Fix LSTM documentation
am: e61b7b98c9
Change-Id: I35c73d5728ec200da231e201526ff91d7774a830
diff --git a/current.txt b/current.txt
index e717b7a..5123034 100644
--- a/current.txt
+++ b/current.txt
@@ -399,7 +399,7 @@
65a021fa89085b62fc96b2b6d3bef2f9103cf4d63379c68bc154fd9eef672852 android.hardware.health@1.0::types
b7ecf29927055ec422ec44bf776223f07d79ad9f92ccf9becf167e62c2607e7a android.hardware.keymaster@4.0::IKeymasterDevice
574e8f1499436fb4075894dcae0b36682427956ecb114f17f1fe22d116a83c6b android.hardware.neuralnetworks@1.0::IPreparedModel
-e75759b40a1c5f97b463b30aab91954012c9ea9e454dde308db853a56796e5a6 android.hardware.neuralnetworks@1.0::types
+1e3576c07006d82ba5bc6ddbf87c101414d361c41afe7a82713750844c488725 android.hardware.neuralnetworks@1.0::types
eb754b58c93e5591613208b4c972811288b0fa16a82430d602f107c91a908b22 android.hardware.neuralnetworks@1.1::types
1d4a5776614c08b5d794a5ec5ab04697260cbd4b3441d5935cd53ee71d19da02 android.hardware.radio@1.0::IRadioResponse
ed9da80ec0c96991fd03f0a46107815d0e50f764656e49dba4980fa5c31d5bc3 android.hardware.radio@1.0::types
@@ -451,7 +451,7 @@
92714960d1a53fc2ec557302b41c7cc93d2636d8364a44bd0f85be0c92927ff8 android.hardware.neuralnetworks@1.2::IExecutionCallback
36e1064c869965dee533c537cefbe87e54db8bd8cd45be7e0e93e00e8a43863a android.hardware.neuralnetworks@1.2::IPreparedModel
e1c734d1545e1a4ae749ff1dd9704a8e594c59aea7c8363159dc258e93e0df3b android.hardware.neuralnetworks@1.2::IPreparedModelCallback
-e3b6176e3bf235c4e0e4e451b0166e396c7ee176cfe167c9147c3d46d7b34f0c android.hardware.neuralnetworks@1.2::types
+d18bba0b6c8d2d1da3cfb52b14f556d2e04eb91551d97ee60a3524cf993a3e0e android.hardware.neuralnetworks@1.2::types
cf7a4ba516a638f9b82a249c91fb603042c2d9ca43fd5aad9cf6c0401ed2a5d7 android.hardware.nfc@1.2::INfc
abf98c2ae08bf765db54edc8068e36d52eb558cff6706b6fd7c18c65a1f3fc18 android.hardware.nfc@1.2::types
4cb252dc6372a874aef666b92a6e9529915aa187521a700f0789065c3c702ead android.hardware.power.stats@1.0::IPowerStats
diff --git a/neuralnetworks/1.0/types.hal b/neuralnetworks/1.0/types.hal
index b0a1c1a..02db063 100644
--- a/neuralnetworks/1.0/types.hal
+++ b/neuralnetworks/1.0/types.hal
@@ -858,20 +858,21 @@
* elements of the input matrices.
*
* The operation has the following independently optional inputs:
+ * * The cell-to-input weights (\f$W_{ci}\f$), cell-to-forget weights
+ * (\f$W_{cf}\f$) and cell-to-output weights (\f$W_{co}\f$) either all
+ * have values or neither of them have values (i.e., all set to null). If
+ * they have values, the peephole optimization is used.
* * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights
- * (\f$W_{hi}\f$), cell-to-input (\f$W_{ci}\f$) weights, and input gate
- * bias (\f$b_i\f$) either all have values, or none of them have values
- * (i.e., all set to null). If they have no values, coupling of input and
- * forget gates (CIFG) is used, in which case the input gate (\f$i_t\f$)
- * is calculated using the following equation instead.
+ * (\f$W_{hi}\f$) and input gate bias (\f$b_i\f$) either all have values,
+ * or none of them have values. If they have no values, coupling of input
+ * and forget gates (CIFG) is used, in which case the input gate
+ * (\f$i_t\f$) is calculated using the following equation instead.
* \f{eqnarray*}{
* i_t = 1 - f_t
* \f}
- * * The cell-to-forget weights (\f$W_{cf}\f$) and cell-to-output weights
- * (\f$W_{co}\f$) either both have values or neither of them have values.
- * If they have values, the peephole optimization is used. Additionally,
- * if CIFG is not used, cell-to-input weights (\f$W_{ci}\f$) is also
- * required to have values for peephole optimization.
+ * In case peephole optimization is used and CIFG is not used
+ * cell-to-input (\f$W_{ci}\f$) weights must be present. Otherwise, the
+ * cell-to-input weights must have no value.
* * The projection weights (\f$W_{proj}\f$) is required only for the
* recurrent projection layer, and should otherwise have no value.
* * The projection bias (\f$b_{proj}\f$) may (but not required to) have a
@@ -984,8 +985,8 @@
* Outputs:
* * 0: The scratch buffer.
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
- * [batch_size, num_units * 4] with CIFG, or
- * [batch_size, num_units * 3] without CIFG.
+ * [batch_size, num_units * 3] with CIFG, or
+ * [batch_size, num_units * 4] without CIFG.
* * 1: The output state (out) (\f$h_t\f$).
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
* [batch_size, output_size].
diff --git a/neuralnetworks/1.2/types.hal b/neuralnetworks/1.2/types.hal
index c2e8f22..f368ce2 100644
--- a/neuralnetworks/1.2/types.hal
+++ b/neuralnetworks/1.2/types.hal
@@ -1177,20 +1177,21 @@
* https://arxiv.org/pdf/1607.06450.pdf
*
* The operation has the following independently optional inputs:
+ * * The cell-to-input weights (\f$W_{ci}\f$), cell-to-forget weights
+ * (\f$W_{cf}\f$) and cell-to-output weights (\f$W_{co}\f$) either all
+ * have values or neither of them have values (i.e., all set to null). If
+ * they have values, the peephole optimization is used.
* * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights
- * (\f$W_{hi}\f$), cell-to-input (\f$W_{ci}\f$) weights, and input gate
- * bias (\f$b_i\f$) either all have values, or none of them have values
- * (i.e., all set to null). If they have no values, coupling of input and
- * forget gates (CIFG) is used, in which case the input gate (\f$i_t\f$)
- * is calculated using the following equation instead.
+ * (\f$W_{hi}\f$) and input gate bias (\f$b_i\f$) either all have values,
+ * or none of them have values. If they have no values, coupling of input
+ * and forget gates (CIFG) is used, in which case the input gate
+ * (\f$i_t\f$) is calculated using the following equation instead.
* \f{eqnarray*}{
* i_t = 1 - f_t
* \f}
- * * The cell-to-forget weights (\f$W_{cf}\f$) and cell-to-output weights
- * (\f$W_{co}\f$) either both have values or neither of them have values.
- * If they have values, the peephole optimization is used. Additionally,
- * if CIFG is not used, cell-to-input weights (\f$W_{ci}\f$) is also
- * required to have values for peephole optimization.
+ * In case peephole optimization is used and CIFG is not used
+ * cell-to-input (\f$W_{ci}\f$) weights must be present. Otherwise, the
+ * cell-to-input weights must have no value.
* * The projection weights (\f$W_{proj}\f$) is required only for the
* recurrent projection layer, and should otherwise have no value.
* * The projection bias (\f$b_{proj}\f$) may (but not required to) have a