying the implicit padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 2: An INT32 value, specifying the stride when walking through input
+     *      in the ‘width’ dimension.
+     * * 3: An INT32 value, specifying the stride when walking through input
+     *      in the ‘height’ dimension.
+     * * 4: An INT32 value, specifying the filter width.
+     * * 5: An INT32 value, specifying the filter height.
+     * * 6: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth].
      */
     MAX_POOL_2D = 17,
 
     /**
-     * Multiplies two tensors, elment-wise.
+     * Multiplies two tensors, element-wise.
      *
-     * Takes two input tensors of identical type and compatible dimensions.  The output
+     * Takes two input tensors of identical type and compatible dimensions. The output
      * is the product of both input tensors, optionally modified by an activation function.
      *
      * Two dimensions are compatible when:
@@ -645,72 +899,85 @@
      * The size of the resulting output is the maximum size along each dimension of the
      * input operands. It starts with the trailing dimensions, and works its way forward.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * 0: A tensor.
-     * 1: A tensor of the same type, and compatible dimensions as input0.
-     * 2: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
-     *    Specifies the activation to invoke on the result of each addition.
+     * * 0: A tensor.
+     * * 1: A tensor of the same type, and compatible dimensions as input0.
+     * * 2: An INT32 value, and has to be one of the {@link FusedActivationFunc} values.
+     *      Specifies the activation to invoke on the result of each addition.
      *
-     * Ouputs:
-     * 0: The product, a tensor of the same type as input0.
+     * Outputs:
+     * * 0: The product, a tensor of the same type as input0.
+     *      For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the following
+     *      condition must be satisfied: output_scale > input1_scale * input2_scale.
      */
     MUL = 18,
 
     /**
      * Computes rectified linear activation on the input tensor element-wise.
      *
-     * In details:
+     * The output is calculated using this formula:
+     *
      *     output = max(0, input)
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input.
      *
-     * Ouputs:
-     * 0: The output tensor of same shape as input0.
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
      */
     RELU = 19,
 
     /**
      * Computes rectified linear 1 activation on the input tensor element-wise.
      *
-     * In details:
+     * The output is calculated using this formula:
+     *
      *     output = min(1.f, max(-1.f, input))
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input.
      *
-     * Ouputs:
-     * 0: The output tensor of same shape as input0.
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
      */
     RELU1 = 20,
 
     /**
      * Computes rectified linear 6 activation on the input tensor element-wise.
      *
-     * In details:
+     * The output is calculated using this formula:
+     *
      *     output = min(6, max(0, input))
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input.
      *
-     * Ouputs:
-     * 0: The output tensor of same shape as input0.
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
      */
     RELU6 = 21,
 
@@ -720,36 +987,41 @@
      * Given tensor, this operation returns a tensor that has the same values as tensor,
      * but with a newly specified shape.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * 0: A tensor, specifying the tensor to be reshaped.
-     * 1: A 1-D tensor of type {@link OperandType::TENSOR_INT32}, defining the shape
-     *    of the output tensor. The number of elements implied by shape must be the same
-     *    as the number of elements in the input tensor.
+     * * 0: A tensor, specifying the tensor to be reshaped.
+     * * 1: A 1-D tensor of type {@link OperandType::TENSOR_INT32}, defining the shape
+     *      of the output tensor. The number of elements implied by shape must be the same
+     *      as the number of elements in the input tensor.
      *
-     * Ouputs:
-     * 0: The output tensor, of shape specified by the input shape.
+     * Outputs:
+     * * 0: The output tensor, of shape specified by the input shape.
      */
     RESHAPE = 22,
 
     /**
      * Resizes images to given size using the bilinear interpretation.
      *
-     * Resized images will be distorted if their original aspect ratio is not the same as input.
+     * Resized images must be distorted if their output aspect ratio is not the same as
+     * input aspect ratio.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
      * Supported tensor rank: 4, with "NHWC" data layout.
      *
      * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
-     * 1: An INT32 value, specifying the output width of the output tensor.
-     * 2: An INT32 value, specifying the output height of the output tensor.
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input.
+     * * 1: An INT32 value, specifying the output height of the output tensor.
+     * * 2: An INT32 value, specifying the output width of the output tensor.
      *
-     * Ouputs:
-     * 0: The output 4-D tensor, of shape [batches, new_height, new_width, depth].
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batches, new_height, new_width, depth].
      */
     RESIZE_BILINEAR = 23,
 
@@ -768,7 +1040,7 @@
      * * “activation” is the function passed as the “fused_activation_function”
      *   argument (if not “NONE”).
      *
-     * Supported tensor types:
+     * Supported tensor types (Type T):
      * * {@link OperandType::TENSOR_FLOAT32}
      *
      * Inputs:
@@ -784,21 +1056,18 @@
      *      corresponding to the weights from each unit.
      * * 3: bias.
      *      A 1-D tensor of type T, of shape [num_units].
-     *
-     *    For FLOAT32 input tensor, bias must also be FLOAT32.
-     *    For UINT8 input tensor, bias must be INT32.
-     *
-     * Parameters
-     * * 4: fused_activation_function.
-     *      An (optional) ActivationFunctionType indicating the activation
+     * * 4: hidden state (in).
+     *      A 2-D tensor of type T, of shape [batch_size, num_units].
+     * * 5: fused_activation_function.
+     *      An optional {@link FusedActivationFunc} value indicating the activation
      *      function. If “NONE” is specified then it results in a linear
      *      activation.
      *
-     * * 5: Hidden state.
+     * Outputs:
+     * * 0: hidden state (out).
      *      A 2-D tensor of type T, of shape [batch_size, num_units].
      *
-     * Outputs:
-     * * 0: output.
+     * * 1: output.
      *      A 2-D tensor of type T, of shape [batch_size, num_units]. This is
      *      effectively the same as the current state value.
      */
@@ -808,21 +1077,26 @@
      * Computes the softmax activation on the input tensor element-wise, per batch, by
      * normalizing the input vector so the maximum coefficient is zero.
      *
-     * In details:
+     * The output is calculated using this formula:
+     *
      *     output[batch, i] =
      *         exp((input[batch, i] - max(input[batch, :])) * beta) /
      *         sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)}
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: 2 or 4.
      *
      * Inputs:
-     * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped.
-     * 1: A FLOAT32 value, specifying the scaling factor for the exponent, beta.
+     * * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped.
+     * * 1: A FLOAT32 value, specifying the positive scaling factor for the exponent, beta.
      *
-     * Ouputs:
-     * 0: The output tensor of same shape as input0.
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *      For {@link OperandType::TENSOR_QUANT8_ASYMM} type,
+     *      the scale must be 1.f / 256 and the zeroPoint must be 0.
      */
     SOFTMAX = 25,
 
@@ -839,18 +1113,20 @@
      * The depth of the output tensor is input_depth * block_size * block_size.
      * The input tensor's height and width must be divisible by block_size.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: 4, with "NHWC" data layout.
      *
      * Inputs:
-     * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
-     * 1: An INT32 value, specifying the block_size. block_size must be >=1 and
-     *    block_size must be a divisor of both the input height and width.
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input.
+     * * 1: An INT32 value, specifying the block_size. block_size must be >=1 and
+     *      block_size must be a divisor of both the input height and width.
      *
-     * Ouputs:
-     * 0: The output 4-D tensor, of shape [batch, height/block_size, width/block_size,
-     *    depth*block_size*block_size].
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batch, height/block_size, width/block_size,
+     *      depth*block_size*block_size].
      */
     SPACE_TO_DEPTH = 26,
 
@@ -874,8 +1150,8 @@
      *
      * Specifically, for rank 1, this layer implements the operation:
      *
-     *    memory = push(conv1d(inputs, weights_feature, feature_dim, "VALID"));
-     *    outputs = activation(memory * weights_time + bias);
+     *     memory = push(conv1d(inputs, weights_feature, feature_dim, "PADDING_VALID"));
+     *     outputs = activation(memory * weights_time + bias);
      *
      * Where:
      * * “weights_feature” is a weights matrix that processes the inputs (by
@@ -892,7 +1168,7 @@
      * Each rank adds a dimension to the weights matrices by means of stacking
      * the filters.
      *
-     * Supported tensor types:
+     * Supported tensor types (type T):
      * * {@link OperandType::TENSOR_FLOAT32}
      *
      * Inputs:
@@ -907,20 +1183,17 @@
      *      A 2-D tensor of type T, of shape [num_units, memory_size], where
      *      “memory_size” corresponds to the fixed-size of the memory.
      * * 3: bias.
-     *      A optional 1-D tensor of type T, of shape [num_units].
-     *
-     *    For FLOAT32 input tensor, bias must also be FLOAT32.
-     *    For UINT8 input tensor, bias must be INT32.
-     *
-     * Parameters:
-     * * 4: rank.
+     *      An optional 1-D tensor of type T, of shape [num_units].
+     * * 4: state (in).
+     *      A 2-D tensor of type T, of shape [batch_size, (memory_size - 1) * num_units * rank].
+     * * 5: rank.
      *      The rank of the SVD approximation.
-     * * 5: fused_activation_function.
-     *      An (optional) ActivationFunctionType indicating the activation function.
+     * * 6: fused_activation_function.
+     *      An optional {@link FusedActivationFunc} value indicating the activation function.
      *      If “NONE” is specified then it results in a linear activation.
      *
      * Outputs:
-     * * 0: state.
+     * * 0: state (out).
      *      A 2-D tensor of type T, of shape [batch_size, (memory_size - 1) * num_units * rank].
      * * 1: output.
      *      A 2-D tensor of type T, of shape [batch_size, num_units].
@@ -930,17 +1203,20 @@
     /**
      * Computes hyperbolic tangent of input tensor element-wise.
      *
-     * In details:
+     * The output is calculated using this formula:
+     *
      *     output = tanh(input)
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input.
      *
-     * Ouputs:
-     * 0: The output tensor of same shape as input0.
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
      */
     TANH = 28,
 
@@ -967,8 +1243,8 @@
  */
 enum OperandLifeTime : int32_t {
     /**
-     * The operand is internal to the model.  It's created by an operation
-     * and consumed by other operations.
+     * The operand is internal to the model. It's created by an operation and
+     * consumed by other operations.
      */
     TEMPORARY_VARIABLE,
 
@@ -1081,7 +1357,11 @@
     vec<uint32_t> dimensions;
 
     /**
-     * The number of operations that use this operand as input.
+     * The number of times this operand appears as an operation input.
+     *
+     * (For example, if this operand appears once in one operation's
+     * input list, and three times in another operation's input list,
+     * then numberOfConsumers = 4.)
      */
     uint32_t numberOfConsumers;
 
@@ -1108,7 +1388,7 @@
     /**
      * Where to find the data for this operand.
      * If the lifetime is TEMPORARY_VARIABLE, MODEL_INPUT, MODEL_OUTPUT, or NO_VALUE:
-     * - All the fields will be 0.
+     * - All the fields must be 0.
      * If the lifetime is CONSTANT_COPY:
      * - location.poolIndex is 0.
      * - location.offset is the offset in bytes into Model.operandValues.
@@ -1216,7 +1496,7 @@
      * Updated dimension information.
      *
      * If dimensions.size() > 0, dimension information was provided along with the
-     * argument.  This can be the case for models that accept inputs of varying size.
+     * argument. This can be the case for models that accept inputs of varying size.
      * This can't change the rank, just the value of the dimensions that were
      * unspecified in the model.
      */
diff --git a/neuralnetworks/1.0/vts/functional/Callbacks.h b/neuralnetworks/1.0/vts/functional/Callbacks.h
index 2ac6130..570a4fb 100644
--- a/neuralnetworks/1.0/vts/functional/Callbacks.h
+++ b/neuralnetworks/1.0/vts/functional/Callbacks.h
@@ -30,10 +30,6 @@
  * "notify". This "notify" call awakens any client threads waiting on the
  * callback object.
  *
- * callback object. When the asynchronous task has finished its workload or has
- * failed to launch, it must immediately call "notify", awakening any client
- * threads waiting on the callback object.
- *
  * The CallbackBase class implements some of the base synchronization common to
  * both PrepareModelCallback and ExecutionCallback. For consistency, any HIDL
  * callback class must inherit from CallbackBase as well as the HIDL callback
diff --git a/neuralnetworks/1.1/IDevice.hal b/neuralnetworks/1.1/IDevice.hal
index ca22555..d2c4843 100644
--- a/neuralnetworks/1.1/IDevice.hal
+++ b/neuralnetworks/1.1/IDevice.hal
@@ -41,7 +41,7 @@
     /**
      * Gets the supported operations in a model.
      *
-     * getSupportedSubgraph indicates which operations of a model are fully
+     * getSupportedOperations indicates which operations of a model are fully
      * supported by the vendor driver. If an operation may not be supported for
      * any reason, getSupportedOperations must return false for that operation.
      *
diff --git a/neuralnetworks/1.1/types.hal b/neuralnetworks/1.1/types.hal
index 1d470d6..b4fccae 100644
--- a/neuralnetworks/1.1/types.hal
+++ b/neuralnetworks/1.1/types.hal
@@ -27,25 +27,24 @@
  */
 enum OperationType : @1.0::OperationType {
     /**
-     * BatchToSpace for N-D tensors.
+     * BatchToSpace for N-dimensional tensors.
      *
-     * This operation reshapes the "batch" dimension 0 into M + 1 dimensions of shape
+     * This operation reshapes the batch dimension (dimension 0) into M + 1 dimensions of shape
      * block_shape + [batch], interleaves these blocks back into the grid defined by the
      * spatial dimensions [1, ..., M], to obtain a result with the same rank as the input.
-     * The spatial dimensions of this intermediate result are then optionally cropped
-     * according to the amount to crop to produce the output.
+     *
      * This is the reverse of SpaceToBatch.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
-     * Supported tensor rank: up to 4
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4
      *
      * Inputs:
-     * 0: An n-D tensor, specifying the input.
+     * 0: An n-D tensor, specifying the tensor to be reshaped
      * 1: A 1-D Tensor of type TENSOR_INT32, the block sizes for each spatial dimension of the
      *    input tensor. All values must be >= 1.
-     * 2: A 1-D Tensor of type TENSOR_INT32, the amount to crop for each spatial diemension of the
-     *    input tensor. All values must be >= 0.
      *
      * Outputs:
      * 0: A tensor of the same type as input0.
@@ -53,9 +52,9 @@
     BATCH_TO_SPACE_ND = 29,
 
     /**
-     * Divides the second tensor from the first tensor, element-wise.
+     * Element-wise division of two tensors.
      *
-     * Takes two input tensors of identical OperandType and compatible dimensions. The output
+     * Takes two input tensors of identical type and compatible dimensions. The output
      * is the result of dividing the first input tensor by the second, optionally
      * modified by an activation function.
      *
@@ -71,7 +70,9 @@
      *     input2.dimension = {5, 4, 3, 1}
      *     output.dimension = {5, 4, 3, 2}
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
@@ -88,15 +89,17 @@
     /**
      * Computes the mean of elements across dimensions of a tensor.
      *
-     * Reduces input tensor along the dimensions given in axis. Unless keep_dims is true,
-     * the rank of the tensor is reduced by 1 for each entry in axis. If keep_dims is
-     * true, the reduced dimensions are retained with length 1.
+     * Reduces the input tensor along the given dimensions to reduce. Unless keep_dims
+     * is true, the rank of the tensor is reduced by 1 for each entry in axis.
+     * If keep_dims is true, the reduced dimensions are retained with length 1.
      *
-     * If axis has no entries, all dimensions are reduced, and a tensor with a single
-     * element is returned.
+     * If dimensions to reduce have no entries, all dimensions are reduced, and a tensor with
+     * a single element is returned.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
@@ -115,14 +118,18 @@
      *
      * This operation pads a tensor according to the specified paddings.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * 0: An n-D tensor, specifying the input.
-     * 1: A 2-D Tensor of type TENSOR_INT32. The paddings, before and after for each spatial dimension
-     *    of the input tensor.
+     * 0: An n-D tensor, specifying the tensor to be padded.
+     * 1: A 2-D Tensor of type TENSOR_INT32, the paddings for each spatial dimension of the
+     *    input tensor. The shape of the tensor must be {rank(input0), 2}.
+     *    padding[i, 0] specifies the number of element to be padded in the front of dimension i.
+     *    padding[i, 1] specifies the number of element to be padded after the end of dimension i.
      *
      * Outputs:
      * 0: A tensor of the same type as input0.
@@ -130,7 +137,7 @@
     PAD = 32,
 
     /**
-     * SpaceToBatch for N-D tensors.
+     * SpaceToBatch for N-Dimensional tensors.
      *
      * This operation divides "spatial" dimensions [1, ..., M] of the input into a grid of blocks
      * of shape block_shape, and interleaves these blocks with the "batch" dimension (0) such that
@@ -139,16 +146,20 @@
      * batch position. Prior to division into blocks, the spatial dimensions of the input are
      * optionally zero padded according to paddings.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
-     * Supported tensor rank: up to 4
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4
      *
      * Inputs:
      * 0: An n-D tensor, specifying the input.
      * 1: A 1-D Tensor of type TENSOR_INT32, the block sizes for each spatial dimension of the
      *    input tensor. All values must be >= 1.
      * 2: A 2-D Tensor of type TENSOR_INT32, the paddings for each spatial diemension of the
-     *    input tensor. All values must be >= 0.
+     *    input tensor. All values must be >= 0. The shape of the tensor must be {rank(input0), 2}.
+     *    padding[i, 0] specifies the number of element to be padded in the front of dimension i.
+     *    padding[i, 1] specifies the number of element to be padded after the end of dimension i.
      *
      * Outputs:
      * 0: A tensor of the same type as input0.
@@ -160,17 +171,20 @@
      *
      * Given a tensor input, this operation returns a tensor of the same type with all
      * dimensions of size 1 removed. If you don't want to remove all size 1 dimensions,
-     * you can remove specific size 1 dimensions by specifying axis.
+     * you can remove specific size 1 dimensions by specifying the axes (input1).
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * 0: An n-D tensor, specifying the input.
-     * 1: An 1-D Tensor of type TENSOR_INT32. The dimensions to squeeze. If None (the default),
-     *    squeezes all dimensions. If specified, only squeezes the dimensions listed. The dimension
-     *    index starts at 0. It is an error to squeeze a dimension that is not 1.
+     * 0: An n-D tensor, the tensor to be squeezed.
+     * 1: An optional 1-D tensor of type TENSOR_INT32. The dimensions to squeeze. If specified
+     *    only squeezes the dimensions listed. Otherwise, squeezes all dimensions.
+     *    The dimension index starts at 0. An error must be reported if squeezing a dimension that
+     *    is not 1.
      *
      * Outputs:
      * 0: A tensor of the same type as input0. Contains the same data as input, but has one or more
@@ -181,23 +195,25 @@
     /**
      * Extracts a strided slice of a tensor.
      *
-     * This op extracts a slice of size (end-begin)/stride from the given input tensor.
-    *  Starting at the location specified by begin the slice continues by adding
+     * Roughly speaking, this op extracts a slice of size (end - begin) / stride from the given
+     * input tensor. Starting at the location specified by begin the slice continues by adding
      * stride to the index until all dimensions are not less than end. Note that a stride can
      * be negative, which causes a reverse slice.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * 0: An n-D tensor, specifying the input.
+     * 0: An n-D tensor, specifying the tensor to be sliced.
      * 1: A 1-D Tensor of type TENSOR_INT32, the starts of the dimensions of the input
-     *    tensor to be sliced.
+     *    tensor to be sliced. The length must be of rank(input0).
      * 2: A 1-D Tensor of type TENSOR_INT32, the ends of the dimensions of the input
-     *    tensor to be sliced.
+     *    tensor to be sliced. The length must be of rank(input0).
      * 3: A 1-D Tensor of type TENSOR_INT32, the strides of the dimensions of the input
-     *    tensor to be sliced.
+     *    tensor to be sliced. The length must be of rank(input0).
      *
      * Outputs:
      * 0: A tensor of the same type as input0.
@@ -205,7 +221,7 @@
     STRIDED_SLICE = 35,
 
     /**
-     * Subtracts the second tensor from the first tensor, element-wise.
+     * Element-wise subtraction of two tensors.
      *
      * Takes two input tensors of identical type and compatible dimensions. The output
      * is the result of subtracting the second input tensor from the first one, optionally
@@ -223,7 +239,9 @@
      *     input2.dimension = {5, 4, 3, 1}
      *     output.dimension = {5, 4, 3, 2}
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
@@ -240,18 +258,20 @@
     /**
      * Transposes the input tensor, permuting the dimensions according to the perm tensor.
      *
-     * The returned tensor's dimension i must correspond to the input dimension perm[i].
+     * The returned tensor's dimension i corresponds to the input dimension perm[i].
      * If perm is not given, it is set to (n-1...0), where n is the rank of the input tensor.
      * Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors.
      *
-     * Supported tensor types: {@link OperandType::TENSOR_FLOAT32}
-     *                         {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * Supported tensor types:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * 0: An n-D tensor, specifying the input.
-     * 1: A 1-D Tensor of type TENSOR_INT32, the permutation of the dimensions of the input
-     *    tensor.
+     * 0: An n-D tensor, specifying the tensor to be transposed.
+     * 1: An optional 1-D Tensor of type TENSOR_INT32, the permutation of the dimensions of the
+     *    input tensor.
      *
      * Outputs:
      * 0: A tensor of the same type as input0.
diff --git a/radio/1.2/vts/functional/radio_hidl_hal_api.cpp b/radio/1.2/vts/functional/radio_hidl_hal_api.cpp
index ee130f8..0febd38 100644
--- a/radio/1.2/vts/functional/radio_hidl_hal_api.cpp
+++ b/radio/1.2/vts/functional/radio_hidl_hal_api.cpp
@@ -30,10 +30,8 @@
         .geranBands = {GeranBands::BAND_450, GeranBands::BAND_480},
         .channels = {1,2}};
 
-    V1_2::NetworkScanRequest request = {
-        .type = ScanType::ONE_SHOT,
-        .interval = 60,
-        .specifiers = {specifier}};
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {
+        .type = ScanType::ONE_SHOT, .interval = 60, .specifiers = {specifier}};
 
     Return<void> res = radio_v1_2->startNetworkScan_1_2(serial, request);
     ASSERT_OK(res);
@@ -42,9 +40,9 @@
     EXPECT_EQ(serial, radioRsp_v1_2->rspInfo.serial);
 
     ALOGI("startNetworkScan, rspInfo.error = %s\n", toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::SIM_ABSENT}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::NONE}));
     }
 }
@@ -55,9 +53,8 @@
 TEST_F(RadioHidlTest_v1_2, startNetworkScan_InvalidArgument) {
     const int serial = GetRandomSerialNumber();
 
-    V1_2::NetworkScanRequest request = {
-        .type = ScanType::ONE_SHOT,
-        .interval = 60};
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {.type = ScanType::ONE_SHOT,
+                                                                    .interval = 60};
 
     Return<void> res = radio_v1_2->startNetworkScan_1_2(serial, request);
     ASSERT_OK(res);
@@ -67,10 +64,10 @@
 
     ALOGI("startNetworkScan_InvalidArgument, rspInfo.error = %s\n",
           toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
                                      {RadioError::SIM_ABSENT, RadioError::INVALID_ARGUMENTS}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(
             CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::INVALID_ARGUMENTS}));
     }
@@ -87,7 +84,7 @@
         .geranBands = {GeranBands::BAND_450, GeranBands::BAND_480},
         .channels = {1,2}};
 
-    V1_2::NetworkScanRequest request = {
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {
         .type = ScanType::ONE_SHOT,
         .interval = 4,
         .specifiers = {specifier},
@@ -103,10 +100,10 @@
 
     ALOGI("startNetworkScan_InvalidInterval1, rspInfo.error = %s\n",
           toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
                                      {RadioError::SIM_ABSENT, RadioError::INVALID_ARGUMENTS}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(
             CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::INVALID_ARGUMENTS}));
     }
@@ -123,7 +120,7 @@
         .geranBands = {GeranBands::BAND_450, GeranBands::BAND_480},
         .channels = {1,2}};
 
-    V1_2::NetworkScanRequest request = {
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {
         .type = ScanType::ONE_SHOT,
         .interval = 301,
         .specifiers = {specifier},
@@ -139,10 +136,10 @@
 
     ALOGI("startNetworkScan_InvalidInterval2, rspInfo.error = %s\n",
           toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
                                      {RadioError::SIM_ABSENT, RadioError::INVALID_ARGUMENTS}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(
             CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::INVALID_ARGUMENTS}));
     }
@@ -159,7 +156,7 @@
         .geranBands = {GeranBands::BAND_450, GeranBands::BAND_480},
         .channels = {1,2}};
 
-    V1_2::NetworkScanRequest request = {
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {
         .type = ScanType::ONE_SHOT,
         .interval = 60,
         .specifiers = {specifier},
@@ -175,10 +172,10 @@
 
     ALOGI("startNetworkScan_InvalidMaxSearchTime1, rspInfo.error = %s\n",
           toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
                                      {RadioError::SIM_ABSENT, RadioError::INVALID_ARGUMENTS}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(
             CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::INVALID_ARGUMENTS}));
     }
@@ -195,7 +192,7 @@
         .geranBands = {GeranBands::BAND_450, GeranBands::BAND_480},
         .channels = {1,2}};
 
-    V1_2::NetworkScanRequest request = {
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {
         .type = ScanType::ONE_SHOT,
         .interval = 60,
         .specifiers = {specifier},
@@ -211,10 +208,10 @@
 
     ALOGI("startNetworkScan_InvalidMaxSearchTime2, rspInfo.error = %s\n",
           toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
                                      {RadioError::SIM_ABSENT, RadioError::INVALID_ARGUMENTS}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(
             CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::INVALID_ARGUMENTS}));
     }
@@ -231,7 +228,7 @@
         .geranBands = {GeranBands::BAND_450, GeranBands::BAND_480},
         .channels = {1,2}};
 
-    V1_2::NetworkScanRequest request = {
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {
         .type = ScanType::ONE_SHOT,
         .interval = 60,
         .specifiers = {specifier},
@@ -247,10 +244,10 @@
 
     ALOGI("startNetworkScan_InvalidPeriodicity1, rspInfo.error = %s\n",
           toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
                                      {RadioError::SIM_ABSENT, RadioError::INVALID_ARGUMENTS}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(
             CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::INVALID_ARGUMENTS}));
     }
@@ -267,7 +264,7 @@
         .geranBands = {GeranBands::BAND_450, GeranBands::BAND_480},
         .channels = {1,2}};
 
-    V1_2::NetworkScanRequest request = {
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {
         .type = ScanType::ONE_SHOT,
         .interval = 60,
         .specifiers = {specifier},
@@ -283,10 +280,10 @@
 
     ALOGI("startNetworkScan_InvalidPeriodicity2, rspInfo.error = %s\n",
           toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
                                      {RadioError::SIM_ABSENT, RadioError::INVALID_ARGUMENTS}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(
             CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::INVALID_ARGUMENTS}));
     }
@@ -303,7 +300,7 @@
         .geranBands = {GeranBands::BAND_450, GeranBands::BAND_480},
         .channels = {1,2}};
 
-    V1_2::NetworkScanRequest request = {
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {
         .type = ScanType::ONE_SHOT,
         .interval = 60,
         .specifiers = {specifier},
@@ -319,10 +316,10 @@
 
     ALOGI("startNetworkScan_InvalidArgument, rspInfo.error = %s\n",
           toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
                                      {RadioError::NONE, RadioError::SIM_ABSENT}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::NONE}));
     }
 }
@@ -338,7 +335,7 @@
         .geranBands = {GeranBands::BAND_450, GeranBands::BAND_480},
         .channels = {1,2}};
 
-    V1_2::NetworkScanRequest request = {
+    ::android::hardware::radio::V1_2::NetworkScanRequest request = {
         .type = ScanType::ONE_SHOT,
         .interval = 60,
         .specifiers = {specifier},
@@ -355,10 +352,10 @@
 
     ALOGI("startNetworkScan_InvalidArgument, rspInfo.error = %s\n",
           toString(radioRsp_v1_2->rspInfo.error).c_str());
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
                                      {RadioError::NONE, RadioError::SIM_ABSENT}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error, {RadioError::NONE}));
     }
 }
@@ -369,8 +366,8 @@
 TEST_F(RadioHidlTest_v1_2, setIndicationFilter_1_2) {
     const int serial = GetRandomSerialNumber();
 
-    Return<void> res =
-        radio_v1_2->setIndicationFilter_1_2(serial, static_cast<int>(IndicationFilter::ALL));
+    Return<void> res = radio_v1_2->setIndicationFilter_1_2(
+        serial, static_cast<int>(::android::hardware::radio::V1_2::IndicationFilter::ALL));
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -390,7 +387,7 @@
     Return<void> res = radio_v1_2->setSignalStrengthReportingCriteria(
         serial, 5000,
         10,  // hysteresisDb too large given threshold list deltas
-        {-109, -103, -97, -89}, V1_2::AccessNetwork::GERAN);
+        {-109, -103, -97, -89}, ::android::hardware::radio::V1_2::AccessNetwork::GERAN);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -407,8 +404,8 @@
 TEST_F(RadioHidlTest_v1_2, setSignalStrengthReportingCriteria_EmptyParams) {
     const int serial = GetRandomSerialNumber();
 
-    Return<void> res = radio_v1_2->setSignalStrengthReportingCriteria(serial, 0, 0, {},
-                                                                      V1_2::AccessNetwork::GERAN);
+    Return<void> res = radio_v1_2->setSignalStrengthReportingCriteria(
+        serial, 0, 0, {}, ::android::hardware::radio::V1_2::AccessNetwork::GERAN);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -426,7 +423,8 @@
     const int serial = GetRandomSerialNumber();
 
     Return<void> res = radio_v1_2->setSignalStrengthReportingCriteria(
-        serial, 5000, 2, {-109, -103, -97, -89}, V1_2::AccessNetwork::GERAN);
+        serial, 5000, 2, {-109, -103, -97, -89},
+        ::android::hardware::radio::V1_2::AccessNetwork::GERAN);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -444,7 +442,8 @@
     const int serial = GetRandomSerialNumber();
 
     Return<void> res = radio_v1_2->setSignalStrengthReportingCriteria(
-        serial, 5000, 2, {-110, -97, -73, -49, -25}, V1_2::AccessNetwork::UTRAN);
+        serial, 5000, 2, {-110, -97, -73, -49, -25},
+        ::android::hardware::radio::V1_2::AccessNetwork::UTRAN);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -462,7 +461,8 @@
     const int serial = GetRandomSerialNumber();
 
     Return<void> res = radio_v1_2->setSignalStrengthReportingCriteria(
-        serial, 5000, 2, {-140, -128, -118, -108, -98, -44}, V1_2::AccessNetwork::EUTRAN);
+        serial, 5000, 2, {-140, -128, -118, -108, -98, -44},
+        ::android::hardware::radio::V1_2::AccessNetwork::EUTRAN);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -480,7 +480,8 @@
     const int serial = GetRandomSerialNumber();
 
     Return<void> res = radio_v1_2->setSignalStrengthReportingCriteria(
-        serial, 5000, 2, {-105, -90, -75, -65}, V1_2::AccessNetwork::CDMA2000);
+        serial, 5000, 2, {-105, -90, -75, -65},
+        ::android::hardware::radio::V1_2::AccessNetwork::CDMA2000);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -500,7 +501,8 @@
     Return<void> res = radio_v1_2->setLinkCapacityReportingCriteria(
         serial, 5000,
         5000,  // hysteresisDlKbps too big for thresholds delta
-        100, {1000, 5000, 10000, 20000}, {500, 1000, 5000, 10000}, V1_2::AccessNetwork::GERAN);
+        100, {1000, 5000, 10000, 20000}, {500, 1000, 5000, 10000},
+        ::android::hardware::radio::V1_2::AccessNetwork::GERAN);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -520,7 +522,8 @@
     Return<void> res = radio_v1_2->setLinkCapacityReportingCriteria(
         serial, 5000, 500,
         1000,  // hysteresisUlKbps too big for thresholds delta
-        {1000, 5000, 10000, 20000}, {500, 1000, 5000, 10000}, V1_2::AccessNetwork::GERAN);
+        {1000, 5000, 10000, 20000}, {500, 1000, 5000, 10000},
+        ::android::hardware::radio::V1_2::AccessNetwork::GERAN);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -537,8 +540,8 @@
 TEST_F(RadioHidlTest_v1_2, setLinkCapacityReportingCriteria_emptyParams) {
     const int serial = GetRandomSerialNumber();
 
-    Return<void> res = radio_v1_2->setLinkCapacityReportingCriteria(serial, 0, 0, 0, {}, {},
-                                                                    V1_2::AccessNetwork::GERAN);
+    Return<void> res = radio_v1_2->setLinkCapacityReportingCriteria(
+        serial, 0, 0, 0, {}, {}, ::android::hardware::radio::V1_2::AccessNetwork::GERAN);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -557,7 +560,7 @@
 
     Return<void> res = radio_v1_2->setLinkCapacityReportingCriteria(
         serial, 5000, 500, 100, {1000, 5000, 10000, 20000}, {500, 1000, 5000, 10000},
-        V1_2::AccessNetwork::GERAN);
+        ::android::hardware::radio::V1_2::AccessNetwork::GERAN);
     ASSERT_OK(res);
     EXPECT_EQ(std::cv_status::no_timeout, wait());
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
@@ -574,7 +577,8 @@
 TEST_F(RadioHidlTest_v1_2, setupDataCall_1_2) {
     const int serial = GetRandomSerialNumber();
 
-    V1_2::AccessNetwork accessNetwork = V1_2::AccessNetwork::EUTRAN;
+    ::android::hardware::radio::V1_2::AccessNetwork accessNetwork =
+        ::android::hardware::radio::V1_2::AccessNetwork::EUTRAN;
 
     DataProfileInfo dataProfileInfo;
     memset(&dataProfileInfo, 0, sizeof(dataProfileInfo));
@@ -600,7 +604,8 @@
     bool roamingAllowed = false;
     bool isRoaming = false;
 
-    V1_2::DataRequestReason reason = V1_2::DataRequestReason::NORMAL;
+    ::android::hardware::radio::V1_2::DataRequestReason reason =
+        ::android::hardware::radio::V1_2::DataRequestReason::NORMAL;
     std::vector<hidl_string> addresses = {""};
     std::vector<hidl_string> dnses = {""};
 
@@ -613,12 +618,12 @@
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
     EXPECT_EQ(serial, radioRsp_v1_2->rspInfo.serial);
 
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(
             radioRsp_v1_2->rspInfo.error,
             {RadioError::SIM_ABSENT, RadioError::RADIO_NOT_AVAILABLE, RadioError::INVALID_ARGUMENTS,
              RadioError::OP_NOT_ALLOWED_BEFORE_REG_TO_NW, RadioError::REQUEST_NOT_SUPPORTED}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(CheckAnyOfErrors(
             radioRsp_v1_2->rspInfo.error,
             {RadioError::NONE, RadioError::RADIO_NOT_AVAILABLE, RadioError::INVALID_ARGUMENTS,
@@ -632,7 +637,8 @@
 TEST_F(RadioHidlTest_v1_2, deactivateDataCall_1_2) {
     const int serial = GetRandomSerialNumber();
     int cid = 1;
-    V1_2::DataRequestReason reason = V1_2::DataRequestReason::NORMAL;
+    ::android::hardware::radio::V1_2::DataRequestReason reason =
+        ::android::hardware::radio::V1_2::DataRequestReason::NORMAL;
 
     Return<void> res = radio_v1_2->deactivateDataCall_1_2(serial, cid, reason);
     ASSERT_OK(res);
@@ -641,13 +647,13 @@
     EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
     EXPECT_EQ(serial, radioRsp_v1_2->rspInfo.serial);
 
-    if (cardStatus.cardState == CardState::ABSENT) {
+    if (cardStatus.base.cardState == CardState::ABSENT) {
         ASSERT_TRUE(CheckAnyOfErrors(
             radioRsp_v1_2->rspInfo.error,
             {RadioError::NONE, RadioError::RADIO_NOT_AVAILABLE, RadioError::INVALID_CALL_ID,
              RadioError::INVALID_STATE, RadioError::INVALID_ARGUMENTS,
              RadioError::REQUEST_NOT_SUPPORTED, RadioError::CANCELLED, RadioError::SIM_ABSENT}));
-    } else if (cardStatus.cardState == CardState::PRESENT) {
+    } else if (cardStatus.base.cardState == CardState::PRESENT) {
         ASSERT_TRUE(CheckAnyOfErrors(
             radioRsp_v1_2->rspInfo.error,
             {RadioError::NONE, RadioError::RADIO_NOT_AVAILABLE, RadioError::INVALID_CALL_ID,
@@ -710,3 +716,33 @@
         radioRsp_v1_2->rspInfo.error,
         {RadioError::NONE, RadioError::RADIO_NOT_AVAILABLE, RadioError::NOT_PROVISIONED}));
 }
+
+/*
+ * Test IRadio.getAvailableBandModes() for the response returned.
+ */
+TEST_F(RadioHidlTest_v1_2, getAvailableBandModes) {
+    int serial = GetRandomSerialNumber();
+
+    Return<void> res = radio_v1_2->getAvailableBandModes(serial);
+    ASSERT_OK(res);
+    EXPECT_EQ(std::cv_status::no_timeout, wait());
+    EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_2->rspInfo.type);
+    EXPECT_EQ(serial, radioRsp_v1_2->rspInfo.serial);
+    ALOGI("getAvailableBandModes, rspInfo.error = %s\n",
+          toString(radioRsp_v1_2->rspInfo.error).c_str());
+    ASSERT_TRUE(
+        CheckAnyOfErrors(radioRsp_v1_2->rspInfo.error,
+                         {RadioError::NONE, RadioError::RADIO_NOT_AVAILABLE, RadioError::MODEM_ERR,
+                          RadioError::INTERNAL_ERR,
+                          // If REQUEST_NOT_SUPPORTED is returned, then it should also be returned
+                          // for setRandMode().
+                          RadioError::REQUEST_NOT_SUPPORTED}));
+    bool hasUnspecifiedBandMode = false;
+    if (radioRsp_v1_2->rspInfo.error == RadioError::NONE) {
+        for (const RadioBandMode& mode : radioRsp_v1_2->radioBandModes) {
+            // Automatic mode selection must be supported
+            if (mode == RadioBandMode::BAND_MODE_UNSPECIFIED) hasUnspecifiedBandMode = true;
+        }
+        ASSERT_TRUE(hasUnspecifiedBandMode);
+    }
+}
diff --git a/radio/1.2/vts/functional/radio_hidl_hal_test.cpp b/radio/1.2/vts/functional/radio_hidl_hal_test.cpp
index d74d077..edac1aa 100644
--- a/radio/1.2/vts/functional/radio_hidl_hal_test.cpp
+++ b/radio/1.2/vts/functional/radio_hidl_hal_test.cpp
@@ -17,14 +17,18 @@
 #include <radio_hidl_hal_utils_v1_2.h>
 
 void RadioHidlTest_v1_2::SetUp() {
-    radio_v1_2 = ::testing::VtsHalHidlTargetTestBase::getService<V1_2::IRadio>(
-        RadioHidlEnvironment::Instance()->getServiceName<V1_2::IRadio>(
-            hidl_string(RADIO_SERVICE_NAME)));
+    radio_v1_2 =
+        ::testing::VtsHalHidlTargetTestBase::getService<::android::hardware::radio::V1_2::IRadio>(
+            RadioHidlEnvironment::Instance()
+                ->getServiceName<::android::hardware::radio::V1_2::IRadio>(
+                    hidl_string(RADIO_SERVICE_NAME)));
     if (radio_v1_2 == NULL) {
         sleep(60);
-        radio_v1_2 = ::testing::VtsHalHidlTargetTestBase::getService<V1_2::IRadio>(
-            RadioHidlEnvironment::Instance()->getServiceName<V1_2::IRadio>(
-                hidl_string(RADIO_SERVICE_NAME)));
+        radio_v1_2 = ::testing::VtsHalHidlTargetTestBase::getService<
+            ::android::hardware::radio::V1_2::IRadio>(
+            RadioHidlEnvironment::Instance()
+                ->getServiceName<::android::hardware::radio::V1_2::IRadio>(
+                    hidl_string(RADIO_SERVICE_NAME)));
     }
     ASSERT_NE(nullptr, radio_v1_2.get());
 
@@ -71,4 +75,4 @@
     }
     count_--;
     return status;
-}
+}
\ No newline at end of file
diff --git a/radio/1.2/vts/functional/radio_hidl_hal_utils_v1_2.h b/radio/1.2/vts/functional/radio_hidl_hal_utils_v1_2.h
index c61913c..2d0ea29 100644
--- a/radio/1.2/vts/functional/radio_hidl_hal_utils_v1_2.h
+++ b/radio/1.2/vts/functional/radio_hidl_hal_utils_v1_2.h
@@ -22,14 +22,14 @@
 #include <condition_variable>
 #include <mutex>
 
-#include <android/hardware/radio/1.1/IRadioIndication.h>
-#include <android/hardware/radio/1.1/IRadioResponse.h>
 #include <android/hardware/radio/1.2/IRadio.h>
+#include <android/hardware/radio/1.2/IRadioIndication.h>
+#include <android/hardware/radio/1.2/IRadioResponse.h>
 #include <android/hardware/radio/1.2/types.h>
 
 #include "vts_test_util.h"
 
-using namespace ::android::hardware::radio;
+using namespace ::android::hardware::radio::V1_2;
 using namespace ::android::hardware::radio::V1_1;
 using namespace ::android::hardware::radio::V1_0;
 
@@ -44,21 +44,24 @@
 #define RADIO_SERVICE_NAME "slot1"
 
 class RadioHidlTest_v1_2;
-extern CardStatus cardStatus;
+extern ::android::hardware::radio::V1_2::CardStatus cardStatus;
 
 /* Callback class for radio response v1_2*/
-class RadioResponse_v1_2 : public V1_1::IRadioResponse {
+class RadioResponse_v1_2 : public ::android::hardware::radio::V1_2::IRadioResponse {
    protected:
     RadioHidlTest_v1_2& parent_v1_2;
 
    public:
+    hidl_vec<RadioBandMode> radioBandModes;
+
     RadioResponseInfo rspInfo;
 
     RadioResponse_v1_2(RadioHidlTest_v1_2& parent_v1_2);
     virtual ~RadioResponse_v1_2() = default;
 
-    Return<void> getIccCardStatusResponse(const RadioResponseInfo& info,
-                                          const CardStatus& cardStatus);
+    Return<void> getIccCardStatusResponse(
+        const RadioResponseInfo& info,
+        const ::android::hardware::radio::V1_0::CardStatus& cardStatus);
 
     Return<void> supplyIccPinForAppResponse(const RadioResponseInfo& info,
                                             int32_t remainingRetries);
@@ -81,8 +84,9 @@
     Return<void> supplyNetworkDepersonalizationResponse(const RadioResponseInfo& info,
                                                         int32_t remainingRetries);
 
-    Return<void> getCurrentCallsResponse(const RadioResponseInfo& info,
-                                         const ::android::hardware::hidl_vec<Call>& calls);
+    Return<void> getCurrentCallsResponse(
+        const RadioResponseInfo& info,
+        const ::android::hardware::hidl_vec<::android::hardware::radio::V1_0::Call>& calls);
 
     Return<void> dialResponse(const RadioResponseInfo& info);
 
@@ -104,14 +108,17 @@
     Return<void> getLastCallFailCauseResponse(const RadioResponseInfo& info,
                                               const LastCallFailCauseInfo& failCauseInfo);
 
-    Return<void> getSignalStrengthResponse(const RadioResponseInfo& info,
-                                           const SignalStrength& sigStrength);
+    Return<void> getSignalStrengthResponse(
+        const RadioResponseInfo& info,
+        const ::android::hardware::radio::V1_0::SignalStrength& sigStrength);
 
-    Return<void> getVoiceRegistrationStateResponse(const RadioResponseInfo& info,
-                                                   const VoiceRegStateResult& voiceRegResponse);
+    Return<void> getVoiceRegistrationStateResponse(
+        const RadioResponseInfo& info,
+        const ::android::hardware::radio::V1_0::VoiceRegStateResult& voiceRegResponse);
 
-    Return<void> getDataRegistrationStateResponse(const RadioResponseInfo& info,
-                                                  const DataRegStateResult& dataRegResponse);
+    Return<void> getDataRegistrationStateResponse(
+        const RadioResponseInfo& info,
+        const ::android::hardware::radio::V1_0::DataRegStateResult& dataRegResponse);
 
     Return<void> getOperatorResponse(const RadioResponseInfo& info,
                                      const ::android::hardware::hidl_string& longName,
@@ -310,8 +317,9 @@
     Return<void> getVoiceRadioTechnologyResponse(const RadioResponseInfo& info,
                                                  RadioTechnology rat);
 
-    Return<void> getCellInfoListResponse(const RadioResponseInfo& info,
-                                         const ::android::hardware::hidl_vec<CellInfo>& cellInfo);
+    Return<void> getCellInfoListResponse(
+        const RadioResponseInfo& info,
+        const ::android::hardware::hidl_vec<::android::hardware::radio::V1_0::CellInfo>& cellInfo);
 
     Return<void> setCellInfoListRateResponse(const RadioResponseInfo& info);
 
@@ -406,27 +414,33 @@
 
     Return<void> setLinkCapacityReportingCriteriaResponse(const RadioResponseInfo& info);
 
-    Return<void> getIccCardStatusResponse_1_2(const RadioResponseInfo& info,
-                                              const CardStatus& card_status);
+    Return<void> getIccCardStatusResponse_1_2(
+        const RadioResponseInfo& info,
+        const ::android::hardware::radio::V1_2::CardStatus& card_status);
 
-    Return<void> getCurrentCallsResponse_1_2(const RadioResponseInfo& info,
-                                             const ::android::hardware::hidl_vec<Call>& calls);
+    Return<void> getCurrentCallsResponse_1_2(
+        const RadioResponseInfo& info,
+        const ::android::hardware::hidl_vec<::android::hardware::radio::V1_2::Call>& calls);
 
-    Return<void> getSignalStrengthResponse_1_2(const RadioResponseInfo& info,
-                                               const SignalStrength& sig_strength);
+    Return<void> getSignalStrengthResponse_1_2(
+        const RadioResponseInfo& info,
+        const ::android::hardware::radio::V1_2::SignalStrength& sig_strength);
 
     Return<void> getCellInfoListResponse_1_2(
-        const RadioResponseInfo& info, const ::android::hardware::hidl_vec<CellInfo>& cellInfo);
+        const RadioResponseInfo& info,
+        const ::android::hardware::hidl_vec<::android::hardware::radio::V1_2::CellInfo>& cellInfo);
 
     Return<void> getVoiceRegistrationStateResponse_1_2(
-        const RadioResponseInfo& info, const V1_2::VoiceRegStateResult& voiceRegResponse);
+        const RadioResponseInfo& info,
+        const ::android::hardware::radio::V1_2::VoiceRegStateResult& voiceRegResponse);
 
     Return<void> getDataRegistrationStateResponse_1_2(
-        const RadioResponseInfo& info, const V1_2::DataRegStateResult& dataRegResponse);
+        const RadioResponseInfo& info,
+        const ::android::hardware::radio::V1_2::DataRegStateResult& dataRegResponse);
 };
 
 /* Callback class for radio indication */
-class RadioIndication_v1_2 : public V1_1::IRadioIndication {
+class RadioIndication_v1_2 : public ::android::hardware::radio::V1_2::IRadioIndication {
    protected:
     RadioHidlTest_v1_2& parent_v1_2;
 
@@ -435,26 +449,33 @@
     virtual ~RadioIndication_v1_2() = default;
 
     /* 1.2 Api */
-    Return<void> networkScanResult_1_2(RadioIndicationType type,
-                                       const V1_2::NetworkScanResult& result);
+    Return<void> networkScanResult_1_2(
+        RadioIndicationType type,
+        const ::android::hardware::radio::V1_2::NetworkScanResult& result);
 
-    Return<void> cellInfoList_1_2(RadioIndicationType type,
-                                  const ::android::hardware::hidl_vec<V1_2::CellInfo>& records);
+    Return<void> cellInfoList_1_2(
+        RadioIndicationType type,
+        const ::android::hardware::hidl_vec<::android::hardware::radio::V1_2::CellInfo>& records);
 
-    Return<void> currentLinkCapacityEstimate(RadioIndicationType type,
-                                             const V1_2::LinkCapacityEstimate& lce);
+    Return<void> currentLinkCapacityEstimate(
+        RadioIndicationType type,
+        const ::android::hardware::radio::V1_2::LinkCapacityEstimate& lce);
 
     Return<void> currentPhysicalChannelConfigs(
         RadioIndicationType type,
-        const ::android::hardware::hidl_vec<V1_2::PhysicalChannelConfig>& configs);
+        const ::android::hardware::hidl_vec<
+            ::android::hardware::radio::V1_2::PhysicalChannelConfig>& configs);
 
-    Return<void> currentSignalStrength_1_2(RadioIndicationType type,
-                                           const V1_2::SignalStrength& signalStrength);
+    Return<void> currentSignalStrength_1_2(
+        RadioIndicationType type,
+        const ::android::hardware::radio::V1_2::SignalStrength& signalStrength);
 
     /* 1.1 Api */
     Return<void> carrierInfoForImsiEncryption(RadioIndicationType info);
 
-    Return<void> networkScanResult(RadioIndicationType type, const NetworkScanResult& result);
+    Return<void> networkScanResult(
+        RadioIndicationType type,
+        const ::android::hardware::radio::V1_1::NetworkScanResult& result);
 
     Return<void> keepaliveStatus(RadioIndicationType type, const KeepaliveStatus& status);
 
@@ -480,8 +501,9 @@
                                   const ::android::hardware::hidl_string& nitzTime,
                                   uint64_t receivedTime);
 
-    Return<void> currentSignalStrength(RadioIndicationType type,
-                                       const SignalStrength& signalStrength);
+    Return<void> currentSignalStrength(
+        RadioIndicationType type,
+        const ::android::hardware::radio::V1_0::SignalStrength& signalStrength);
 
     Return<void> dataCallListChanged(
         RadioIndicationType type, const ::android::hardware::hidl_vec<SetupDataCallResult>& dcList);
@@ -539,8 +561,9 @@
 
     Return<void> voiceRadioTechChanged(RadioIndicationType type, RadioTechnology rat);
 
-    Return<void> cellInfoList(RadioIndicationType type,
-                              const ::android::hardware::hidl_vec<CellInfo>& records);
+    Return<void> cellInfoList(
+        RadioIndicationType type,
+        const ::android::hardware::hidl_vec<::android::hardware::radio::V1_0::CellInfo>& records);
 
     Return<void> imsNetworkStateChanged(RadioIndicationType type);
 
@@ -575,7 +598,9 @@
         static RadioHidlEnvironment* instance = new RadioHidlEnvironment;
         return instance;
     }
-    virtual void registerTestServices() override { registerTestService<V1_2::IRadio>(); }
+    virtual void registerTestServices() override {
+        registerTestService<::android::hardware::radio::V1_2::IRadio>();
+    }
 
    private:
     RadioHidlEnvironment() {}
@@ -598,11 +623,11 @@
     std::cv_status wait();
 
     /* radio service handle */
-    sp<V1_2::IRadio> radio_v1_2;
+    sp<::android::hardware::radio::V1_2::IRadio> radio_v1_2;
 
     /* radio response handle */
     sp<RadioResponse_v1_2> radioRsp_v1_2;
 
     /* radio indication handle */
     sp<RadioIndication_v1_2> radioInd_v1_2;
-};
+};
\ No newline at end of file
diff --git a/radio/1.2/vts/functional/radio_indication.cpp b/radio/1.2/vts/functional/radio_indication.cpp
index 57f5cb0..eba9dc0 100644
--- a/radio/1.2/vts/functional/radio_indication.cpp
+++ b/radio/1.2/vts/functional/radio_indication.cpp
@@ -20,29 +20,33 @@
 
 /* 1.2 Apis */
 Return<void> RadioIndication_v1_2::networkScanResult_1_2(
-    RadioIndicationType /*type*/, const V1_2::NetworkScanResult& /*result*/) {
+    RadioIndicationType /*type*/,
+    const ::android::hardware::radio::V1_2::NetworkScanResult& /*result*/) {
     return Void();
 }
 
 Return<void> RadioIndication_v1_2::cellInfoList_1_2(
     RadioIndicationType /*type*/,
-    const ::android::hardware::hidl_vec<V1_2::CellInfo>& /*records*/) {
+    const ::android::hardware::hidl_vec<::android::hardware::radio::V1_2::CellInfo>& /*records*/) {
     return Void();
 }
 
 Return<void> RadioIndication_v1_2::currentLinkCapacityEstimate(
-    RadioIndicationType /*type*/, const V1_2::LinkCapacityEstimate& /*lce*/) {
+    RadioIndicationType /*type*/,
+    const ::android::hardware::radio::V1_2::LinkCapacityEstimate& /*lce*/) {
     return Void();
 }
 
 Return<void> RadioIndication_v1_2::currentPhysicalChannelConfigs(
     RadioIndicationType /*type*/,
-    const ::android::hardware::hidl_vec<V1_2::PhysicalChannelConfig>& /*configs*/) {
+    const ::android::hardware::hidl_vec<
+        ::android::hardware::radio::V1_2::PhysicalChannelConfig>& /*configs*/) {
     return Void();
 }
 
 Return<void> RadioIndication_v1_2::currentSignalStrength_1_2(
-    RadioIndicationType /*type*/, const V1_2::SignalStrength& /*signalStrength*/) {
+    RadioIndicationType /*type*/,
+    const ::android::hardware::radio::V1_2::SignalStrength& /*signalStrength*/) {
     return Void();
 }
 
@@ -51,8 +55,9 @@
     return Void();
 }
 
-Return<void> RadioIndication_v1_2::networkScanResult(RadioIndicationType /*type*/,
-                                                     const NetworkScanResult& /*result*/) {
+Return<void> RadioIndication_v1_2::networkScanResult(
+    RadioIndicationType /*type*/,
+    const ::android::hardware::radio::V1_1::NetworkScanResult& /*result*/) {
     return Void();
 }
 
@@ -101,8 +106,9 @@
     return Void();
 }
 
-Return<void> RadioIndication_v1_2::currentSignalStrength(RadioIndicationType /*type*/,
-                                                         const SignalStrength& /*signalStrength*/) {
+Return<void> RadioIndication_v1_2::currentSignalStrength(
+    RadioIndicationType /*type*/,
+    const ::android::hardware::radio::V1_0::SignalStrength& /*signalStrength*/) {
     return Void();
 }
 
@@ -224,7 +230,8 @@
 }
 
 Return<void> RadioIndication_v1_2::cellInfoList(
-    RadioIndicationType /*type*/, const ::android::hardware::hidl_vec<CellInfo>& /*records*/) {
+    RadioIndicationType /*type*/,
+    const ::android::hardware::hidl_vec<::android::hardware::radio::V1_0::CellInfo>& /*records*/) {
     return Void();
 }
 
@@ -276,4 +283,4 @@
 Return<void> RadioIndication_v1_2::modemReset(RadioIndicationType /*type*/,
                                               const ::android::hardware::hidl_string& /*reason*/) {
     return Void();
-}
+}
\ No newline at end of file
diff --git a/radio/1.2/vts/functional/radio_response.cpp b/radio/1.2/vts/functional/radio_response.cpp
index 9195689..85ec3e0 100644
--- a/radio/1.2/vts/functional/radio_response.cpp
+++ b/radio/1.2/vts/functional/radio_response.cpp
@@ -16,13 +16,14 @@
 
 #include <radio_hidl_hal_utils_v1_2.h>
 
-CardStatus cardStatus;
+::android::hardware::radio::V1_2::CardStatus cardStatus;
 
 RadioResponse_v1_2::RadioResponse_v1_2(RadioHidlTest_v1_2& parent) : parent_v1_2(parent) {}
 
 /* 1.0 Apis */
-Return<void> RadioResponse_v1_2::getIccCardStatusResponse(const RadioResponseInfo& /*info*/,
-                                                          const CardStatus& /*card_status*/) {
+Return<void> RadioResponse_v1_2::getIccCardStatusResponse(
+    const RadioResponseInfo& /*info*/,
+    const ::android::hardware::radio::V1_0::CardStatus& /*card_status*/) {
     return Void();
 }
 
@@ -62,7 +63,8 @@
 }
 
 Return<void> RadioResponse_v1_2::getCurrentCallsResponse(
-    const RadioResponseInfo& /*info*/, const ::android::hardware::hidl_vec<Call>& /*calls*/) {
+    const RadioResponseInfo& /*info*/,
+    const ::android::hardware::hidl_vec<::android::hardware::radio::V1_0::Call>& /*calls*/) {
     return Void();
 }
 
@@ -107,18 +109,21 @@
     return Void();
 }
 
-Return<void> RadioResponse_v1_2::getSignalStrengthResponse(const RadioResponseInfo& /*info*/,
-                                                           const SignalStrength& /*sig_strength*/) {
+Return<void> RadioResponse_v1_2::getSignalStrengthResponse(
+    const RadioResponseInfo& /*info*/,
+    const ::android::hardware::radio::V1_0::SignalStrength& /*sig_strength*/) {
     return Void();
 }
 
 Return<void> RadioResponse_v1_2::getVoiceRegistrationStateResponse(
-    const RadioResponseInfo& /*info*/, const VoiceRegStateResult& /*voiceRegResponse*/) {
+    const RadioResponseInfo& /*info*/,
+    const ::android::hardware::radio::V1_0::VoiceRegStateResult& /*voiceRegResponse*/) {
     return Void();
 }
 
 Return<void> RadioResponse_v1_2::getDataRegistrationStateResponse(
-    const RadioResponseInfo& /*info*/, const DataRegStateResult& /*dataRegResponse*/) {
+    const RadioResponseInfo& /*info*/,
+    const ::android::hardware::radio::V1_0::DataRegStateResult& /*dataRegResponse*/) {
     return Void();
 }
 
@@ -312,8 +317,10 @@
 }
 
 Return<void> RadioResponse_v1_2::getAvailableBandModesResponse(
-    const RadioResponseInfo& /*info*/,
-    const ::android::hardware::hidl_vec<RadioBandMode>& /*bandModes*/) {
+    const RadioResponseInfo& info, const ::android::hardware::hidl_vec<RadioBandMode>& bandModes) {
+    rspInfo = info;
+    radioBandModes = bandModes;
+    parent_v1_2.notify();
     return Void();
 }
 
@@ -515,7 +522,7 @@
 
 Return<void> RadioResponse_v1_2::getCellInfoListResponse(
     const RadioResponseInfo& /*info*/,
-    const ::android::hardware::hidl_vec<CellInfo>& /*cellInfo*/) {
+    const ::android::hardware::hidl_vec<::android::hardware::radio::V1_0::CellInfo>& /*cellInfo*/) {
     return Void();
 }
 
@@ -704,8 +711,9 @@
     return Void();
 }
 
-Return<void> RadioResponse_v1_2::getIccCardStatusResponse_1_2(const RadioResponseInfo& info,
-                                                              const CardStatus& card_status) {
+Return<void> RadioResponse_v1_2::getIccCardStatusResponse_1_2(
+    const RadioResponseInfo& info,
+    const ::android::hardware::radio::V1_2::CardStatus& card_status) {
     rspInfo = info;
     cardStatus = card_status;
     parent_v1_2.notify();
@@ -713,32 +721,37 @@
 }
 
 Return<void> RadioResponse_v1_2::getCurrentCallsResponse_1_2(
-    const RadioResponseInfo& info, const ::android::hardware::hidl_vec<Call>& /*calls*/) {
+    const RadioResponseInfo& info,
+    const ::android::hardware::hidl_vec<::android::hardware::radio::V1_2::Call>& /*calls*/) {
     rspInfo = info;
     parent_v1_2.notify();
     return Void();
 }
 
 Return<void> RadioResponse_v1_2::getSignalStrengthResponse_1_2(
-    const RadioResponseInfo& info, const SignalStrength& /*sig_strength*/) {
+    const RadioResponseInfo& info,
+    const ::android::hardware::radio::V1_2::SignalStrength& /*sig_strength*/) {
     rspInfo = info;
     parent_v1_2.notify();
     return Void();
 }
 
 Return<void> RadioResponse_v1_2::getCellInfoListResponse_1_2(
-    const RadioResponseInfo& info, const ::android::hardware::hidl_vec<CellInfo>& /*cellInfo*/) {
+    const RadioResponseInfo& info,
+    const ::android::hardware::hidl_vec<::android::hardware::radio::V1_2::CellInfo>& /*cellInfo*/) {
     rspInfo = info;
     parent_v1_2.notify();
     return Void();
 }
 
 Return<void> RadioResponse_v1_2::getVoiceRegistrationStateResponse_1_2(
-    const RadioResponseInfo& /*info*/, const V1_2::VoiceRegStateResult& /*voiceRegResponse*/) {
+    const RadioResponseInfo& /*info*/,
+    const ::android::hardware::radio::V1_2::VoiceRegStateResult& /*voiceRegResponse*/) {
     return Void();
 }
 
 Return<void> RadioResponse_v1_2::getDataRegistrationStateResponse_1_2(
-    const RadioResponseInfo& /*info*/, const V1_2::DataRegStateResult& /*dataRegResponse*/) {
+    const RadioResponseInfo& /*info*/,
+    const ::android::hardware::radio::V1_2::DataRegStateResult& /*dataRegResponse*/) {
     return Void();
-}
+}
\ No newline at end of file
diff --git a/sensors/1.0/vts/functional/VtsHalSensorsV1_0TargetTest.cpp b/sensors/1.0/vts/functional/VtsHalSensorsV1_0TargetTest.cpp
index 24b58a7..c18eedd 100644
--- a/sensors/1.0/vts/functional/VtsHalSensorsV1_0TargetTest.cpp
+++ b/sensors/1.0/vts/functional/VtsHalSensorsV1_0TargetTest.cpp
@@ -956,6 +956,7 @@
                                              std::chrono::seconds duration,
                                              const SensorEventsChecker &checker) {
   std::vector<Event> events;
+  std::vector<Event> sensorEvents;
 
   const int64_t samplingPeriodInNs = samplingPeriod.count();
   const int64_t batchingPeriodInNs = 0; // no batching
@@ -985,7 +986,6 @@
 
   ASSERT_GT(events.size(), 0u);
 
-  size_t nRealEvent = 0;
   bool handleMismatchReported = false;
   bool metaSensorTypeErrorReported = false;
   for (auto & e : events) {
@@ -996,7 +996,7 @@
             << (handleMismatchReported = true,
                 "Event of the same type must come from the sensor registered");
       }
-      ++ nRealEvent;
+      sensorEvents.push_back(e);
     } else {
       // avoid generating hundreds of error
       if (!metaSensorTypeErrorReported) {
@@ -1008,9 +1008,10 @@
   }
 
   std::string s;
-  EXPECT_TRUE(checker.check(events, &s)) << s;
+  EXPECT_TRUE(checker.check(sensorEvents, &s)) << s;
 
-  EXPECT_GE(nRealEvent, minNEvent / 2); // make sure returned events are not all meta
+  EXPECT_GE(sensorEvents.size(),
+            minNEvent / 2);  // make sure returned events are not all meta
 }
 
 // Test if sensor hal can do UI speed accelerometer streaming properly
@@ -1367,16 +1368,24 @@
   bool typeErrorReported = false;
   bool tokenErrorReported = false;
   bool timestampErrorReported = false;
+  std::vector<Event> sensorEvents;
   for (auto &e : events) {
-    if (!typeErrorReported) {
-      EXPECT_EQ(type, e.sensorType)
-          << (typeErrorReported = true, "Type in event does not match type of sensor registered.");
-    }
     if (!tokenErrorReported) {
       EXPECT_EQ(eventToken, e.sensorHandle)
           << (tokenErrorReported = true,
             "Event token does not match that retured from configDirectReport");
     }
+
+    if (isMetaSensorType(e.sensorType)) {
+        continue;
+    }
+    sensorEvents.push_back(e);
+
+    if (!typeErrorReported) {
+      EXPECT_EQ(type, e.sensorType)
+          << (typeErrorReported = true,
+              "Type in event does not match type of sensor registered.");
+    }
     if (!timestampErrorReported) {
       EXPECT_GT(e.timestamp, lastTimestamp)
           << (timestampErrorReported = true, "Timestamp not monotonically increasing");
@@ -1385,7 +1394,7 @@
   }
 
   std::string s;
-  EXPECT_TRUE(checker.check(events, &s)) << s;
+  EXPECT_TRUE(checker.check(sensorEvents, &s)) << s;
 
   // stop sensor and unregister channel
   configDirectReport(sensor.sensorHandle, channelHandle, RateLevel::STOP,
diff --git a/wifi/1.0/vts/functional/wifi_chip_hidl_test.cpp b/wifi/1.0/vts/functional/wifi_chip_hidl_test.cpp
index 0c5bd45..d16f1e7 100644
--- a/wifi/1.0/vts/functional/wifi_chip_hidl_test.cpp
+++ b/wifi/1.0/vts/functional/wifi_chip_hidl_test.cpp
@@ -88,7 +88,10 @@
     uint32_t configureChipForStaIfaceAndGetCapabilities() {
         configureChipForIfaceType(IfaceType::STA, true);
         const auto& status_and_caps = HIDL_INVOKE(wifi_chip_, getCapabilities);
-        EXPECT_EQ(WifiStatusCode::SUCCESS, status_and_caps.first.code);
+        if (status_and_caps.first.code != WifiStatusCode::SUCCESS) {
+            EXPECT_EQ(WifiStatusCode::ERROR_NOT_SUPPORTED, status_and_caps.first.code);
+            return 0;
+        }
         return status_and_caps.second;
     }
 
@@ -193,7 +196,10 @@
 TEST_F(WifiChipHidlTest, GetCapabilities) {
     configureChipForIfaceType(IfaceType::STA, true);
     const auto& status_and_caps = HIDL_INVOKE(wifi_chip_, getCapabilities);
-    EXPECT_EQ(WifiStatusCode::SUCCESS, status_and_caps.first.code);
+    if (status_and_caps.first.code != WifiStatusCode::SUCCESS) {
+        EXPECT_EQ(WifiStatusCode::ERROR_NOT_SUPPORTED, status_and_caps.first.code);
+        return;
+    }
     EXPECT_NE(0u, status_and_caps.second);
 }
 
diff --git a/wifi/1.2/default/wifi_nan_iface.cpp b/wifi/1.2/default/wifi_nan_iface.cpp
index 535e3d3..566d36e 100644
--- a/wifi/1.2/default/wifi_nan_iface.cpp
+++ b/wifi/1.2/default/wifi_nan_iface.cpp
@@ -427,7 +427,8 @@
                 return;
             }
 
-            for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
+            for (const auto& callback :
+                 shared_ptr_this->getEventCallbacks_1_2()) {
                 if (!callback->eventDataPathConfirm_1_2(hidl_struct).isOk()) {
                     LOG(ERROR) << "Failed to invoke the callback";
                 }
@@ -483,7 +484,7 @@
             return;
         }
 
-        for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
+        for (const auto& callback : shared_ptr_this->getEventCallbacks_1_2()) {
             if (!callback->eventDataPathScheduleUpdate(hidl_struct).isOk()) {
                 LOG(ERROR) << "Failed to invoke the callback";
             }
@@ -507,6 +508,7 @@
 
     legacy_hal_.reset();
     event_cb_handler_.invalidate();
+    event_cb_handler_1_2_.invalidate();
     is_valid_ = false;
 }
 
@@ -514,10 +516,16 @@
 
 std::string WifiNanIface::getName() { return ifname_; }
 
-std::set<sp<IWifiNanIfaceEventCallback>> WifiNanIface::getEventCallbacks() {
+std::set<sp<V1_0::IWifiNanIfaceEventCallback>>
+WifiNanIface::getEventCallbacks() {
     return event_cb_handler_.getCallbacks();
 }
 
+std::set<sp<V1_2::IWifiNanIfaceEventCallback>>
+WifiNanIface::getEventCallbacks_1_2() {
+    return event_cb_handler_1_2_.getCallbacks();
+}
+
 Return<void> WifiNanIface::getName(getName_cb hidl_status_cb) {
     return validateAndCall(this, WifiStatusCode::ERROR_WIFI_IFACE_INVALID,
                            &WifiNanIface::getNameInternal, hidl_status_cb);
@@ -681,8 +689,11 @@
 }
 
 WifiStatus WifiNanIface::registerEventCallbackInternal(
-    const sp<V1_0::IWifiNanIfaceEventCallback>& /*callback*/) {
-    return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED);
+    const sp<V1_0::IWifiNanIfaceEventCallback>& callback) {
+    if (!event_cb_handler_.addCallback(callback)) {
+        return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
+    }
+    return createWifiStatus(WifiStatusCode::SUCCESS);
 }
 
 WifiStatus WifiNanIface::getCapabilitiesRequestInternal(uint16_t cmd_id) {
@@ -808,8 +819,12 @@
 }
 
 WifiStatus WifiNanIface::registerEventCallback_1_2Internal(
-    const sp<IWifiNanIfaceEventCallback>& callback) {
-    if (!event_cb_handler_.addCallback(callback)) {
+    const sp<V1_2::IWifiNanIfaceEventCallback>& callback) {
+    sp<V1_0::IWifiNanIfaceEventCallback> callback_1_0 = callback;
+    if (!event_cb_handler_.addCallback(callback_1_0)) {
+        return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
+    }
+    if (!event_cb_handler_1_2_.addCallback(callback)) {
         return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
     }
     return createWifiStatus(WifiStatusCode::SUCCESS);
diff --git a/wifi/1.2/default/wifi_nan_iface.h b/wifi/1.2/default/wifi_nan_iface.h
index a2dcf3a..dba527b 100644
--- a/wifi/1.2/default/wifi_nan_iface.h
+++ b/wifi/1.2/default/wifi_nan_iface.h
@@ -132,7 +132,7 @@
                                                 uint32_t ndpInstanceId);
 
     WifiStatus registerEventCallback_1_2Internal(
-        const sp<IWifiNanIfaceEventCallback>& callback);
+        const sp<V1_2::IWifiNanIfaceEventCallback>& callback);
     WifiStatus enableRequest_1_2Internal(
         uint16_t cmd_id, const NanEnableRequest& msg1,
         const NanConfigRequestSupplemental& msg2);
@@ -140,13 +140,18 @@
         uint16_t cmd_id, const NanConfigRequest& msg,
         const NanConfigRequestSupplemental& msg2);
 
-    std::set<sp<IWifiNanIfaceEventCallback>> getEventCallbacks();
+    // all 1_0 and descendant callbacks
+    std::set<sp<V1_0::IWifiNanIfaceEventCallback>> getEventCallbacks();
+    // all 1_2 and descendant callbacks
+    std::set<sp<V1_2::IWifiNanIfaceEventCallback>> getEventCallbacks_1_2();
 
     std::string ifname_;
     std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal_;
     bool is_valid_;
-    hidl_callback_util::HidlCallbackHandler<IWifiNanIfaceEventCallback>
+    hidl_callback_util::HidlCallbackHandler<V1_0::IWifiNanIfaceEventCallback>
         event_cb_handler_;
+    hidl_callback_util::HidlCallbackHandler<V1_2::IWifiNanIfaceEventCallback>
+        event_cb_handler_1_2_;
 
     DISALLOW_COPY_AND_ASSIGN(WifiNanIface);
 };
diff --git a/wifi/1.2/vts/functional/Android.bp b/wifi/1.2/vts/functional/Android.bp
index 918e4a4..c5a6e84 100644
--- a/wifi/1.2/vts/functional/Android.bp
+++ b/wifi/1.2/vts/functional/Android.bp
@@ -29,3 +29,18 @@
         "android.hardware.wifi@1.2",
     ],
 }
+
+cc_test {
+    name: "VtsHalWifiNanV1_2TargetTest",
+    defaults: ["VtsHalTargetTestDefaults"],
+    srcs: [
+        "VtsHalWifiV1_2TargetTest.cpp",
+        "wifi_nan_iface_hidl_test.cpp",
+    ],
+    static_libs: [
+        "VtsHalWifiV1_0TargetTestUtil",
+        "android.hardware.wifi@1.0",
+        "android.hardware.wifi@1.1",
+        "android.hardware.wifi@1.2",
+    ],
+}
diff --git a/wifi/1.2/vts/functional/wifi_nan_iface_hidl_test.cpp b/wifi/1.2/vts/functional/wifi_nan_iface_hidl_test.cpp
new file mode 100644
index 0000000..cc36fae
--- /dev/null
+++ b/wifi/1.2/vts/functional/wifi_nan_iface_hidl_test.cpp
@@ -0,0 +1,538 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Nanache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <android-base/logging.h>
+
+#include <android/hardware/wifi/1.2/IWifiNanIface.h>
+#include <android/hardware/wifi/1.2/IWifiNanIfaceEventCallback.h>
+
+#include <VtsHalHidlTargetTestBase.h>
+#include <chrono>
+#include <condition_variable>
+#include <mutex>
+
+#include "wifi_hidl_call_util.h"
+#include "wifi_hidl_test_utils.h"
+
+using namespace ::android::hardware::wifi::V1_0;
+using namespace ::android::hardware::wifi::V1_2;
+
+using ::android::hardware::Return;
+using ::android::hardware::Void;
+using ::android::sp;
+
+#define TIMEOUT_PERIOD 10
+
+android::sp<android::hardware::wifi::V1_2::IWifiNanIface>
+getWifiNanIface_1_2() {
+    return android::hardware::wifi::V1_2::IWifiNanIface::castFrom(
+        getWifiNanIface());
+}
+
+/**
+ * Fixture to use for all NAN Iface HIDL interface tests.
+ */
+class WifiNanIfaceHidlTest : public ::testing::VtsHalHidlTargetTestBase {
+   public:
+    virtual void SetUp() override {
+        iwifiNanIface = getWifiNanIface_1_2();
+        ASSERT_NE(nullptr, iwifiNanIface.get());
+        ASSERT_EQ(WifiStatusCode::SUCCESS,
+                  HIDL_INVOKE(iwifiNanIface, registerEventCallback_1_2,
+                              new WifiNanIfaceEventCallback(*this))
+                      .code);
+    }
+
+    virtual void TearDown() override { stopWifi(); }
+
+    /* Used as a mechanism to inform the test about data/event callback */
+    inline void notify() {
+        std::unique_lock<std::mutex> lock(mtx_);
+        count_++;
+        cv_.notify_one();
+    }
+
+    enum CallbackType {
+        INVALID = -2,
+        ANY_CALLBACK = -1,
+
+        NOTIFY_CAPABILITIES_RESPONSE = 0,
+        NOTIFY_ENABLE_RESPONSE,
+        NOTIFY_CONFIG_RESPONSE,
+        NOTIFY_DISABLE_RESPONSE,
+        NOTIFY_START_PUBLISH_RESPONSE,
+        NOTIFY_STOP_PUBLISH_RESPONSE,
+        NOTIFY_START_SUBSCRIBE_RESPONSE,
+        NOTIFY_STOP_SUBSCRIBE_RESPONSE,
+        NOTIFY_TRANSMIT_FOLLOWUP_RESPONSE,
+        NOTIFY_CREATE_DATA_INTERFACE_RESPONSE,
+        NOTIFY_DELETE_DATA_INTERFACE_RESPONSE,
+        NOTIFY_INITIATE_DATA_PATH_RESPONSE,
+        NOTIFY_RESPOND_TO_DATA_PATH_INDICATION_RESPONSE,
+        NOTIFY_TERMINATE_DATA_PATH_RESPONSE,
+
+        EVENT_CLUSTER_EVENT,
+        EVENT_DISABLED,
+        EVENT_PUBLISH_TERMINATED,
+        EVENT_SUBSCRIBE_TERMINATED,
+        EVENT_MATCH,
+        EVENT_MATCH_EXPIRED,
+        EVENT_FOLLOWUP_RECEIVED,
+        EVENT_TRANSMIT_FOLLOWUP,
+        EVENT_DATA_PATH_REQUEST,
+        EVENT_DATA_PATH_CONFIRM,
+        EVENT_DATA_PATH_TERMINATED,
+        EVENT_DATA_PATH_CONFIRM_1_2,
+        EVENT_DATA_PATH_SCHEDULE_UPDATE
+    };
+
+    /* Test code calls this function to wait for data/event callback */
+    inline std::cv_status wait(CallbackType waitForCallbackType) {
+        std::unique_lock<std::mutex> lock(mtx_);
+
+        EXPECT_NE(INVALID, waitForCallbackType);  // can't ASSERT in a
+                                                  // non-void-returning method
+
+        callbackType = INVALID;
+        std::cv_status status = std::cv_status::no_timeout;
+        auto now = std::chrono::system_clock::now();
+        while (count_ == 0) {
+            status = cv_.wait_until(lock,
+                                    now + std::chrono::seconds(TIMEOUT_PERIOD));
+            if (status == std::cv_status::timeout) return status;
+            if (waitForCallbackType != ANY_CALLBACK &&
+                callbackType != INVALID &&
+                callbackType != waitForCallbackType) {
+                count_--;
+            }
+        }
+        count_--;
+        return status;
+    }
+
+    class WifiNanIfaceEventCallback
+        : public ::android::hardware::wifi::V1_2::IWifiNanIfaceEventCallback {
+        WifiNanIfaceHidlTest& parent_;
+
+       public:
+        WifiNanIfaceEventCallback(WifiNanIfaceHidlTest& parent)
+            : parent_(parent){};
+
+        virtual ~WifiNanIfaceEventCallback() = default;
+
+        Return<void> notifyCapabilitiesResponse(
+            uint16_t id, const WifiNanStatus& status,
+            const NanCapabilities& capabilities) override {
+            parent_.callbackType = NOTIFY_CAPABILITIES_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+            parent_.capabilities = capabilities;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyEnableResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = NOTIFY_ENABLE_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyConfigResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = NOTIFY_CONFIG_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyDisableResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = NOTIFY_DISABLE_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyStartPublishResponse(uint16_t id,
+                                                const WifiNanStatus& status,
+                                                uint8_t sessionId) override {
+            parent_.callbackType = NOTIFY_START_PUBLISH_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+            parent_.sessionId = sessionId;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyStopPublishResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = NOTIFY_STOP_PUBLISH_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyStartSubscribeResponse(uint16_t id,
+                                                  const WifiNanStatus& status,
+                                                  uint8_t sessionId) override {
+            parent_.callbackType = NOTIFY_START_SUBSCRIBE_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+            parent_.sessionId = sessionId;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyStopSubscribeResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = NOTIFY_STOP_SUBSCRIBE_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyTransmitFollowupResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = NOTIFY_TRANSMIT_FOLLOWUP_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyCreateDataInterfaceResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = NOTIFY_CREATE_DATA_INTERFACE_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyDeleteDataInterfaceResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = NOTIFY_DELETE_DATA_INTERFACE_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyInitiateDataPathResponse(
+            uint16_t id, const WifiNanStatus& status,
+            uint32_t ndpInstanceId) override {
+            parent_.callbackType = NOTIFY_INITIATE_DATA_PATH_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+            parent_.ndpInstanceId = ndpInstanceId;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyRespondToDataPathIndicationResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType =
+                NOTIFY_RESPOND_TO_DATA_PATH_INDICATION_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> notifyTerminateDataPathResponse(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = NOTIFY_TERMINATE_DATA_PATH_RESPONSE;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventClusterEvent(
+            const NanClusterEventInd& event) override {
+            parent_.callbackType = EVENT_CLUSTER_EVENT;
+
+            parent_.nanClusterEventInd = event;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventDisabled(const WifiNanStatus& status) override {
+            parent_.callbackType = EVENT_DISABLED;
+
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventPublishTerminated(
+            uint8_t sessionId, const WifiNanStatus& status) override {
+            parent_.callbackType = EVENT_PUBLISH_TERMINATED;
+
+            parent_.sessionId = sessionId;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventSubscribeTerminated(
+            uint8_t sessionId, const WifiNanStatus& status) override {
+            parent_.callbackType = EVENT_SUBSCRIBE_TERMINATED;
+
+            parent_.sessionId = sessionId;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventMatch(const NanMatchInd& event) override {
+            parent_.callbackType = EVENT_MATCH;
+
+            parent_.nanMatchInd = event;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventMatchExpired(uint8_t discoverySessionId,
+                                       uint32_t peerId) override {
+            parent_.callbackType = EVENT_MATCH_EXPIRED;
+
+            parent_.sessionId = discoverySessionId;
+            parent_.peerId = peerId;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventFollowupReceived(
+            const NanFollowupReceivedInd& event) override {
+            parent_.callbackType = EVENT_FOLLOWUP_RECEIVED;
+
+            parent_.nanFollowupReceivedInd = event;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventTransmitFollowup(
+            uint16_t id, const WifiNanStatus& status) override {
+            parent_.callbackType = EVENT_TRANSMIT_FOLLOWUP;
+
+            parent_.id = id;
+            parent_.status = status;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventDataPathRequest(
+            const NanDataPathRequestInd& event) override {
+            parent_.callbackType = EVENT_DATA_PATH_REQUEST;
+
+            parent_.nanDataPathRequestInd = event;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventDataPathConfirm(
+            const ::android::hardware::wifi::V1_0::NanDataPathConfirmInd& event)
+            override {
+            parent_.callbackType = EVENT_DATA_PATH_CONFIRM;
+
+            parent_.nanDataPathConfirmInd = event;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventDataPathTerminated(uint32_t ndpInstanceId) override {
+            parent_.callbackType = EVENT_DATA_PATH_TERMINATED;
+
+            parent_.ndpInstanceId = ndpInstanceId;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventDataPathConfirm_1_2(
+            const ::android::hardware::wifi::V1_2::NanDataPathConfirmInd& event)
+            override {
+            parent_.callbackType = EVENT_DATA_PATH_CONFIRM_1_2;
+
+            parent_.nanDataPathConfirmInd_1_2 = event;
+
+            parent_.notify();
+            return Void();
+        }
+
+        Return<void> eventDataPathScheduleUpdate(
+            const NanDataPathScheduleUpdateInd& event) override {
+            parent_.callbackType = EVENT_DATA_PATH_SCHEDULE_UPDATE;
+
+            parent_.nanDataPathScheduleUpdateInd = event;
+
+            parent_.notify();
+            return Void();
+        }
+    };
+
+   private:
+    // synchronization objects
+    std::mutex mtx_;
+    std::condition_variable cv_;
+    int count_;
+
+   protected:
+    android::sp<::android::hardware::wifi::V1_2::IWifiNanIface> iwifiNanIface;
+
+    // Data from IWifiNanIfaceEventCallback callbacks: this is the collection of
+    // all arguments to all callbacks. They are set by the callback
+    // (notifications or events) and can be retrieved by tests.
+    CallbackType callbackType;
+    uint16_t id;
+    WifiNanStatus status;
+    NanCapabilities capabilities;
+    uint8_t sessionId;
+    uint32_t ndpInstanceId;
+    NanClusterEventInd nanClusterEventInd;
+    NanMatchInd nanMatchInd;
+    uint32_t peerId;
+    NanFollowupReceivedInd nanFollowupReceivedInd;
+    NanDataPathRequestInd nanDataPathRequestInd;
+    ::android::hardware::wifi::V1_0::NanDataPathConfirmInd
+        nanDataPathConfirmInd;
+    ::android::hardware::wifi::V1_2::NanDataPathConfirmInd
+        nanDataPathConfirmInd_1_2;
+    NanDataPathScheduleUpdateInd nanDataPathScheduleUpdateInd;
+};
+
+/*
+ * Create:
+ * Ensures that an instance of the IWifiNanIface proxy object is
+ * successfully created.
+ */
+TEST(WifiNanIfaceHidlTestNoFixture, Create) {
+    ASSERT_NE(nullptr, getWifiNanIface_1_2().get());
+    stopWifi();
+}
+
+/*
+ * enableRequest_1_2InvalidArgs: validate that fails with invalid arguments
+ */
+TEST_F(WifiNanIfaceHidlTest, enableRequest_1_2InvalidArgs) {
+    uint16_t inputCmdId = 10;
+    NanEnableRequest nanEnableRequest = {};
+    NanConfigRequestSupplemental nanConfigRequestSupp = {};
+    ASSERT_EQ(WifiStatusCode::SUCCESS,
+              HIDL_INVOKE(iwifiNanIface, enableRequest_1_2, inputCmdId,
+                          nanEnableRequest, nanConfigRequestSupp)
+                  .code);
+    // wait for a callback
+    ASSERT_EQ(std::cv_status::no_timeout, wait(NOTIFY_ENABLE_RESPONSE));
+    ASSERT_EQ(NOTIFY_ENABLE_RESPONSE, callbackType);
+    ASSERT_EQ(id, inputCmdId);
+    ASSERT_EQ(status.status, NanStatusType::INVALID_ARGS);
+}
+
+/*
+ * enableRequest_1_2ShimInvalidArgs: validate that fails with invalid arguments
+ * to the shim
+ */
+TEST_F(WifiNanIfaceHidlTest, enableRequest_1_2ShimInvalidArgs) {
+    uint16_t inputCmdId = 10;
+    NanEnableRequest nanEnableRequest = {};
+    nanEnableRequest.configParams.numberOfPublishServiceIdsInBeacon =
+        128;  // must be <= 127
+    NanConfigRequestSupplemental nanConfigRequestSupp = {};
+    ASSERT_EQ(WifiStatusCode::ERROR_INVALID_ARGS,
+              HIDL_INVOKE(iwifiNanIface, enableRequest_1_2, inputCmdId,
+                          nanEnableRequest, nanConfigRequestSupp)
+                  .code);
+}
+
+/*
+ * configRequest_1_2InvalidArgs: validate that fails with invalid arguments
+ */
+TEST_F(WifiNanIfaceHidlTest, configRequest_1_2InvalidArgs) {
+    uint16_t inputCmdId = 10;
+    NanConfigRequest nanConfigRequest = {};
+    NanConfigRequestSupplemental nanConfigRequestSupp = {};
+    ASSERT_EQ(WifiStatusCode::SUCCESS,
+              HIDL_INVOKE(iwifiNanIface, configRequest_1_2, inputCmdId,
+                          nanConfigRequest, nanConfigRequestSupp)
+                  .code);
+    // wait for a callback
+    ASSERT_EQ(std::cv_status::no_timeout, wait(NOTIFY_CONFIG_RESPONSE));
+    ASSERT_EQ(NOTIFY_CONFIG_RESPONSE, callbackType);
+    ASSERT_EQ(id, inputCmdId);
+    ASSERT_EQ(status.status, NanStatusType::INVALID_ARGS);
+}
+
+/*
+ * configRequest_1_2ShimInvalidArgs: validate that fails with invalid arguments
+ * to the shim
+ */
+TEST_F(WifiNanIfaceHidlTest, configRequest_1_2ShimInvalidArgs) {
+    uint16_t inputCmdId = 10;
+    NanConfigRequest nanConfigRequest = {};
+    nanConfigRequest.numberOfPublishServiceIdsInBeacon = 128;  // must be <= 127
+    NanConfigRequestSupplemental nanConfigRequestSupp = {};
+    ASSERT_EQ(WifiStatusCode::ERROR_INVALID_ARGS,
+              HIDL_INVOKE(iwifiNanIface, configRequest_1_2, inputCmdId,
+                          nanConfigRequest, nanConfigRequestSupp)
+                  .code);
+}