Merge "Fix strict weak ordering requirement of less than operation"
diff --git a/camera/device/3.4/default/ExternalCameraDevice.cpp b/camera/device/3.4/default/ExternalCameraDevice.cpp
index e7361dd..38a78e0 100644
--- a/camera/device/3.4/default/ExternalCameraDevice.cpp
+++ b/camera/device/3.4/default/ExternalCameraDevice.cpp
@@ -38,9 +38,8 @@
 // Other formats to consider in the future:
 // * V4L2_PIX_FMT_YVU420 (== YV12)
 // * V4L2_PIX_FMT_YVYU (YVYU: can be converted to YV12 or other YUV420_888 formats)
-const std::array<uint32_t, /*size*/1> kSupportedFourCCs {{
-    V4L2_PIX_FMT_MJPEG
-}}; // double braces required in C++11
+const std::array<uint32_t, /*size*/ 2> kSupportedFourCCs{
+    {V4L2_PIX_FMT_MJPEG, V4L2_PIX_FMT_Z16}};  // double braces required in C++11
 
 constexpr int MAX_RETRY = 5; // Allow retry v4l2 open failures a few times.
 constexpr int OPEN_RETRY_SLEEP_US = 100000; // 100ms * MAX_RETRY = 0.5 seconds
@@ -224,6 +223,13 @@
             mCameraCharacteristics.clear();
             return ret;
         }
+
+        ret = initAvailableCapabilities(&mCameraCharacteristics);
+        if (ret != OK) {
+            ALOGE("%s: init available capabilities key failed: errorno %d", __FUNCTION__, ret);
+            mCameraCharacteristics.clear();
+            return ret;
+        }
     }
     return OK;
 }
@@ -237,6 +243,39 @@
   }                                                \
 } while (0)
 
+status_t ExternalCameraDevice::initAvailableCapabilities(
+        ::android::hardware::camera::common::V1_0::helper::CameraMetadata* metadata) {
+
+    if (mSupportedFormats.empty()) {
+        ALOGE("%s: Supported formats list is empty", __FUNCTION__);
+        return UNKNOWN_ERROR;
+    }
+
+    bool hasDepth = false;
+    bool hasColor = false;
+    for (const auto& fmt : mSupportedFormats) {
+        switch (fmt.fourcc) {
+            case V4L2_PIX_FMT_Z16: hasDepth = true; break;
+            case V4L2_PIX_FMT_MJPEG: hasColor = true; break;
+            default: ALOGW("%s: Unsupported format found", __FUNCTION__);
+        }
+    }
+
+    std::vector<uint8_t> availableCapabilities;
+    if (hasDepth) {
+        availableCapabilities.push_back(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DEPTH_OUTPUT);
+    }
+    if (hasColor) {
+        availableCapabilities.push_back(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE);
+    }
+    if(!availableCapabilities.empty()) {
+        UPDATE(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, availableCapabilities.data(),
+            availableCapabilities.size());
+    }
+
+    return OK;
+}
+
 status_t ExternalCameraDevice::initDefaultCharsKeys(
         ::android::hardware::camera::common::V1_0::helper::CameraMetadata* metadata) {
     const uint8_t hardware_level = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_EXTERNAL;
@@ -323,12 +362,6 @@
            &noiseReductionMode, 1);
     UPDATE(ANDROID_NOISE_REDUCTION_MODE, &noiseReductionMode, 1);
 
-    // android.request
-    const uint8_t availableCapabilities[] = {
-        ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE};
-    UPDATE(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, availableCapabilities,
-           ARRAY_SIZE(availableCapabilities));
-
     const int32_t partialResultCount = 1;
     UPDATE(ANDROID_REQUEST_PARTIAL_RESULT_COUNT, &partialResultCount, 1);
 
@@ -576,9 +609,11 @@
     return OK;
 }
 
-status_t ExternalCameraDevice::initOutputCharsKeys(int fd,
-        ::android::hardware::camera::common::V1_0::helper::CameraMetadata* metadata) {
-    initSupportedFormatsLocked(fd);
+template <size_t SIZE>
+status_t ExternalCameraDevice::initOutputCharskeysByFormat(
+        ::android::hardware::camera::common::V1_0::helper::CameraMetadata* metadata,
+        uint32_t fourcc, const std::array<int, SIZE>& halFormats,
+        int streamConfigTag, int streamConfiguration, int minFrameDuration, int stallDuration) {
     if (mSupportedFormats.empty()) {
         ALOGE("%s: Init supported format list failed", __FUNCTION__);
         return UNKNOWN_ERROR;
@@ -587,22 +622,17 @@
     std::vector<int32_t> streamConfigurations;
     std::vector<int64_t> minFrameDurations;
     std::vector<int64_t> stallDurations;
-    int32_t maxFps = std::numeric_limits<int32_t>::min();
-    int32_t minFps = std::numeric_limits<int32_t>::max();
-    std::set<int32_t> framerates;
-
-    std::array<int, /*size*/3> halFormats{{
-        HAL_PIXEL_FORMAT_BLOB,
-        HAL_PIXEL_FORMAT_YCbCr_420_888,
-        HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED}};
 
     for (const auto& supportedFormat : mSupportedFormats) {
+        if (supportedFormat.fourcc != fourcc) {
+            // Skip 4CCs not meant for the halFormats
+            continue;
+        }
         for (const auto& format : halFormats) {
             streamConfigurations.push_back(format);
             streamConfigurations.push_back(supportedFormat.width);
             streamConfigurations.push_back(supportedFormat.height);
-            streamConfigurations.push_back(
-                    ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
+            streamConfigurations.push_back(streamConfigTag);
         }
 
         int64_t minFrameDuration = std::numeric_limits<int64_t>::max();
@@ -614,14 +644,6 @@
             if (frameDuration < minFrameDuration) {
                 minFrameDuration = frameDuration;
             }
-            int32_t frameRateInt = static_cast<int32_t>(fr.getDouble());
-            if (minFps > frameRateInt) {
-                minFps = frameRateInt;
-            }
-            if (maxFps < frameRateInt) {
-                maxFps = frameRateInt;
-            }
-            framerates.insert(frameRateInt);
         }
 
         for (const auto& format : halFormats) {
@@ -645,6 +667,30 @@
         }
     }
 
+    UPDATE(streamConfiguration, streamConfigurations.data(), streamConfigurations.size());
+
+    UPDATE(minFrameDuration, minFrameDurations.data(), minFrameDurations.size());
+
+    UPDATE(stallDuration, stallDurations.data(), stallDurations.size());
+
+    return true;
+}
+
+bool ExternalCameraDevice::calculateMinFps(
+    ::android::hardware::camera::common::V1_0::helper::CameraMetadata* metadata) {
+    std::set<int32_t> framerates;
+    int32_t minFps = std::numeric_limits<int32_t>::max();
+
+    for (const auto& supportedFormat : mSupportedFormats) {
+        for (const auto& fr : supportedFormat.frameRates) {
+            int32_t frameRateInt = static_cast<int32_t>(fr.getDouble());
+            if (minFps > frameRateInt) {
+                minFps = frameRateInt;
+            }
+            framerates.insert(frameRateInt);
+        }
+    }
+
     std::vector<int32_t> fpsRanges;
     // FPS ranges
     for (const auto& framerate : framerates) {
@@ -658,17 +704,60 @@
     UPDATE(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES, fpsRanges.data(),
            fpsRanges.size());
 
-    UPDATE(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
-           streamConfigurations.data(), streamConfigurations.size());
-
-    UPDATE(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
-           minFrameDurations.data(), minFrameDurations.size());
-
-    UPDATE(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS, stallDurations.data(),
-           stallDurations.size());
-
     UPDATE(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION, &maxFrameDuration, 1);
 
+    return true;
+}
+
+status_t ExternalCameraDevice::initOutputCharsKeys(
+    int fd, ::android::hardware::camera::common::V1_0::helper::CameraMetadata* metadata) {
+    initSupportedFormatsLocked(fd);
+    if (mSupportedFormats.empty()) {
+        ALOGE("%s: Init supported format list failed", __FUNCTION__);
+        return UNKNOWN_ERROR;
+    }
+
+    bool hasDepth = false;
+    bool hasColor = false;
+
+    // For V4L2_PIX_FMT_Z16
+    std::array<int, /*size*/ 1> halDepthFormats{{HAL_PIXEL_FORMAT_Y16}};
+    // For V4L2_PIX_FMT_MJPEG
+    std::array<int, /*size*/ 3> halFormats{{HAL_PIXEL_FORMAT_BLOB, HAL_PIXEL_FORMAT_YCbCr_420_888,
+                                            HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED}};
+
+    for (const auto& supportedFormat : mSupportedFormats) {
+        switch (supportedFormat.fourcc) {
+            case V4L2_PIX_FMT_Z16:
+                hasDepth = true;
+                break;
+            case V4L2_PIX_FMT_MJPEG:
+                hasColor = true;
+                break;
+            default:
+                ALOGW("%s: format %c%c%c%c is not supported!", __FUNCTION__,
+                      supportedFormat.fourcc & 0xFF, (supportedFormat.fourcc >> 8) & 0xFF,
+                      (supportedFormat.fourcc >> 16) & 0xFF, (supportedFormat.fourcc >> 24) & 0xFF);
+        }
+    }
+
+    if (hasDepth) {
+        initOutputCharskeysByFormat(metadata, V4L2_PIX_FMT_Z16, halDepthFormats,
+                ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS_OUTPUT,
+                ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS,
+                ANDROID_DEPTH_AVAILABLE_DEPTH_MIN_FRAME_DURATIONS,
+                ANDROID_DEPTH_AVAILABLE_DEPTH_STALL_DURATIONS);
+    }
+    if (hasColor) {
+        initOutputCharskeysByFormat(metadata, V4L2_PIX_FMT_MJPEG, halFormats,
+                ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
+                ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
+                ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
+                ANDROID_SCALER_AVAILABLE_STALL_DURATIONS);
+    }
+
+    calculateMinFps(metadata);
+
     SupportedV4L2Format maximumFormat {.width = 0, .height = 0};
     for (const auto& supportedFormat : mSupportedFormats) {
         if (supportedFormat.width >= maximumFormat.width &&
@@ -790,11 +879,12 @@
     sortedFmts = out;
 }
 
-std::vector<SupportedV4L2Format>
-ExternalCameraDevice::getCandidateSupportedFormatsLocked(
-        int fd, CroppingType cropType,
-        const std::vector<ExternalCameraConfig::FpsLimitation>& fpsLimits,
-        const Size& minStreamSize) {
+std::vector<SupportedV4L2Format> ExternalCameraDevice::getCandidateSupportedFormatsLocked(
+    int fd, CroppingType cropType,
+    const std::vector<ExternalCameraConfig::FpsLimitation>& fpsLimits,
+    const std::vector<ExternalCameraConfig::FpsLimitation>& depthFpsLimits,
+    const Size& minStreamSize,
+    bool depthEnabled) {
     std::vector<SupportedV4L2Format> outFmts;
     struct v4l2_fmtdesc fmtdesc {
         .index = 0,
@@ -840,28 +930,10 @@
                             .fourcc = fmtdesc.pixelformat
                         };
 
-                        double fpsUpperBound = -1.0;
-                        for (const auto& limit : fpsLimits) {
-                            if (cropType == VERTICAL) {
-                                if (format.width <= limit.size.width) {
-                                    fpsUpperBound = limit.fpsUpperBound;
-                                    break;
-                                }
-                            } else { // HORIZONTAL
-                                if (format.height <= limit.size.height) {
-                                    fpsUpperBound = limit.fpsUpperBound;
-                                    break;
-                                }
-                            }
-
-                        }
-                        if (fpsUpperBound < 0.f) {
-                            continue;
-                        }
-
-                        getFrameRateList(fd, fpsUpperBound, &format);
-                        if (!format.frameRates.empty()) {
-                            outFmts.push_back(format);
+                        if (format.fourcc == V4L2_PIX_FMT_Z16 && depthEnabled) {
+                            updateFpsBounds(fd, cropType, depthFpsLimits, format, outFmts);
+                        } else {
+                            updateFpsBounds(fd, cropType, fpsLimits, format, outFmts);
                         }
                     }
                 }
@@ -873,12 +945,39 @@
     return outFmts;
 }
 
-void ExternalCameraDevice::initSupportedFormatsLocked(int fd) {
+void ExternalCameraDevice::updateFpsBounds(
+    int fd, CroppingType cropType,
+    const std::vector<ExternalCameraConfig::FpsLimitation>& fpsLimits, SupportedV4L2Format format,
+    std::vector<SupportedV4L2Format>& outFmts) {
+    double fpsUpperBound = -1.0;
+    for (const auto& limit : fpsLimits) {
+        if (cropType == VERTICAL) {
+            if (format.width <= limit.size.width) {
+                fpsUpperBound = limit.fpsUpperBound;
+                break;
+            }
+        } else {  // HORIZONTAL
+            if (format.height <= limit.size.height) {
+                fpsUpperBound = limit.fpsUpperBound;
+                break;
+            }
+        }
+    }
+    if (fpsUpperBound < 0.f) {
+        return;
+    }
 
-    std::vector<SupportedV4L2Format> horizontalFmts =
-            getCandidateSupportedFormatsLocked(fd, HORIZONTAL, mCfg.fpsLimits, mCfg.minStreamSize);
-    std::vector<SupportedV4L2Format> verticalFmts =
-            getCandidateSupportedFormatsLocked(fd, VERTICAL, mCfg.fpsLimits, mCfg.minStreamSize);
+    getFrameRateList(fd, fpsUpperBound, &format);
+    if (!format.frameRates.empty()) {
+        outFmts.push_back(format);
+    }
+}
+
+void ExternalCameraDevice::initSupportedFormatsLocked(int fd) {
+    std::vector<SupportedV4L2Format> horizontalFmts = getCandidateSupportedFormatsLocked(
+        fd, HORIZONTAL, mCfg.fpsLimits, mCfg.depthFpsLimits, mCfg.minStreamSize, mCfg.depthEnabled);
+    std::vector<SupportedV4L2Format> verticalFmts = getCandidateSupportedFormatsLocked(
+        fd, VERTICAL, mCfg.fpsLimits, mCfg.depthFpsLimits, mCfg.minStreamSize, mCfg.depthEnabled);
 
     size_t horiSize = horizontalFmts.size();
     size_t vertSize = verticalFmts.size();
diff --git a/camera/device/3.4/default/ExternalCameraDeviceSession.cpp b/camera/device/3.4/default/ExternalCameraDeviceSession.cpp
index dce40ff..a12d8e4 100644
--- a/camera/device/3.4/default/ExternalCameraDeviceSession.cpp
+++ b/camera/device/3.4/default/ExternalCameraDeviceSession.cpp
@@ -1724,7 +1724,7 @@
         return false;
     };
 
-    if (req->frameIn->mFourcc != V4L2_PIX_FMT_MJPEG) {
+    if (req->frameIn->mFourcc != V4L2_PIX_FMT_MJPEG && req->frameIn->mFourcc != V4L2_PIX_FMT_Z16) {
         return onDeviceError("%s: do not support V4L2 format %c%c%c%c", __FUNCTION__,
                 req->frameIn->mFourcc & 0xFF,
                 (req->frameIn->mFourcc >> 8) & 0xFF,
@@ -1743,29 +1743,26 @@
     }
 
     // TODO: in some special case maybe we can decode jpg directly to gralloc output?
-    ATRACE_BEGIN("MJPGtoI420");
-    int res = libyuv::MJPGToI420(
-            inData, inDataSize,
-            static_cast<uint8_t*>(mYu12FrameLayout.y),
-            mYu12FrameLayout.yStride,
-            static_cast<uint8_t*>(mYu12FrameLayout.cb),
-            mYu12FrameLayout.cStride,
-            static_cast<uint8_t*>(mYu12FrameLayout.cr),
-            mYu12FrameLayout.cStride,
-            mYu12Frame->mWidth, mYu12Frame->mHeight,
-            mYu12Frame->mWidth, mYu12Frame->mHeight);
-    ATRACE_END();
+    if (req->frameIn->mFourcc == V4L2_PIX_FMT_MJPEG) {
+        ATRACE_BEGIN("MJPGtoI420");
+        int res = libyuv::MJPGToI420(
+            inData, inDataSize, static_cast<uint8_t*>(mYu12FrameLayout.y), mYu12FrameLayout.yStride,
+            static_cast<uint8_t*>(mYu12FrameLayout.cb), mYu12FrameLayout.cStride,
+            static_cast<uint8_t*>(mYu12FrameLayout.cr), mYu12FrameLayout.cStride,
+            mYu12Frame->mWidth, mYu12Frame->mHeight, mYu12Frame->mWidth, mYu12Frame->mHeight);
+        ATRACE_END();
 
-    if (res != 0) {
-        // For some webcam, the first few V4L2 frames might be malformed...
-        ALOGE("%s: Convert V4L2 frame to YU12 failed! res %d", __FUNCTION__, res);
-        lk.unlock();
-        Status st = parent->processCaptureRequestError(req);
-        if (st != Status::OK) {
-            return onDeviceError("%s: failed to process capture request error!", __FUNCTION__);
+        if (res != 0) {
+            // For some webcam, the first few V4L2 frames might be malformed...
+            ALOGE("%s: Convert V4L2 frame to YU12 failed! res %d", __FUNCTION__, res);
+            lk.unlock();
+            Status st = parent->processCaptureRequestError(req);
+            if (st != Status::OK) {
+                return onDeviceError("%s: failed to process capture request error!", __FUNCTION__);
+            }
+            signalRequestDone();
+            return true;
         }
-        signalRequestDone();
-        return true;
     }
 
     ALOGV("%s processing new request", __FUNCTION__);
@@ -1796,6 +1793,16 @@
                           __FUNCTION__, ret);
                 }
             } break;
+            case PixelFormat::Y16: {
+                void* outLayout = sHandleImporter.lock(*(halBuf.bufPtr), halBuf.usage, inDataSize);
+
+                std::memcpy(outLayout, inData, inDataSize);
+
+                int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
+                if (relFence >= 0) {
+                    halBuf.acquireFence = relFence;
+                }
+            } break;
             case PixelFormat::YCBCR_420_888:
             case PixelFormat::YV12: {
                 IMapper::Rect outRect {0, 0,
@@ -2063,11 +2070,6 @@
         return false;
     }
 
-    if (ds & Dataspace::DEPTH) {
-        ALOGI("%s: does not support depth output", __FUNCTION__);
-        return false;
-    }
-
     switch (fmt) {
         case PixelFormat::BLOB:
             if (ds != static_cast<int32_t>(Dataspace::V0_JFIF)) {
@@ -2081,6 +2083,16 @@
             // TODO: check what dataspace we can support here.
             // intentional no-ops.
             break;
+        case PixelFormat::Y16:
+            if (!mCfg.depthEnabled) {
+                ALOGI("%s: Depth is not Enabled", __FUNCTION__);
+                return false;
+            }
+            if (!(ds & Dataspace::DEPTH)) {
+                ALOGI("%s: Y16 supports only dataSpace DEPTH", __FUNCTION__);
+                return false;
+            }
+            break;
         default:
             ALOGI("%s: does not support format %x", __FUNCTION__, fmt);
             return false;
@@ -2609,6 +2621,7 @@
             case PixelFormat::BLOB:
             case PixelFormat::YCBCR_420_888:
             case PixelFormat::YV12: // Used by SurfaceTexture
+            case PixelFormat::Y16:
                 // No override
                 out->streams[i].v3_2.overrideFormat = config.streams[i].format;
                 break;
diff --git a/camera/device/3.4/default/ExternalCameraUtils.cpp b/camera/device/3.4/default/ExternalCameraUtils.cpp
index 680c95a..a07c629 100644
--- a/camera/device/3.4/default/ExternalCameraUtils.cpp
+++ b/camera/device/3.4/default/ExternalCameraUtils.cpp
@@ -21,7 +21,6 @@
 #include <sys/mman.h>
 #include <linux/videodev2.h>
 #include "ExternalCameraUtils.h"
-#include "tinyxml2.h" // XML parsing
 
 namespace android {
 namespace hardware {
@@ -243,28 +242,28 @@
     if (fpsList == nullptr) {
         ALOGI("%s: no fps list specified", __FUNCTION__);
     } else {
-        std::vector<FpsLimitation> limits;
-        XMLElement *row = fpsList->FirstChildElement("Limit");
-        while (row != nullptr) {
-            FpsLimitation prevLimit {{0, 0}, 1000.0};
-            FpsLimitation limit;
-            limit.size = {
-                row->UnsignedAttribute("width", /*Default*/0),
-                row->UnsignedAttribute("height", /*Default*/0)};
-            limit.fpsUpperBound = row->DoubleAttribute("fpsBound", /*Default*/1000.0);
-            if (limit.size.width <= prevLimit.size.width ||
-                    limit.size.height <= prevLimit.size.height ||
-                    limit.fpsUpperBound >= prevLimit.fpsUpperBound) {
-                ALOGE("%s: FPS limit list must have increasing size and decreasing fps!"
-                        " Prev %dx%d@%f, Current %dx%d@%f", __FUNCTION__,
-                        prevLimit.size.width, prevLimit.size.height, prevLimit.fpsUpperBound,
-                        limit.size.width, limit.size.height, limit.fpsUpperBound);
+        if (!updateFpsList(fpsList, ret.fpsLimits)) {
+            return ret;
+        }
+    }
+
+    XMLElement *depth = deviceCfg->FirstChildElement("Depth16Supported");
+    if (depth == nullptr) {
+        ret.depthEnabled = false;
+        ALOGI("%s: depth output is not enabled", __FUNCTION__);
+    } else {
+        ret.depthEnabled = depth->BoolAttribute("enabled", false);
+    }
+
+    if(ret.depthEnabled) {
+        XMLElement *depthFpsList = deviceCfg->FirstChildElement("DepthFpsList");
+        if (depthFpsList == nullptr) {
+            ALOGW("%s: no depth fps list specified", __FUNCTION__);
+        } else {
+            if(!updateFpsList(depthFpsList, ret.depthFpsLimits)) {
                 return ret;
             }
-            limits.push_back(limit);
-            row = row->NextSiblingElement("Limit");
         }
-        ret.fpsLimits = limits;
     }
 
     XMLElement *minStreamSize = deviceCfg->FirstChildElement("MinimumStreamSize");
@@ -284,15 +283,48 @@
         ALOGI("%s: fpsLimitList: %dx%d@%f", __FUNCTION__,
                 limit.size.width, limit.size.height, limit.fpsUpperBound);
     }
+    for (const auto& limit : ret.depthFpsLimits) {
+        ALOGI("%s: depthFpsLimitList: %dx%d@%f", __FUNCTION__, limit.size.width, limit.size.height,
+              limit.fpsUpperBound);
+    }
     ALOGI("%s: minStreamSize: %dx%d" , __FUNCTION__,
          ret.minStreamSize.width, ret.minStreamSize.height);
     return ret;
 }
 
+bool ExternalCameraConfig::updateFpsList(tinyxml2::XMLElement* fpsList,
+        std::vector<FpsLimitation>& fpsLimits) {
+    using namespace tinyxml2;
+    std::vector<FpsLimitation> limits;
+    XMLElement* row = fpsList->FirstChildElement("Limit");
+    while (row != nullptr) {
+        FpsLimitation prevLimit{{0, 0}, 1000.0};
+        FpsLimitation limit;
+        limit.size = {row->UnsignedAttribute("width", /*Default*/ 0),
+                      row->UnsignedAttribute("height", /*Default*/ 0)};
+        limit.fpsUpperBound = row->DoubleAttribute("fpsBound", /*Default*/ 1000.0);
+        if (limit.size.width <= prevLimit.size.width ||
+            limit.size.height <= prevLimit.size.height ||
+            limit.fpsUpperBound >= prevLimit.fpsUpperBound) {
+            ALOGE(
+                "%s: FPS limit list must have increasing size and decreasing fps!"
+                " Prev %dx%d@%f, Current %dx%d@%f",
+                __FUNCTION__, prevLimit.size.width, prevLimit.size.height, prevLimit.fpsUpperBound,
+                limit.size.width, limit.size.height, limit.fpsUpperBound);
+            return false;
+        }
+        limits.push_back(limit);
+        row = row->NextSiblingElement("Limit");
+    }
+    fpsLimits = limits;
+    return true;
+}
+
 ExternalCameraConfig::ExternalCameraConfig() :
         maxJpegBufSize(kDefaultJpegBufSize),
         numVideoBuffers(kDefaultNumVideoBuffer),
-        numStillBuffers(kDefaultNumStillBuffer) {
+        numStillBuffers(kDefaultNumStillBuffer),
+        depthEnabled(false) {
     fpsLimits.push_back({/*Size*/{ 640,  480}, /*FPS upper bound*/30.0});
     fpsLimits.push_back({/*Size*/{1280,  720}, /*FPS upper bound*/7.5});
     fpsLimits.push_back({/*Size*/{1920, 1080}, /*FPS upper bound*/5.0});
diff --git a/camera/device/3.4/default/include/ext_device_v3_4_impl/ExternalCameraDevice_3_4.h b/camera/device/3.4/default/include/ext_device_v3_4_impl/ExternalCameraDevice_3_4.h
index ff0cfb3..28b9cef 100644
--- a/camera/device/3.4/default/include/ext_device_v3_4_impl/ExternalCameraDevice_3_4.h
+++ b/camera/device/3.4/default/include/ext_device_v3_4_impl/ExternalCameraDevice_3_4.h
@@ -82,6 +82,9 @@
     void initSupportedFormatsLocked(int fd);
 
     status_t initCameraCharacteristics();
+    // Init available capabilities keys
+    status_t initAvailableCapabilities(
+            ::android::hardware::camera::common::V1_0::helper::CameraMetadata*);
     // Init non-device dependent keys
     status_t initDefaultCharsKeys(::android::hardware::camera::common::V1_0::helper::CameraMetadata*);
     // Init camera control chars keys. Caller still owns fd
@@ -91,13 +94,30 @@
     status_t initOutputCharsKeys(int fd,
             ::android::hardware::camera::common::V1_0::helper::CameraMetadata*);
 
+    // Helper function for initOutputCharskeys
+    template <size_t SIZE>
+    status_t initOutputCharskeysByFormat(
+            ::android::hardware::camera::common::V1_0::helper::CameraMetadata*,
+            uint32_t fourcc, const std::array<int, SIZE>& formats,
+            int scaler_stream_config_tag,
+            int stream_configuration, int min_frame_duration, int stall_duration);
+
+    bool calculateMinFps(::android::hardware::camera::common::V1_0::helper::CameraMetadata*);
+
     static void getFrameRateList(int fd, double fpsUpperBound, SupportedV4L2Format* format);
 
+    static void updateFpsBounds(int fd, CroppingType cropType,
+            const std::vector<ExternalCameraConfig::FpsLimitation>& fpsLimits,
+            SupportedV4L2Format format,
+            std::vector<SupportedV4L2Format>& outFmts);
+
     // Get candidate supported formats list of input cropping type.
     static std::vector<SupportedV4L2Format> getCandidateSupportedFormatsLocked(
             int fd, CroppingType cropType,
             const std::vector<ExternalCameraConfig::FpsLimitation>& fpsLimits,
-            const Size& minStreamSize);
+            const std::vector<ExternalCameraConfig::FpsLimitation>& depthFpsLimits,
+            const Size& minStreamSize,
+            bool depthEnabled);
     // Trim supported format list by the cropping type. Also sort output formats by width/height
     static void trimSupportedFormats(CroppingType cropType,
             /*inout*/std::vector<SupportedV4L2Format>* pFmts);
diff --git a/camera/device/3.4/default/include/ext_device_v3_4_impl/ExternalCameraUtils.h b/camera/device/3.4/default/include/ext_device_v3_4_impl/ExternalCameraUtils.h
index 5754ccb..f696057 100644
--- a/camera/device/3.4/default/include/ext_device_v3_4_impl/ExternalCameraUtils.h
+++ b/camera/device/3.4/default/include/ext_device_v3_4_impl/ExternalCameraUtils.h
@@ -17,12 +17,13 @@
 #ifndef ANDROID_HARDWARE_CAMERA_DEVICE_V3_4_EXTCAMUTIL_H
 #define ANDROID_HARDWARE_CAMERA_DEVICE_V3_4_EXTCAMUTIL_H
 
-#include <inttypes.h>
-#include "utils/LightRefBase.h"
-#include <mutex>
-#include <vector>
-#include <unordered_set>
 #include <android/hardware/graphics/mapper/2.0/IMapper.h>
+#include <inttypes.h>
+#include <mutex>
+#include <unordered_set>
+#include <vector>
+#include "tinyxml2.h"  // XML parsing
+#include "utils/LightRefBase.h"
 
 using android::hardware::graphics::mapper::V2_0::IMapper;
 using android::hardware::graphics::mapper::V2_0::YCbCrLayout;
@@ -71,17 +72,22 @@
     // Size of v4l2 buffer queue when streaming > kMaxVideoSize
     uint32_t numStillBuffers;
 
+    // Indication that the device connected supports depth output
+    bool depthEnabled;
+
     struct FpsLimitation {
         Size size;
         double fpsUpperBound;
     };
     std::vector<FpsLimitation> fpsLimits;
+    std::vector<FpsLimitation> depthFpsLimits;
 
     // Minimum output stream size
     Size minStreamSize;
 
 private:
     ExternalCameraConfig();
+    static bool updateFpsList(tinyxml2::XMLElement* fpsList, std::vector<FpsLimitation>& fpsLimits);
 };
 
 } // common
diff --git a/camera/metadata/3.3/types.hal b/camera/metadata/3.3/types.hal
index 27d82b9..539ae68 100644
--- a/camera/metadata/3.3/types.hal
+++ b/camera/metadata/3.3/types.hal
@@ -22,7 +22,6 @@
 
 package android.hardware.camera.metadata@3.3;
 
-/* Include definitions from all prior minor HAL metadata revisions */
 import android.hardware.camera.metadata@3.2;
 
 /**
diff --git a/current.txt b/current.txt
index cb6c19a..69996dd 100644
--- a/current.txt
+++ b/current.txt
@@ -390,7 +390,7 @@
 684702a60deef03a1e8093961dc0a18c555c857ad5a77ba7340b0635ae01eb70 android.hardware.camera.device@3.4::ICameraDeviceSession
 f8a19622cb0cc890913b1ef3e32b675ffb26089a09e02fef4056ebad324d2b5d android.hardware.camera.device@3.4::types
 291638a1b6d4e63283e9e722ab5049d9351717ffa2b66162124f84d1aa7c2835 android.hardware.camera.metadata@3.2::types
-8a075cf3a17fe99c6d23415a3e9a65612f1fee73ee052a3a8a0ca5b8877395a4 android.hardware.camera.metadata@3.3::types
+f4aca082ad436f00b3bed8b9b9dfdc01f6460afdbee7ca10fedb5e34bddcc96f android.hardware.camera.metadata@3.3::types
 da33234403ff5d60f3473711917b9948e6484a4260b5247acdafb111193a9de2 android.hardware.configstore@1.0::ISurfaceFlingerConfigs
 21165b8e30c4b2d52980e4728f661420adc16e38bbe73476c06b2085be908f4c android.hardware.gnss@1.0::IGnssCallback
 d702fb01dc2a0733aa820b7eb65435ee3334f75632ef880bafd2fb8803a20a58 android.hardware.gnss@1.0::IGnssMeasurementCallback
@@ -446,11 +446,11 @@
 2b4a14661e6a38617b7dd0c6ebb66a56a90e564674ac7697a14cb8a0cab92b2f android.hardware.health.storage@1.0::types
 4880af120fc1640225abdc2c60bda6d79617d73484d5124913c7278af3b11e2d android.hardware.neuralnetworks@1.2::IBurstCallback
 19877e466ad8c6ed42b38050b77bd010cf7800ff365fdc8574f45bbfda03a758 android.hardware.neuralnetworks@1.2::IBurstContext
-96249c852dabeefa3a9496ecdfc44681a071c665bfbf88527bf775c88bf1ab1b android.hardware.neuralnetworks@1.2::IDevice
+b83317b66721241887d2770b5ae95fd5af1e77c5daa7530ecb08fae8892f2b43 android.hardware.neuralnetworks@1.2::IDevice
 92714960d1a53fc2ec557302b41c7cc93d2636d8364a44bd0f85be0c92927ff8 android.hardware.neuralnetworks@1.2::IExecutionCallback
-83885d366f22ada42c00d8854f0b7e7ba4cf73ddf80bb0d8e168ce132cec57ea android.hardware.neuralnetworks@1.2::IPreparedModel
+36e1064c869965dee533c537cefbe87e54db8bd8cd45be7e0e93e00e8a43863a android.hardware.neuralnetworks@1.2::IPreparedModel
 e1c734d1545e1a4ae749ff1dd9704a8e594c59aea7c8363159dc258e93e0df3b android.hardware.neuralnetworks@1.2::IPreparedModelCallback
-114056b3b9303e0e858f28e718ba45722de5678d1d54eec0dcd10788604bf2bb android.hardware.neuralnetworks@1.2::types
+209a5ee694b94328afb2af2768f1fe6a69148e2cbb85ec3c340a36eed818c697 android.hardware.neuralnetworks@1.2::types
 cf7a4ba516a638f9b82a249c91fb603042c2d9ca43fd5aad9cf6c0401ed2a5d7 android.hardware.nfc@1.2::INfc
 abf98c2ae08bf765db54edc8068e36d52eb558cff6706b6fd7c18c65a1f3fc18 android.hardware.nfc@1.2::types
 4cb252dc6372a874aef666b92a6e9529915aa187521a700f0789065c3c702ead android.hardware.power.stats@1.0::IPowerStats
diff --git a/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp b/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
index 7eea7fc..106f332 100644
--- a/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
+++ b/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
@@ -52,6 +52,7 @@
 using ::test_helper::MixedTyped;
 using ::test_helper::MixedTypedExample;
 using ::test_helper::resize_accordingly;
+using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
 
 template <typename T>
 void copy_back_(std::map<int, std::vector<T>>* dst, const std::vector<RequestArgument>& ra,
@@ -77,6 +78,13 @@
                   "Number of types in MixedTyped changed, but copy_back function wasn't updated");
 }
 
+static bool isZeroSized(const MixedTyped& example, uint32_t index) {
+    for (auto i : example.operandDimensions.at(index)) {
+        if (i == 0) return true;
+    }
+    return false;
+}
+
 // Top level driver for models and examples generated by test_generator.py
 // Test driver for those generated from ml/nn/runtime/test/spec
 static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>& preparedModel,
@@ -178,17 +186,18 @@
         // Go through all outputs, initialize RequestArgument descriptors
         resize_accordingly(golden, test);
         bool sizeLargerThanOne = true;
-        for_all(golden, [&outputs_info, &outputSize, &outputType, &sizeLargerThanOne](
+        for_all(golden, [&golden, &outputs_info, &outputSize, &outputType, &sizeLargerThanOne](
                                 int index, auto, auto s) {
             if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
             if (index == 0) {
                 // On OutputType::INSUFFICIENT, set the output operand with index 0 with
                 // buffer size one byte less than needed.
                 if (outputType == OutputType::INSUFFICIENT) {
-                    if (s > 1)
+                    if (s > 1 && !isZeroSized(golden, index)) {
                         s -= 1;
-                    else
+                    } else {
                         sizeLargerThanOne = false;
+                    }
                 }
             }
             RequestArgument arg = {
@@ -532,7 +541,8 @@
     sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
     ASSERT_NE(nullptr, preparedModelCallback.get());
     Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
-        model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
+            model, ExecutionPreference::FAST_SINGLE_ANSWER, hidl_vec<hidl_handle>(),
+            hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
     ASSERT_TRUE(prepareLaunchStatus.isOk());
     ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
 
diff --git a/neuralnetworks/1.2/IDevice.hal b/neuralnetworks/1.2/IDevice.hal
index b9fa388..d83f9e6 100644
--- a/neuralnetworks/1.2/IDevice.hal
+++ b/neuralnetworks/1.2/IDevice.hal
@@ -76,6 +76,17 @@
     getType() generates (ErrorStatus status, DeviceType type);
 
     /**
+     * Gets the capabilities of a driver.
+     *
+     * @return status Error status of the call, must be:
+     *                - NONE if successful
+     *                - DEVICE_UNAVAILABLE if driver is offline or busy
+     *                - GENERAL_FAILURE if there is an unspecified error
+     * @return capabilities Capabilities of the driver.
+     */
+    getCapabilities_1_2() generates (ErrorStatus status, Capabilities capabilities);
+
+    /**
      * Gets information about extensions supported by the driver implementation.
      *
      * All extension operations and operands must be fully supported for the
@@ -113,44 +124,83 @@
             generates (ErrorStatus status, vec<bool> supportedOperations);
 
     /**
-     * Gets whether the driver supports compilation caching.
+     * Gets the caching requirements of the driver implementation.
      *
-     * isCachingSupported indicates whether the driver supports compilation caching.
-     * Even if so, the driver may still choose not to cache certain compiled models.
+     * There are two types of cache file descriptors provided to the driver: model cache
+     * and data cache.
      *
-     * If the device reports the caching is not supported, the user may avoid calling
-     * IDevice::prepareModelFromCache and IPreparedModel::saveToCache.
+     * The data cache is for caching constant data, possibly including preprocessed
+     * and transformed tensor buffers. Any modification to the data cache should
+     * have no worse effect than generating bad output values at execution time.
+     *
+     * The model cache is for caching security-sensitive data such as compiled
+     * executable machine code in the device's native binary format. A modification
+     * to the model cache may affect the driver's execution behavior, and a malicious
+     * client could make use of this to execute beyond the granted permission. Thus,
+     * the driver must always check whether the model cache is corrupted before
+     * preparing the model from cache.
+     *
+     * getNumberOfCacheFilesNeeded returns how many of each type of cache files the driver
+     * implementation needs to cache a single prepared model. Returning 0 for both types
+     * indicates compilation caching is not supported by this driver. The driver may
+     * still choose not to cache certain compiled models even if it reports that caching
+     * is supported.
+     *
+     * If the device reports that caching is not supported, the user may avoid calling
+     * IDevice::prepareModelFromCache or providing cache file descriptors to
+     * IDevice::prepareModel_1_2.
      *
      * @return status Error status of the call, must be:
      *     - NONE if successful
      *     - DEVICE_UNAVAILABLE if driver is offline or busy
      *     - GENERAL_FAILURE if there is an unspecified error
-     * @return supported A boolean indicating whether the driver supports compilation
-     *                   caching. Even on returning true, the driver may still choose
-     *                   not to cache certain compiled models.
+     * @return numModelCache An unsigned integer indicating how many files for model cache
+     *                       the driver needs to cache a single prepared model. It must
+     *                       be less than or equal to Constant::MAX_NUMBER_OF_CACHE_FILES.
+     * @return numDataCache An unsigned integer indicating how many files for data cache
+     *                      the driver needs to cache a single prepared model. It must
+     *                      be less than or equal to Constant::MAX_NUMBER_OF_CACHE_FILES.
      */
-    isCachingSupported() generates (ErrorStatus status, bool supported);
+    getNumberOfCacheFilesNeeded()
+            generates (ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache);
 
     /**
-     * Creates a prepared model for execution.
+     * Asynchronously creates a prepared model for execution and optionally saves it
+     * into cache files.
      *
-     * prepareModel is used to make any necessary transformations or alternative
+     * prepareModel is used to make any necessary transformations to or alternative
      * representations to a model for execution, possibly including
      * transformations on the constant data, optimization on the model's graph,
      * or compilation into the device's native binary format. The model itself
      * is not changed.
      *
+     * Optionally, caching information may be provided for the driver to save
+     * the prepared model to cache files for faster model compilation time
+     * when the same model preparation is requested in the future. There are
+     * two types of cache file handles provided to the driver: model cache
+     * and data cache. For more information on the two types of cache handles,
+     * refer to getNumberOfCacheFilesNeeded.
+     *
+     * The file descriptors must be opened with read and write permission. A file may
+     * have any size, and the corresponding file descriptor may have any offset. The
+     * driver must truncate a file to zero size before writing to that file. The file
+     * descriptors may be closed by the client once the asynchronous preparation has
+     * finished. The driver must dup a file descriptor if it wants to get access to
+     * the cache file later.
+     *
      * The model is prepared asynchronously with respect to the caller. The
-     * prepareModel function must verify the inputs to the prepareModel function
-     * are correct. If there is an error, prepareModel must immediately invoke
+     * prepareModel function must verify the inputs to the preparedModel function
+     * related to preparing the model (as opposed to saving the prepared model to
+     * cache) are correct. If there is an error, prepareModel must immediately invoke
      * the callback with the appropriate ErrorStatus value and nullptr for the
-     * IPreparedModel, then return with the same ErrorStatus. If the inputs to
-     * the prepareModel function are valid and there is no error, prepareModel
-     * must launch an asynchronous task to prepare the model in the background,
-     * and immediately return from prepareModel with ErrorStatus::NONE. If the
-     * asynchronous task fails to launch, prepareModel must immediately invoke
-     * the callback with ErrorStatus::GENERAL_FAILURE and nullptr for the
-     * IPreparedModel, then return with ErrorStatus::GENERAL_FAILURE.
+     * IPreparedModel, then return with the same ErrorStatus. If the inputs to the
+     * prepareModel function that are related to preparing the model are valid and
+     * there is no error, prepareModel must launch an asynchronous task
+     * to prepare the model in the background, and immediately return from
+     * prepareModel with ErrorStatus::NONE. If the asynchronous task fails to launch,
+     * prepareModel must immediately invoke the callback with
+     * ErrorStatus::GENERAL_FAILURE and nullptr for the IPreparedModel, then return
+     * with ErrorStatus::GENERAL_FAILURE.
      *
      * When the asynchronous task has finished preparing the model, it must
      * immediately invoke the callback function provided as an input to
@@ -160,6 +210,14 @@
      * the callback object must be invoked with the appropriate ErrorStatus
      * value and nullptr for the IPreparedModel.
      *
+     * Optionally, the driver may save the prepared model to cache during the
+     * asynchronous preparation. Any error that occurs when saving to cache must
+     * not affect the status of preparing the model. Even if the input arguments
+     * related to the cache may be invalid, or the driver may fail to save to cache,
+     * the prepareModel function must finish preparing the model. The driver
+     * may choose not to save to cache even if the caching information is
+     * provided and valid.
+     *
      * The only information that may be unknown to the model at this stage is
      * the shape of the tensors, which may only be known at execution time. As
      * such, some driver services may return partially prepared models, where
@@ -173,6 +231,26 @@
      * @param model The model to be prepared for execution.
      * @param preference Indicates the intended execution behavior of a prepared
      *     model.
+     * @param modelCache A vector of handles with each entry holding exactly one
+     *     cache file descriptor for the security-sensitive cache. The length of
+     *     the vector must either be 0 indicating that caching information is not provided,
+     *     or match the numModelCache returned from getNumberOfCacheFilesNeeded. The cache
+     *     handles will be provided in the same order when retrieving the
+     *     preparedModel from cache files with prepareModelFromCache.
+     * @param dataCache A vector of handles with each entry holding exactly one
+     *     cache file descriptor for the constants' cache. The length of
+     *     the vector must either be 0 indicating that caching information is not provided,
+     *     or match the numDataCache returned from getNumberOfCacheFilesNeeded. The cache
+     *     handles will be provided in the same order when retrieving the
+     *     preparedModel from cache files with prepareModelFromCache.
+     * @param token A caching token of length Constant::BYTE_SIZE_OF_CACHE_TOKEN
+     *     identifying the prepared model. The same token will be provided when retrieving
+     *     the prepared model from the cache files with prepareModelFromCache.
+     *     Tokens should be chosen to have a low rate of collision for a particular
+     *     application. The driver cannot detect a collision; a collision will result
+     *     in a failed execution or in a successful execution that produces incorrect
+     *     output values. If both modelCache and dataCache are empty indicating that
+     *     caching information is not provided, this token must be ignored.
      * @param callback A callback object used to return the error status of
      *     preparing the model for execution and the prepared model if
      *     successful, nullptr otherwise. The callback object's notify function
@@ -182,9 +260,12 @@
      *     - NONE if preparation task is successfully launched
      *     - DEVICE_UNAVAILABLE if driver is offline or busy
      *     - GENERAL_FAILURE if there is an unspecified error
-     *     - INVALID_ARGUMENT if one of the input arguments is invalid
+     *     - INVALID_ARGUMENT if one of the input arguments related to preparing the
+     *       model is invalid
      */
     prepareModel_1_2(Model model, ExecutionPreference preference,
+                     vec<handle> modelCache, vec<handle> dataCache,
+                     uint8_t[Constant:BYTE_SIZE_OF_CACHE_TOKEN] token,
                      IPreparedModelCallback callback)
           generates (ErrorStatus status);
 
@@ -192,22 +273,17 @@
      * Creates a prepared model from cache files for execution.
      *
      * prepareModelFromCache is used to retrieve a prepared model directly from
-     * cache files to avoid slow model compilation time. There are exactly two
-     * cache file descriptors provided to the driver: modelCache and dataCache.
+     * cache files to avoid slow model compilation time. There are
+     * two types of cache file handles provided to the driver: model cache
+     * and data cache. For more information on the two types of cache handles,
+     * refer to getNumberOfCacheFilesNeeded.
      *
-     * The dataCache is for caching constant data, possibly including preprocessed
-     * and transformed tensor buffers. Any modification to the dataCache should
-     * have no worse effect than generating bad output values at execution time.
-     *
-     * The modelCache is for caching security-sensitive data such as compiled
-     * executable machine code in the device's native binary format. A modification
-     * to the modelCache may affect the driver's execution behavior, and a malicious
-     * client could make use of this to execute beyond the granted permission. Thus,
-     * the driver must always check whether the modelCache is corrupted before preparing
-     * the model from cache.
-     *
-     * The two file descriptors may be closed by the client once the asynchronous
-     * preparation has finished. The driver has to copy all the data it needs.
+     * The file descriptors must be opened with read and write permission. A file may
+     * have any size, and the corresponding file descriptor may have any offset. The
+     * driver must truncate a file to zero size before writing to that file. The file
+     * descriptors may be closed by the client once the asynchronous preparation has
+     * finished. The driver must dup a file descriptor if it wants to get access to
+     * the cache file later.
      *
      * The model is prepared asynchronously with respect to the caller. The
      * prepareModelFromCache function must verify the inputs to the
@@ -241,13 +317,17 @@
      * used with different shapes of inputs on different (possibly concurrent)
      * executions.
      *
-     * @param modelCache A handle holding exactly one cache file descriptor for the
-     *     security-sensitive cache.
-     * @param dataCache A handle holding exactly one cache file descriptor for the
-     *     constants' cache.
+     * @param modelCache A vector of handles with each entry holding exactly one
+     *     cache file descriptor for the security-sensitive cache. The length of
+     *     the vector must match the numModelCache returned from getNumberOfCacheFilesNeeded.
+     *     The cache handles will be provided in the same order as with prepareModel_1_2.
+     * @param dataCache A vector of handles with each entry holding exactly one
+     *     cache file descriptor for the constants' cache. The length of the vector
+     *     must match the numDataCache returned from getNumberOfCacheFilesNeeded.
+     *     The cache handles will be provided in the same order as with prepareModel_1_2.
      * @param token A caching token of length Constant::BYTE_SIZE_OF_CACHE_TOKEN
      *     identifying the prepared model. It is the same token provided when saving
-     *     the cache files with IPreparedModel::saveToCache. Tokens should be chosen
+     *     the cache files with prepareModel_1_2. Tokens should be chosen
      *     to have a low rate of collision for a particular application. The driver
      *     cannot detect a collision; a collision will result in a failed execution
      *     or in a successful execution that produces incorrect output values.
@@ -263,7 +343,7 @@
      *       unspecified error
      *     - INVALID_ARGUMENT if one of the input arguments is invalid
      */
-    prepareModelFromCache(handle modelCache, handle dataCache,
+    prepareModelFromCache(vec<handle> modelCache, vec<handle> dataCache,
                           uint8_t[Constant:BYTE_SIZE_OF_CACHE_TOKEN] token,
                           IPreparedModelCallback callback)
             generates (ErrorStatus status);
diff --git a/neuralnetworks/1.2/IPreparedModel.hal b/neuralnetworks/1.2/IPreparedModel.hal
index 757d5f1..5d2d80f 100644
--- a/neuralnetworks/1.2/IPreparedModel.hal
+++ b/neuralnetworks/1.2/IPreparedModel.hal
@@ -157,62 +157,4 @@
                             fmq_sync<FmqRequestDatum> requestChannel,
                             fmq_sync<FmqResultDatum> resultChannel)
                  generates (ErrorStatus status, IBurstContext context);
-
-    /*
-     * Saves the prepared model to cache files.
-     *
-     * saveToCache is used to save a prepared model to cache files for faster
-     * model compilation time when the same model preparation is requested in
-     * the future. There are exactly two cache file descriptors provided to the
-     * driver: modelCache and dataCache.
-     *
-     * The dataCache is for caching constant data, possibly including preprocessed
-     * and transformed tensor buffers. Any modification to the dataCache should
-     * have no worse effect than generating bad output values at execution time.
-     *
-     * The modelCache is for caching security-sensitive data such as compiled
-     * executable machine code in the device's native binary format. A modification
-     * to the modelCache may affect the driver's execution behavior, and a malicious
-     * client could make use of this to execute beyond the granted permission. Thus,
-     * the driver must always check whether the modelCache is corrupted before preparing
-     * the model from cache.
-     *
-     * The two file descriptors must point to two zero-length files with offset
-     * positioned at the beginning of the file. The file descriptors may be closed
-     * by the client once the method has returned.
-     *
-     * If the driver decides not to save the prepared model without looking at the
-     * input arguments to the saveToCache function, saveToCache must return with
-     * ErrorStatus::GENERAL_FAILURE. Otherwise, the saveToCache function must verify
-     * the input arguments to the saveToCache function are valid, and return with
-     * ErrorStatus::INVALID_ARGUMENT if not. If the inputs are valid but the driver
-     * could not save the prepared model, saveToCache must return with the appropriate
-     * ErrorStatus. Otherwise, it must write the cache files and return
-     * ErrorStatus::NONE. Unless saveToCache returns ErrorStatus::NONE, the contents
-     * of the cache files are undefined.
-     *
-     * @param modelCache A handle holding exactly one cache file descriptor for the
-     *                   security-sensitive cache.
-     * @param dataCache A handle holding exactly one cache file descriptor for the
-     *                  constants' cache.
-     * @param token A caching token of length Constant::BYTE_SIZE_OF_CACHE_TOKEN
-     *              identifying the prepared model. The same token will be provided
-     *              when retrieving the prepared model from cache files with
-     *              IDevice::prepareModelFromCache. Tokens should be chosen to have
-     *              a low rate of collision for a particular application. The driver
-     *              cannot detect a collision; a collision will result in a failed
-     *              execution or in a successful execution that produces incorrect
-     *              output values.
-     * @return status Error status of saveToCache, must be:
-     *                - NONE if saveToCache is performed successfully
-     *                - DEVICE_UNAVAILABLE if driver is offline or busy
-     *                - GENERAL_FAILURE if the driver could not save the
-     *                  prepared model or if there is an unspecified error
-     *                - INVALID_ARGUMENT if one of the input arguments is invalid,
-     *                  unless the driver decides not to save the prepared model
-     *                  without looking at the input arguments
-     */
-    saveToCache(handle modelCache, handle dataCache,
-                uint8_t[Constant:BYTE_SIZE_OF_CACHE_TOKEN] token)
-        generates (ErrorStatus status);
 };
diff --git a/neuralnetworks/1.2/types.hal b/neuralnetworks/1.2/types.hal
index f2e02b8..8c57796 100644
--- a/neuralnetworks/1.2/types.hal
+++ b/neuralnetworks/1.2/types.hal
@@ -30,6 +30,11 @@
      * The byte size of the cache token.
      */
     BYTE_SIZE_OF_CACHE_TOKEN = 32,
+
+    /**
+     * The maximum number of files for each type of cache in compilation caching.
+     */
+    MAX_NUMBER_OF_CACHE_FILES = 32,
 };
 
 enum OperandType : @1.0::OperandType {
@@ -182,6 +187,10 @@
      *     input2.dimension = {5, 4, 3, 1}
      *     output.dimension = {5, 4, 3, 2}
      *
+     * Since API level 29, generic zero-sized input tensor is supported. Zero
+     * dimension is only compatible with 0 or 1. The size of the output
+     * dimension is zero if either of corresponding input dimension is zero.
+     *
      * Supported tensor {@link OperandType}:
      * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
      * * {@link OperandType::TENSOR_FLOAT32}
@@ -231,7 +240,8 @@
      *
      * Inputs (explicit padding):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
-     *      the input.
+     *      the input. Since API level 29, zero batches is supported for this
+     *      tensor.
      * * 1: An {@link OperandType::INT32} scalar, specifying the padding on
      *      the left, in the ‘width’ dimension.
      * * 2: An {@link OperandType::INT32} scalar, specifying the padding on
@@ -257,7 +267,8 @@
      *
      * Inputs (implicit padding):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
-     *      the input.
+     *      the input. Since API level 29, zero batches is supported for this
+     *      tensor.
      * * 1: An {@link OperandType::INT32} scalar, specifying the implicit
      *      padding scheme, has to be one of the
      *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
@@ -304,6 +315,7 @@
      *            Before API level 29, all input tensors of
      *            {@link OperandType::TENSOR_QUANT8_ASYMM}
      *            must have the same scale and zeroPoint as the output tensor.
+     *            Since API level 29, zero-sized tensors are supported.
      * * n: An {@link OperandType::INT32} scalar, specifying the
      *      concatenation axis.
      *
@@ -361,7 +373,8 @@
      *
      * Inputs (explicit padding):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
-     *      specifying the input.
+     *      specifying the input. Since API level 29, zero batches is supported
+     *      for this tensor.
      * * 1: A 4-D tensor, of shape
      *      [depth_out, filter_height, filter_width, depth_in], specifying the
      *      filter. For tensor of type
@@ -408,7 +421,8 @@
      *
      * Inputs (implicit padding):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
-     *      specifying the input.
+     *      specifying the input. Since API level 29, zero batches is supported
+     *      for this tensor.
      * * 1: A 4-D tensor, of shape
      *      [depth_out, filter_height, filter_width, depth_in], specifying the
      *      filter. For tensor of type
@@ -450,11 +464,10 @@
      *
      * Outputs:
      * * 0: The output 4-D tensor, of shape
-     *      [batches, out_height, out_width, depth_out]. For output tensor of
-     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
-     *      must be satisfied: output_scale > input_scale * filter_scale (for
-     *      filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
-     *      this condition must be true for all filter scales).
+     *      [batches, out_height, out_width, depth_out]. Before API level 29,
+     *      for output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the
+     *      following condition must be satisfied:
+     *      output_scale > input_scale * filter_scale
      *
      * Available since API level 27.
      */
@@ -600,11 +613,10 @@
      *
      * Outputs:
      * * 0: The output 4-D tensor, of shape
-     *      [batches, out_height, out_width, depth_out]. For output tensor of
-     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
-     *      must be satisfied: output_scale > input_scale * filter_scale (for
-     *      filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
-     *      this condition must be true for all filter scales).
+     *      [batches, out_height, out_width, depth_out]. Before API level 29,
+     *      for output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the
+     *      following condition must be satisfied:
+     *      output_scale > input_scale * filter_scale
      *
      * Available since API level 27.
      */
@@ -672,7 +684,7 @@
      * Supported tensor rank: up to 4
      *
      * Inputs:
-     * * 0: A tensor.
+     * * 0: A tensor. Since API level 29, this tensor may be zero-sized.
      *
      * Outputs:
      * * 0: A tensor with the same shape as input0.
@@ -765,7 +777,8 @@
      *      [batch_size, input_size], where "input_size" corresponds to the
      *      number of inputs to the layer, matching the second dimension of
      *      weights, and "batch_size" is calculated by dividing the number of
-     *      elements by "input_size".
+     *      elements by "input_size". Since API level 29, zero batch_size is
+     *      supported for this tensor.
      * * 1: A 2-D tensor, specifying the weights, of shape
      *      [num_units, input_size], where "num_units" corresponds to the number
      *      of output nodes.
@@ -780,10 +793,10 @@
      *      invoke on the result.
      *
      * Outputs:
-     * * 0: The output tensor, of shape [batch_size, num_units]. For output
-     *      tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the following
-     *      condition must be satisfied:
-     *      output_scale > input_scale * filter_scale.
+     * * 0: The output tensor, of shape [batch_size, num_units]. Before API
+     *      level 29, For output tensor of {@link
+     *      OperandType::TENSOR_QUANT8_ASYMM}, the following condition must be
+     *      satisfied: output_scale > input_scale * filter_scale.
      *
      * Available since API level 27.
      */
@@ -861,6 +874,7 @@
      * Supported tensor {@link OperandType}:
      * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
      * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM} (since API level 29)
      *
      * Supported tensor rank: up to 4
      * Tensors with rank less than 4 are only supported since API level 29.
@@ -875,6 +889,8 @@
      *
      * Outputs:
      * * 0: A tensor of the same {@link OperandType} and same shape as input0.
+     *      For {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the scale must be 1.f / 128 and the zeroPoint must be 128.
      *
      * Available since API level 27.
      */
@@ -905,7 +921,8 @@
      *
      * Inputs (explicit padding):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
-     *      the input.
+     *      the input. Since API level 29, zero batches is supported for this
+     *      tensor.
      * * 1: An {@link OperandType::INT32} scalar, specifying the padding on
      *      the left, in the ‘width’ dimension.
      * * 2: An {@link OperandType::INT32} scalar, specifying the padding on
@@ -931,7 +948,8 @@
      *
      * Inputs (implicit padding):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
-     *      the input.
+     *      the input. Since API level 29, zero batches is supported for this
+     *      tensor.
      * * 1: An {@link OperandType::INT32} scalar, specifying the implicit
      *      padding scheme, has to be one of the
      *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
@@ -1021,7 +1039,8 @@
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input. Since API level 29, this tensor may
+     *      be zero-sized.
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
@@ -1333,7 +1352,8 @@
      *
      * Inputs (explicit padding):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
-     *      the input.
+     *      the input. Since API level 29, zero batches is supported for this
+     *      tensor.
      * * 1: An {@link OperandType::INT32} scalar, specifying the padding on
      *      the left, in the ‘width’ dimension.
      * * 2: An {@link OperandType::INT32} scalar, specifying the padding on
@@ -1359,7 +1379,8 @@
      *
      * Inputs (implicit padding):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
-     *      the input.
+     *      the input. Since API level 29, zero batches is supported for this
+     *      tensor.
      * * 1: An {@link OperandType::INT32} scalar, specifying the implicit
      *      padding scheme, has to be one of the
      *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
@@ -1406,6 +1427,10 @@
      * * {@link OperandType::TENSOR_FLOAT32}
      * * {@link OperandType::TENSOR_QUANT8_ASYMM}
      *
+     * Since API level 29, generic zero-sized input tensor is supported. Zero
+     * dimension is only compatible with 0 or 1. The size of the output
+     * dimension is zero if either of corresponding input dimension is zero.
+     *
      * Supported tensor rank: up to 4
      *
      * Inputs:
@@ -1441,7 +1466,8 @@
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input. Since API level 29, this tensor may
+     *      be zero-sized.
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
@@ -1465,7 +1491,8 @@
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input. Since API level 29, this tensor may
+     *      be zero-sized.
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
@@ -1489,7 +1516,8 @@
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input. Since API level 29, this tensor may
+     *      be zero-sized.
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
@@ -1541,9 +1569,12 @@
      * [batch, height, width, channels]. Alternatively, the data layout could
      * be NCHW, the data storage order of: [batch, channels, height, width].
      *
-     * Inputs:
+     * Both resizing by shape and resizing by scale are supported.
+     *
+     * Inputs (resizing by shape):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
-     *      the input.
+     *      the input. Since API level 29, zero batches is supported for this
+     *      tensor.
      * * 1: An {@link OperandType::INT32} scalar, specifying the output
      *      height of the output tensor.
      * * 2: An {@link OperandType::INT32} scalar, specifying the output
@@ -1552,6 +1583,24 @@
      *      Set to true to specify NCHW data layout for input0 and output0.
      *      Available since API level 29.
      *
+     * Inputs (resizing by scale, since API level 29):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input. Zero batches is supported for this tensor.
+     * * 1: A scalar, specifying height_scale, the scaling factor of the height
+     *      dimension from the input tensor to the output tensor. The output
+     *      height is calculated as new_height = floor(height * height_scale).
+     *      The scalar must be of {@link OperandType::FLOAT16} if input0 is
+     *      of {@link OperandType::TENSOR_FLOAT16} and of
+     *      {@link OperandType::FLOAT32} otherwise.
+     * * 2: A scalar, specifying width_scale, the scaling factor of the width
+     *      dimension from the input tensor to the output tensor. The output
+     *      width is calculated as new_width = floor(width * width_scale).
+     *      The scalar must be of {@link OperandType::FLOAT16} if input0 is
+     *      of {@link OperandType::TENSOR_FLOAT16} and of
+     *      {@link OperandType::FLOAT32} otherwise.
+     * * 3: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *
      * Outputs:
      * * 0: The output 4-D tensor, of shape
      *      [batches, new_height, new_width, depth].
@@ -1637,7 +1686,8 @@
      * Tensors with rank other than 2 or 4 are only supported since API level 29.
      *
      * Inputs:
-     * * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped.
+     * * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped. Since
+     *      API level 29, this tensor may be zero-sized.
      * * 1: A scalar, specifying the positive scaling factor for the exponent,
      *      beta. If input0 is of {@link OperandType::TENSOR_FLOAT32} or
      *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the scalar must be of
@@ -1795,7 +1845,8 @@
      * Supported tensor rank: up to 4.
      *
      * Inputs:
-     * * 0: A tensor, specifying the input.
+     * * 0: A tensor, specifying the input. Since API level 29, this tensor may
+     *      be zero-sized.
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
@@ -1862,6 +1913,10 @@
      *     input2.dimension = {5, 4, 3, 1}
      *     output.dimension = {5, 4, 3, 2}
      *
+     * Since API level 29, generic zero-sized input tensor is supported. Zero
+     * dimension is only compatible with 0 or 1. The size of the output
+     * dimension is zero if either of corresponding input dimension is zero.
+     *
      * Supported tensor {@link OperandType}:
      * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
      * * {@link OperandType::TENSOR_FLOAT32}
@@ -2095,6 +2150,10 @@
      *     input2.dimension = {5, 4, 3, 1}
      *     output.dimension = {5, 4, 3, 2}
      *
+     * Since API level 29, generic zero-sized input tensor is supported. Zero
+     * dimension is only compatible with 0 or 1. The size of the output
+     * dimension is zero if either of corresponding input dimension is zero.
+     *
      * Supported tensor {@link OperandType}:
      * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
      * * {@link OperandType::TENSOR_FLOAT32}
@@ -2135,6 +2194,7 @@
      *
      * Inputs:
      * * 0: An n-D tensor, specifying the tensor to be transposed.
+     *      Since API level 29, this tensor may be zero-sized.
      * * 1: An optional 1-D Tensor of {@link OperandType::TENSOR_INT32},
      *      the permutation of the dimensions of the input tensor.
      *
@@ -2231,7 +2291,8 @@
      * * 0: A 2-D Tensor of shape [num_rois, 4], specifying the locations of the
      *      bounding box proposals, each line with format [x1, y1, x2, y2].
      *      For tensor of type {@link OperandType::TENSOR_QUANT16_ASYMM},
-     *      the zeroPoint must be 0 and the scale must be 0.125.
+     *      the zeroPoint must be 0 and the scale must be 0.125. Zero num_rois
+     *      is supported for this tensor.
      * * 1: A 2-D Tensor of shape [num_rois, num_classes * 4], specifying the
      *      bounding box delta for each region of interest and each class. The
      *      bounding box deltas are organized in the following order
@@ -2240,10 +2301,12 @@
      *      and height, dw and dh is the log-scale relative correction factor
      *      for the width and height. For input0 of type
      *      {@link OperandType::TENSOR_QUANT16_ASYMM}, this tensor should be
-     *      of {@link OperandType::TENSOR_QUANT8_ASYMM}.
+     *      of {@link OperandType::TENSOR_QUANT8_ASYMM}. Zero num_rois is
+     *      supported for this tensor.
      * * 2: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
      *      [num_rois], specifying the batch index of each box. Boxes with
-     *      the same batch index are grouped together.
+     *      the same batch index are grouped together. Zero num_rois is
+     *      supported for this tensor.
      * * 3: A 2-D Tensor of shape [batches, 2], specifying the information of
      *      each image in the batch, each line with format
      *      [image_height, image_width].
@@ -2272,113 +2335,113 @@
      * Inputs:
      * * 0: The input.
      *      A 3-D tensor of shape:
-     *        If time-major: [max_time, batch_size, output_size]
-     *        If batch-major: [batch_size, max_time, output_size]
+     *        If time-major: [max_time, batch_size, input_size]
+     *        If batch-major: [batch_size, max_time, input_size]
      *      where "max_time" is the number of timesteps (sequence length),
      *      "batch_size" corresponds to the batching dimension, and
      *      "input_size" is the size of the input.
      * * 1: The forward input-to-input weights. Optional.
-     *      A 2-D tensor of shape [num_units, input_size], where “num_units”
-     *      corresponds to the number of cell units.
+     *      A 2-D tensor of shape [fw_num_units, input_size], where “fw_num_units”
+     *      corresponds to the number of forward cell units.
      * * 2: The forward input-to-forget weights.
-     *      A 2-D tensor of shape [num_units, input_size].
+     *      A 2-D tensor of shape [fw_num_units, input_size].
      * * 3: The forward input-to-cell weights.
-     *      A 2-D tensor of shape [num_units, input_size].
+     *      A 2-D tensor of shape [fw_num_units, input_size].
      * * 4: The forward input-to-output weights.
-     *      A 2-D tensor of shape [num_units, input_size].
+     *      A 2-D tensor of shape [fw_num_units, input_size].
      * * 5: The forward recurrent-to-input weights. Optional.
-     *      A 2-D tensor of shape [num_units, output_size], where “output_size”
-     *      corresponds to either the number of cell units (i.e., “num_units”),
-     *      or the second dimension of the “projection_weights”, if defined.
+     *      A 2-D tensor of shape [fw_num_units, fw_output_size], where “fw_output_size”
+     *      corresponds to either the number of cell units (i.e., fw_num_units),
+     *      or the second dimension of the “fw_projection_weights”, if defined.
      * * 6: The forward recurrent-to-forget weights.
-     *      A 2-D tensor of shape [num_units, output_size].
+     *      A 2-D tensor of shape [fw_num_units, fw_output_size].
      * * 7: The forward recurrent-to-cell weights.
-     *      A 2-D tensor of shape [num_units, output_size].
+     *      A 2-D tensor of shape [fw_num_units, fw_output_size].
      * * 8: The forward recurrent-to-output weights.
-     *      A 2-D tensor of shape [num_units, output_size].
+     *      A 2-D tensor of shape [fw_num_units, fw_output_size].
      * * 9: The forward cell-to-input weights. Optional.
-     *      A 1-D tensor of shape [num_units].
+     *      A 1-D tensor of shape [fw_num_units].
      * * 10: The forward cell-to-forget weights. Optional.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [fw_num_units].
      * * 11: The forward cell-to-output weights. Optional.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [fw_num_units].
      * * 12: The forward input gate bias. Optional.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [fw_num_units].
      * * 13: The forward forget gate bias.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [fw_num_units].
      * * 14: The forward cell gate bias.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [fw_num_units].
      * * 15: The forward output gate bias.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [fw_num_units].
      * * 16: The forward projection weights. Optional.
-     *       A 2-D tensor of shape [output_size, num_units].
+     *       A 2-D tensor of shape [fw_output_size, fw_num_units].
      * * 17: The forward projection bias. Optional.
-     *       A 1-D tensor of shape [output_size].
+     *       A 1-D tensor of shape [fw_output_size].
      * * 18: The backward input-to-input weights. Optional.
-     *       A 2-D tensor of shape [num_units, input_size], where “num_units”
-     *       corresponds to the number of cell units.
+     *       A 2-D tensor of shape [bw_num_units, input_size], where “bw_num_units”
+     *       corresponds to the number of backward cell units.
      * * 19: The backward input-to-forget weights.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [bw_num_units, input_size].
      * * 20: The backward input-to-cell weights.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [bw_num_units, input_size].
      * * 21: The backward input-to-output weights.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [bw_num_units, input_size].
      * * 22: The backward recurrent-to-input weights. Optional.
-     *       A 2-D tensor of shape [num_units, output_size], where “output_size”
-     *       corresponds to either the number of cell units (i.e., “num_units”),
-     *       or the second dimension of the “projection_weights”, if defined.
+     *       A 2-D tensor of shape [bw_num_units, bw_output_size], where “bw_output_size”
+     *       corresponds to either the number of cell units (i.e., “bw_num_units”),
+     *       or the second dimension of the “bw_projection_weights”, if defined.
      * * 23: The backward recurrent-to-forget weights.
-     *       A 2-D tensor of shape [num_units, output_size].
+     *       A 2-D tensor of shape [bw_num_units, bw_output_size].
      * * 24: The backward recurrent-to-cell weights.
-     *       A 2-D tensor of shape [num_units, output_size].
+     *       A 2-D tensor of shape [bw_num_units, bw_output_size].
      * * 25: The backward recurrent-to-output weights.
-     *       A 2-D tensor of shape [num_units, output_size].
+     *       A 2-D tensor of shape [bw_num_units, bw_output_size].
      * * 26: The backward cell-to-input weights. Optional.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [bw_num_units].
      * * 27: The backward cell-to-forget weights. Optional.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [bw_num_units].
      * * 28: The backward cell-to-output weights. Optional.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [bw_num_units].
      * * 29: The backward input gate bias. Optional.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [bw_num_units].
      * * 30: The backward forget gate bias.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [bw_num_units].
      * * 31: The backward cell gate bias.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [bw_num_units].
      * * 32: The backward output gate bias.
-     *       A 1-D tensor of shape [num_units].
+     *       A 1-D tensor of shape [bw_num_units].
      * * 33: The backward projection weights. Optional.
-     *       A 2-D tensor of shape [output_size, num_units].
+     *       A 2-D tensor of shape [bw_output_size, bw_num_units].
      * * 34: The backward projection bias. Optional.
-     *       A 1-D tensor of shape [output_size].
+     *       A 1-D tensor of shape [bw_output_size].
      * * 35: The forward input activation state.
-     *       A 2-D tensor of shape [batch_size, output_size].
+     *       A 2-D tensor of shape [batch_size, bw_output_size].
      * * 36: The forward input cell state.
-     *       A 2-D tensor of shape [batch_size, num_units].
+     *       A 2-D tensor of shape [batch_size, bw_num_units].
      * * 37: The backward input activation state.
-     *       A 2-D tensor of shape [batch_size, output_size].
+     *       A 2-D tensor of shape [batch_size, bw_output_size].
      * * 38: The backward input cell state.
-     *       A 2-D tensor of shape [batch_size, num_units].
+     *       A 2-D tensor of shape [batch_size, bw_num_units].
      * * 39: The auxiliary input. Optional.
      *       A 3-D tensor of shape [max_time, batch_size, input_size], where “batch_size”
      *       corresponds to the batching dimension, and “input_size” is the size
      *       of the input.
      * * 40: The forward auxiliary input-to-input weights. Optional.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [fw_num_units, input_size].
      * * 41: The forward auxiliary input-to-forget weights. Optional.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [fw_num_units, input_size].
      * * 42: The forward auxiliary input-to-cell weights. Optional.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [fw_num_units, input_size].
      * * 43: The forward auxiliary input-to-output weights. Optional.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [fw_num_units, input_size].
      * * 44: The backward auxiliary input-to-input weights. Optional.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [bw_num_units, input_size].
      * * 45: The backward auxiliary input-to-forget weights. Optional.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [bw_num_units, input_size].
      * * 46: The backward auxiliary input-to-cell weights. Optional.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [bw_num_units, input_size].
      * * 47: The backward auxiliary input-to-output weights. Optional.
-     *       A 2-D tensor of shape [num_units, input_size].
+     *       A 2-D tensor of shape [bw_num_units, input_size].
      * * 48: The activation function.
      *       A value indicating the activation function:
      *       <ul>
@@ -2410,16 +2473,46 @@
      * * 52: time_major
      *       An {@link OperandType::BOOL} scalar specifying the shape format
      *       of input and output tensors.
+     * * 53: The forward input layer normalization weights. Optional.
+     *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
+     *       to activation at input gate.
+     * * 54: The forward forget layer normalization weights. Optional.
+     *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
+     *       to activation at forget gate.
+     * * 55: The forward cell layer normalization weights. Optional.
+     *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
+     *       to activation at cell gate.
+     * * 56: The forward output layer normalization weights. Optional.
+     *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
+     *       to activation at output gate.
+     * * 57: The backward input layer normalization weights. Optional.
+     *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
+     *       to activation at input gate.
+     * * 58: The backward forget layer normalization weights. Optional.
+     *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
+     *       to activation at forget gate.
+     * * 59: The backward cell layer normalization weights. Optional.
+     *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
+     *       to activation at cell gate.
+     * * 60: The backward output layer normalization weights. Optional.
+     *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
+     *       to activation at output gate.
      *
      * Outputs:
      * * 0: The forward output.
      *      A 3-D tensor of shape:
-     *        If time-major: [max_time, batch_size, output_size]
-     *        If batch-major: [batch_size, max_time, output_size]
+     *        If time-major and not merge_outputs:
+     *          [max_time, batch_size, fw_output_size]
+     *        If time-major and merge_outputs:
+     *          [max_time, batch_size, fw_output_size + bw_output_size]
+     *        If batch-major and not merge_outputs:
+     *          [batch_size, max_time, fw_output_size]
+     *        If batch-major and merge_outputs:
+     *          [batch_size, max_time, fw_output_size + bw_output_size]
      * * 1: The backward output.  Unused if merge_outputs is true.
      *      A 3-D tensor of shape:
-     *        If time-major: [max_time, batch_size, output_size]
-     *        If batch-major: [batch_size, max_time, output_size]
+     *        If time-major: [max_time, batch_size, bw_output_size]
+     *        If batch-major: [batch_size, max_time, bw_output_size]
      *
      * Available since API level 29.
      */
@@ -2547,10 +2640,17 @@
     /**
      * Greedily selects a subset of bounding boxes in descending order of score.
      *
-     * This op applies hard NMS algorithm to each class. In each loop of
-     * execution, the box with maximum score gets selected, and any boxes with
-     * the intersection-over-union (IOU) greater than a threshold are removed
-     * from the pending set.
+     * This op applies NMS algorithm to each class. In each loop of execution,
+     * the box with maximum score gets selected and removed from the pending set.
+     * The scores of the rest of boxes are lowered according to the
+     * intersection-over-union (IOU) overlapping with the previously selected
+     * boxes and a specified NMS kernel method. Any boxes with score less
+     * than a threshold are removed from the pending set.
+     *
+     * Three NMS kernels are supported:
+     * * Hard:     score_new = score_old * (1 if IoU < threshold else 0)
+     * * Linear:   score_new = score_old * (1 if IoU < threshold else 1 - IoU)
+     * * Gaussian: score_new = score_old * exp(- IoU^2 / sigma)
      *
      * Axis-aligned bounding boxes are represented by its upper-left corner
      * coordinate (x1,y1) and lower-right corner coordinate (x2,y2). A valid
@@ -2564,25 +2664,34 @@
      * Inputs:
      * * 0: A 2-D Tensor of shape [num_rois, num_classes], specifying the score
      *      of each bounding box proposal. The boxes are grouped by batches in the
-     *      first dimension.
+     *      first dimension. Zero num_rois is supported for this tensor.
      * * 1: A 2-D Tensor specifying the bounding boxes of shape
      *      [num_rois, num_classes * 4], organized in the order [x1, y1, x2, y2].
      *      The boxes are grouped by batches in the first dimension. The sequential
      *      order of the boxes corresponds with input0. For input0 of type
      *      {@link OperandType::TENSOR_QUANT8_ASYMM}, this tensor should be of
      *      {@link OperandType::TENSOR_QUANT16_ASYMM}, with zeroPoint of 0 and
-     *      scale of 0.125.
+     *      scale of 0.125. Zero num_rois is supported for this tensor.
      * * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
      *      [num_rois], specifying the batch index of each box. Boxes with
      *      the same batch index are grouped together.
      * * 3: An {@link OperandType::FLOAT32} scalar, score_threshold. Boxes
      *      with scores lower than the threshold are filtered before sending
      *      to the NMS algorithm.
-     * * 4: An {@link OperandType::FLOAT32} scalar, specifying the IoU
-     *      threshold.
-     * * 5: An {@link OperandType::INT32} scalar, specifying the maximum
+     * * 4: An {@link OperandType::INT32} scalar, specifying the maximum
      *      number of selected bounding boxes for each image. Set to a negative
      *      value for unlimited number of output bounding boxes.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the NMS
+     *      kernel method, options are 0:hard, 1:linear, 2:gaussian.
+     * * 6: An {@link OperandType::FLOAT32} scalar, specifying the IoU
+     *      threshold in hard and linear NMS kernel. This field is ignored if
+     *      gaussian kernel is selected.
+     * * 7: An {@link OperandType::FLOAT32} scalar, specifying the sigma in
+     *      gaussian NMS kernel. This field is ignored if gaussian kernel is
+     *      not selected.
+     * * 8: An {@link OperandType::FLOAT32} scalar, nms_score_threshold.
+     *      Boxes with scores lower than the threshold are dropped during the
+     *      score updating phase in soft NMS.
      *
      * Outputs:
      * * 0: A 1-D Tensor of the same {@link OperandType} as input0, with shape
@@ -2600,8 +2709,8 @@
      *      [num_output_rois], specifying the class of each output box. The
      *      sequential order of the boxes corresponds with output0.
      * * 3: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
-     *      [num_rois], specifying the batch index of each box. Boxes with
-     *      the same batch index are grouped together.
+     *      [num_output_rois], specifying the batch index of each box. Boxes
+     *      with the same batch index are grouped together.
      *
      * Available since API level 29.
      */
@@ -2937,8 +3046,8 @@
      *      For type of {@link OperandType::TENSOR_QUANT16_ASYMM}, the
      *      scale must be 0.125 and the zero point must be 0.
      * * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
-     *      [num_rois], specifying the batch index of each box. Boxes with
-     *      the same batch index are grouped together.
+     *      [num_output_rois], specifying the batch index of each box. Boxes
+     *      with the same batch index are grouped together.
      *
      * Available since API level 29.
      */
@@ -3122,11 +3231,7 @@
      *
      * Outputs:
      * * 0: The output 4-D tensor, of shape
-     *      [batches, out_height, out_width, depth_out]. For output tensor of
-     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
-     *      must be satisfied: output_scale > input_scale * filter_scale (for
-     *      filter tensor of type {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
-     *      this condition must be true for all filter scales).
+     *      [batches, out_height, out_width, depth_out].
      *
      * Available since API level 29.
      */
@@ -3608,7 +3713,7 @@
      * Supported tensor rank: from 1
      *
      * Inputs:
-     * * 0: A tensor.
+     * * 0: A tensor, may be zero-sized.
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0, but with
@@ -3940,10 +4045,12 @@
      *      the regions of interest, each line with format [x1, y1, x2, y2].
      *      For input0 of type {@link OperandType::TENSOR_QUANT8_ASYMM},
      *      this tensor should be of {@link OperandType::TENSOR_QUANT16_ASYMM},
-     *      with zeroPoint of 0 and scale of 0.125.
+     *      with zeroPoint of 0 and scale of 0.125. Zero num_rois is
+     *      supported for this tensor.
      * * 2: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
      *      [num_rois], specifying the batch index of each box. Boxes with
-     *      the same batch index are grouped together.
+     *      the same batch index are grouped together. Zero num_rois is
+     *      supported for this tensor.
      * * 3: An {@link OperandType::INT32} scalar, specifying the output
      *      height of the output tensor.
      * * 4: An {@link OperandType::INT32} scalar, specifying the output
@@ -4108,7 +4215,7 @@
      * Supported tensor rank: from 1
      *
      * Inputs:
-     * * 0: An n-D tensor to take slice from.
+     * * 0: An n-D tensor to take slice from, may be zero-sized.
      * * 1: A 1-D tensor of type {@link OperandType::TENSOR_INT32} specifying
      *      the beginning indices of the slice in each dimension.
      * * 2: A 1-D tensor of type {@link OperandType::TENSOR_INT32} specifying
@@ -4331,11 +4438,7 @@
      *
      * Outputs:
      * * 0: The output 4-D tensor, of shape
-     *      [batches, out_height, out_width, depth_out]. For output tensor of
-     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
-     *      must be satisfied: output_scale > input_scale * filter_scale (for
-     *      filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
-     *      this condition must be true for all filter scales).
+     *      [batches, out_height, out_width, depth_out].
      *
      * Available since API level 29.
      */
@@ -4367,9 +4470,9 @@
      * Inputs:
      * * 0: The input (\f$x_t\f$).
      *      A 3-D tensor of shape:
-     *        If time-major: [max_time, batch_size, output_size]
-     *        If batch-major: [batch_size, max_time, output_size]
-     *      where “max_size” is the number of timesteps (sequence length),
+     *        If time-major: [max_time, batch_size, input_size]
+     *        If batch-major: [batch_size, max_time, input_size]
+     *      where “max_time” is the number of timesteps (sequence length),
      *      “batch_size” corresponds to the batching dimension, and
      *      “input_size” is the size of the input.
      * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
@@ -4429,16 +4532,16 @@
      *      projection layer, such that values are bound within
      *      [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
      * * 23:Time-major if true, batch-major if false.
-     * * 24:The input layer normalization weights.
+     * * 24:The input layer normalization weights. Optional.
      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
      *      to activation at input gate.
-     * * 25:The forget layer normalization weights.
+     * * 25:The forget layer normalization weights. Optional.
      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
      *      to activation at forget gate.
-     * * 26:The cell layer normalization weights.
+     * * 26:The cell layer normalization weights. Optional.
      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
      *      to activation at cell gate.
-     * * 27:The output layer normalization weights.
+     * * 27:The output layer normalization weights. Optional.
      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
      *      to activation at output gate.
      *
@@ -4526,9 +4629,11 @@
      * [batch, height, width, channels]. Alternatively, the data layout could
      * be NCHW, the data storage order of: [batch, channels, height, width].
      *
-     * Inputs:
+     * Both resizing by shape and resizing by scale are supported.
+     *
+     * Inputs (resizing by shape):
      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
-     *      the input.
+     *      the input. Zero batches is supported for this tensor.
      * * 1: An {@link OperandType::INT32} scalar, specifying the output
      *      height of the output tensor.
      * * 2: An {@link OperandType::INT32} scalar, specifying the output
@@ -4536,6 +4641,24 @@
      * * 3: An {@link OperandType::BOOL} scalar, default to false.
      *      Set to true to specify NCHW data layout for input0 and output0.
      *
+     * Inputs (resizing by scale):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input. Zero batches is supported for this tensor.
+     * * 1: A scalar, specifying height_scale, the scaling factor of the height
+     *      dimension from the input tensor to the output tensor. The output
+     *      height is calculated as new_height = floor(height * height_scale).
+     *      The scalar must be of {@link OperandType::FLOAT16} if input0 is
+     *      of {@link OperandType::TENSOR_FLOAT16} and of
+     *      {@link OperandType::FLOAT32} otherwise.
+     * * 2: A scalar, specifying width_scale, the scaling factor of the width
+     *      dimension from the input tensor to the output tensor. The output
+     *      width is calculated as new_width = floor(width * width_scale).
+     *      The scalar must be of {@link OperandType::FLOAT16} if input0 is
+     *      of {@link OperandType::TENSOR_FLOAT16} and of
+     *      {@link OperandType::FLOAT32} otherwise.
+     * * 3: An {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *
      * Outputs:
      * * 0: The output 4-D tensor, of shape
      *      [batches, new_height, new_width, depth].
@@ -4593,6 +4716,39 @@
 };
 
 /**
+ * The capabilities of a driver.
+ *
+ * Performance of an operation comes from the type of its first operand.
+ * This represents performance for non extension operand types.
+ */
+struct Capabilities {
+    /**
+     * Driver performance when operating on float32 data but performing
+     * calculations with range and/or precision as low as that of the IEEE
+     * 754 16-bit floating-point format.
+     */
+    PerformanceInfo relaxedFloat32toFloat16PerformanceScalar;
+    PerformanceInfo relaxedFloat32toFloat16PerformanceTensor;
+
+    /**
+     * Driver performance when operating on a particular data type.
+     * In the case of float32 data, this is used when the calculations
+     * are not relaxed.
+     */
+    struct OperandPerformance {
+        OperandType type;
+        PerformanceInfo info;
+    };
+
+    /**
+     * Performance by operand type. Must be sorted by OperandType.
+     * If a particular OperandType is not present in operandPerformance,
+     * its performance is treated as { .execTime = FLT_MAX, .powerUsage = FLT_MAX }.
+     */
+    vec<OperandPerformance> operandPerformance;
+};
+
+/**
  * Describes one operation of the model's graph.
  */
 struct Operation {
diff --git a/neuralnetworks/1.2/vts/functional/BasicTests.cpp b/neuralnetworks/1.2/vts/functional/BasicTests.cpp
index 365a750..5c269df 100644
--- a/neuralnetworks/1.2/vts/functional/BasicTests.cpp
+++ b/neuralnetworks/1.2/vts/functional/BasicTests.cpp
@@ -25,7 +25,7 @@
 namespace vts {
 namespace functional {
 
-using V1_1::Capabilities;
+using V1_0::PerformanceInfo;
 
 // create device test
 TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
@@ -37,6 +37,31 @@
     EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
 }
 
+// initialization
+TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
+    using OperandPerformance = Capabilities::OperandPerformance;
+    Return<void> ret = device->getCapabilities_1_2([](ErrorStatus status,
+                                                      const Capabilities& capabilities) {
+        EXPECT_EQ(ErrorStatus::NONE, status);
+
+        auto isPositive = [](const PerformanceInfo& perf) {
+            return perf.execTime > 0.0f && perf.powerUsage > 0.0f;
+        };
+
+        EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceScalar));
+        EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceTensor));
+        const auto& opPerf = capabilities.operandPerformance;
+        EXPECT_TRUE(std::all_of(
+                opPerf.begin(), opPerf.end(),
+                [isPositive](const OperandPerformance& a) { return isPositive(a.info); }));
+        EXPECT_TRUE(std::is_sorted(opPerf.begin(), opPerf.end(),
+                                   [](const OperandPerformance& a, const OperandPerformance& b) {
+                                       return a.type < b.type;
+                                   }));
+    });
+    EXPECT_TRUE(ret.isOk());
+}
+
 // device version test
 TEST_F(NeuralnetworksHidlTest, GetDeviceVersionStringTest) {
     Return<void> ret = device->getVersionString([](ErrorStatus status, const hidl_string& version) {
@@ -77,10 +102,15 @@
     EXPECT_TRUE(ret.isOk());
 }
 
-// isCachingSupported test
-TEST_F(NeuralnetworksHidlTest, IsCachingSupported) {
-    Return<void> ret = device->isCachingSupported(
-            [](ErrorStatus status, bool) { EXPECT_EQ(ErrorStatus::NONE, status); });
+// getNumberOfCacheFilesNeeded test
+TEST_F(NeuralnetworksHidlTest, getNumberOfCacheFilesNeeded) {
+    Return<void> ret = device->getNumberOfCacheFilesNeeded(
+            [](ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache) {
+                EXPECT_EQ(ErrorStatus::NONE, status);
+                EXPECT_LE(numModelCache,
+                          static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES));
+                EXPECT_LE(numDataCache, static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES));
+            });
     EXPECT_TRUE(ret.isOk());
 }
 }  // namespace functional
diff --git a/neuralnetworks/1.2/vts/functional/CompilationCachingTests.cpp b/neuralnetworks/1.2/vts/functional/CompilationCachingTests.cpp
index 00989e5..167fc09 100644
--- a/neuralnetworks/1.2/vts/functional/CompilationCachingTests.cpp
+++ b/neuralnetworks/1.2/vts/functional/CompilationCachingTests.cpp
@@ -54,29 +54,39 @@
 [[maybe_unused]] auto dummy_createTestModel = createTestModel_dynamic_output_shape;
 [[maybe_unused]] auto dummy_get_examples = get_examples_dynamic_output_shape;
 
-enum class AccessMode { READ_ONLY, WRITE_ONLY };
+enum class AccessMode { READ_WRITE, READ_ONLY, WRITE_ONLY };
 
-void createCacheHandle(const std::vector<std::string>& files, AccessMode mode,
-                       hidl_handle* handle) {
-    std::vector<int> fds;
-    for (const auto& file : files) {
-        int fd;
-        if (mode == AccessMode::READ_ONLY) {
-            fd = open(file.c_str(), O_RDONLY);
-        } else if (mode == AccessMode::WRITE_ONLY) {
-            fd = open(file.c_str(), O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR);
-        } else {
-            FAIL();
+// Creates cache handles based on provided file groups.
+// The outer vector corresponds to handles and the inner vector is for fds held by each handle.
+void createCacheHandles(const std::vector<std::vector<std::string>>& fileGroups,
+                        const std::vector<AccessMode>& mode, hidl_vec<hidl_handle>* handles) {
+    handles->resize(fileGroups.size());
+    for (uint32_t i = 0; i < fileGroups.size(); i++) {
+        std::vector<int> fds;
+        for (const auto& file : fileGroups[i]) {
+            int fd;
+            if (mode[i] == AccessMode::READ_ONLY) {
+                fd = open(file.c_str(), O_RDONLY);
+            } else if (mode[i] == AccessMode::WRITE_ONLY) {
+                fd = open(file.c_str(), O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
+            } else if (mode[i] == AccessMode::READ_WRITE) {
+                fd = open(file.c_str(), O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
+            } else {
+                FAIL();
+            }
+            ASSERT_GE(fd, 0);
+            fds.push_back(fd);
         }
-        ASSERT_GE(fd, 0);
-        fds.push_back(fd);
+        native_handle_t* cacheNativeHandle = native_handle_create(fds.size(), 0);
+        ASSERT_NE(cacheNativeHandle, nullptr);
+        std::copy(fds.begin(), fds.end(), &cacheNativeHandle->data[0]);
+        (*handles)[i].setTo(cacheNativeHandle, /*shouldOwn=*/true);
     }
-    native_handle_t* cacheNativeHandle = native_handle_create(fds.size(), 0);
-    ASSERT_NE(cacheNativeHandle, nullptr);
-    for (uint32_t i = 0; i < fds.size(); i++) {
-        cacheNativeHandle->data[i] = fds[i];
-    }
-    handle->setTo(cacheNativeHandle, /*shouldOwn=*/true);
+}
+
+void createCacheHandles(const std::vector<std::vector<std::string>>& fileGroups, AccessMode mode,
+                        hidl_vec<hidl_handle>* handles) {
+    createCacheHandles(fileGroups, std::vector<AccessMode>(fileGroups.size(), mode), handles);
 }
 
 }  // namespace
@@ -88,38 +98,43 @@
         NeuralnetworksHidlTest::SetUp();
         ASSERT_NE(device.get(), nullptr);
 
-        // Create cache directory. The cache directory and cache files are always created to test
-        // the behavior of prepareModelFromCache, even when caching is not supported.
+        // Create cache directory. The cache directory and a temporary cache file is always created
+        // to test the behavior of prepareModelFromCache, even when caching is not supported.
         char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX";
         char* cacheDir = mkdtemp(cacheDirTemp);
         ASSERT_NE(cacheDir, nullptr);
         mCacheDir = cacheDir;
+        mCacheDir.push_back('/');
 
-        // Create empty cache files.
-        mCache1 = mCacheDir + "/cache1";
-        mCache2 = mCacheDir + "/cache2";
-        mCache3 = mCacheDir + "/cache3";
-        // A dummy handle, use AccessMode::WRITE_ONLY for createCacheHandle to create files.
-        hidl_handle handle;
-        createCacheHandle({mCache1, mCache2, mCache3}, AccessMode::WRITE_ONLY, &handle);
-
-        // Check if caching is supported.
-        bool isCachingSupported;
-        Return<void> ret = device->isCachingSupported(
-                [&isCachingSupported](ErrorStatus status, bool supported) {
+        Return<void> ret = device->getNumberOfCacheFilesNeeded(
+                [this](ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache) {
                     EXPECT_EQ(ErrorStatus::NONE, status);
-                    isCachingSupported = supported;
+                    mNumModelCache = numModelCache;
+                    mNumDataCache = numDataCache;
                 });
         EXPECT_TRUE(ret.isOk());
-        if (isCachingSupported) {
-            mIsCachingSupported = true;
-        } else {
+        mIsCachingSupported = mNumModelCache > 0 || mNumDataCache > 0;
+
+        // Create empty cache files.
+        mTmpCache = mCacheDir + "tmp";
+        for (uint32_t i = 0; i < mNumModelCache; i++) {
+            mModelCache.push_back({mCacheDir + "model" + std::to_string(i)});
+        }
+        for (uint32_t i = 0; i < mNumDataCache; i++) {
+            mDataCache.push_back({mCacheDir + "data" + std::to_string(i)});
+        }
+        // Dummy handles, use AccessMode::WRITE_ONLY for createCacheHandles to create files.
+        hidl_vec<hidl_handle> modelHandle, dataHandle, tmpHandle;
+        createCacheHandles(mModelCache, AccessMode::WRITE_ONLY, &modelHandle);
+        createCacheHandles(mDataCache, AccessMode::WRITE_ONLY, &dataHandle);
+        createCacheHandles({{mTmpCache}}, AccessMode::WRITE_ONLY, &tmpHandle);
+
+        if (!mIsCachingSupported) {
             LOG(INFO) << "NN VTS: Early termination of test because vendor service does not "
                          "support compilation caching.";
             std::cout << "[          ]   Early termination of test because vendor service does not "
                          "support compilation caching."
                       << std::endl;
-            mIsCachingSupported = false;
         }
     }
 
@@ -127,22 +142,49 @@
         // The tmp directory is only removed when the driver reports caching not supported,
         // otherwise it is kept for debugging purpose.
         if (!mIsCachingSupported) {
-            remove(mCache1.c_str());
-            remove(mCache2.c_str());
-            remove(mCache3.c_str());
+            remove(mTmpCache.c_str());
             rmdir(mCacheDir.c_str());
         }
         NeuralnetworksHidlTest::TearDown();
     }
 
-    void saveModelToCache(sp<IPreparedModel> preparedModel, const hidl_handle& cache1,
-                          const hidl_handle& cache2, ErrorStatus* status) {
-        // Save IPreparedModel to cache.
+    void saveModelToCache(const V1_2::Model& model, const hidl_vec<hidl_handle>& modelCache,
+                          const hidl_vec<hidl_handle>& dataCache, bool* supported,
+                          sp<IPreparedModel>* preparedModel = nullptr) {
+        if (preparedModel != nullptr) *preparedModel = nullptr;
+
+        // See if service can handle model.
+        bool fullySupportsModel = false;
+        Return<void> supportedCall = device->getSupportedOperations_1_2(
+                model,
+                [&fullySupportsModel, &model](ErrorStatus status, const hidl_vec<bool>& supported) {
+                    ASSERT_EQ(ErrorStatus::NONE, status);
+                    ASSERT_EQ(supported.size(), model.operations.size());
+                    fullySupportsModel = std::all_of(supported.begin(), supported.end(),
+                                                     [](bool valid) { return valid; });
+                });
+        ASSERT_TRUE(supportedCall.isOk());
+        *supported = fullySupportsModel;
+        if (!fullySupportsModel) return;
+
+        // Launch prepare model.
+        sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+        ASSERT_NE(nullptr, preparedModelCallback.get());
         hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
-        Return<ErrorStatus> saveToCacheStatus =
-                preparedModel->saveToCache(cache1, cache2, cacheToken);
-        ASSERT_TRUE(saveToCacheStatus.isOk());
-        *status = static_cast<ErrorStatus>(saveToCacheStatus);
+        Return<ErrorStatus> prepareLaunchStatus =
+                device->prepareModel_1_2(model, ExecutionPreference::FAST_SINGLE_ANSWER, modelCache,
+                                         dataCache, cacheToken, preparedModelCallback);
+        ASSERT_TRUE(prepareLaunchStatus.isOk());
+        ASSERT_EQ(static_cast<ErrorStatus>(prepareLaunchStatus), ErrorStatus::NONE);
+
+        // Retrieve prepared model.
+        preparedModelCallback->wait();
+        ASSERT_EQ(preparedModelCallback->getStatus(), ErrorStatus::NONE);
+        if (preparedModel != nullptr) {
+            *preparedModel =
+                    V1_2::IPreparedModel::castFrom(preparedModelCallback->getPreparedModel())
+                            .withDefault(nullptr);
+        }
     }
 
     bool checkEarlyTermination(ErrorStatus status) {
@@ -157,14 +199,27 @@
         return false;
     }
 
-    void prepareModelFromCache(const hidl_handle& cache1, const hidl_handle& cache2,
+    bool checkEarlyTermination(bool supported) {
+        if (!supported) {
+            LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
+                         "prepare model that it does not support.";
+            std::cout << "[          ]   Early termination of test because vendor service cannot "
+                         "prepare model that it does not support."
+                      << std::endl;
+            return true;
+        }
+        return false;
+    }
+
+    void prepareModelFromCache(const hidl_vec<hidl_handle>& modelCache,
+                               const hidl_vec<hidl_handle>& dataCache,
                                sp<IPreparedModel>* preparedModel, ErrorStatus* status) {
         // Launch prepare model from cache.
         sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
         ASSERT_NE(nullptr, preparedModelCallback.get());
         hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
-        Return<ErrorStatus> prepareLaunchStatus =
-                device->prepareModelFromCache(cache1, cache2, cacheToken, preparedModelCallback);
+        Return<ErrorStatus> prepareLaunchStatus = device->prepareModelFromCache(
+                modelCache, dataCache, cacheToken, preparedModelCallback);
         ASSERT_TRUE(prepareLaunchStatus.isOk());
         if (static_cast<ErrorStatus>(prepareLaunchStatus) != ErrorStatus::NONE) {
             *preparedModel = nullptr;
@@ -179,49 +234,54 @@
                                  .withDefault(nullptr);
     }
 
+    // Absolute path to the temporary cache directory.
     std::string mCacheDir;
-    std::string mCache1;
-    std::string mCache2;
-    std::string mCache3;
+
+    // Groups of file paths for model and data cache in the tmp cache directory, initialized with
+    // outer_size = mNum{Model|Data}Cache, inner_size = 1. The outer vector corresponds to handles
+    // and the inner vector is for fds held by each handle.
+    std::vector<std::vector<std::string>> mModelCache;
+    std::vector<std::vector<std::string>> mDataCache;
+
+    // A separate temporary file path in the tmp cache directory.
+    std::string mTmpCache;
+
     uint8_t mToken[static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)] = {};
-    bool mIsCachingSupported;
+    uint32_t mNumModelCache;
+    uint32_t mNumDataCache;
+    uint32_t mIsCachingSupported;
 };
 
 TEST_F(CompilationCachingTest, CacheSavingAndRetrieval) {
     // Create test HIDL model and compile.
     Model testModel = createTestModel();
     sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
 
     // Save the compilation to cache.
     {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        if (!mIsCachingSupported) {
-            EXPECT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        } else {
-            if (checkEarlyTermination(status)) return;
-            ASSERT_EQ(status, ErrorStatus::NONE);
-        }
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        saveModelToCache(testModel, modelCache, dataCache, &supported);
+        if (checkEarlyTermination(supported)) return;
     }
 
     // Retrieve preparedModel from cache.
     {
         preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::READ_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::READ_ONLY, &cache2);
-        prepareModelFromCache(cache1, cache2, &preparedModel, &status);
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
         if (!mIsCachingSupported) {
             ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
             ASSERT_EQ(preparedModel, nullptr);
             return;
+        } else if (checkEarlyTermination(status)) {
+            ASSERT_EQ(preparedModel, nullptr);
+            return;
         } else {
             ASSERT_EQ(status, ErrorStatus::NONE);
             ASSERT_NE(preparedModel, nullptr);
@@ -238,41 +298,54 @@
     // Create test HIDL model and compile.
     Model testModel = createTestModel();
     sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
 
     // Save the compilation to cache.
     {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        if (!mIsCachingSupported) {
-            EXPECT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        } else {
-            if (checkEarlyTermination(status)) return;
-            ASSERT_EQ(status, ErrorStatus::NONE);
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        uint8_t dummyBytes[] = {0, 0};
+        // Write a dummy integer to the cache.
+        // The driver should be able to handle non-empty cache and non-zero fd offset.
+        for (uint32_t i = 0; i < modelCache.size(); i++) {
+            ASSERT_EQ(write(modelCache[i].getNativeHandle()->data[0], &dummyBytes,
+                            sizeof(dummyBytes)),
+                      sizeof(dummyBytes));
         }
+        for (uint32_t i = 0; i < dataCache.size(); i++) {
+            ASSERT_EQ(
+                    write(dataCache[i].getNativeHandle()->data[0], &dummyBytes, sizeof(dummyBytes)),
+                    sizeof(dummyBytes));
+        }
+        saveModelToCache(testModel, modelCache, dataCache, &supported);
+        if (checkEarlyTermination(supported)) return;
     }
 
     // Retrieve preparedModel from cache.
     {
         preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::READ_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::READ_ONLY, &cache2);
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
         uint8_t dummyByte = 0;
-        // Advance offset by one byte.
-        ASSERT_GE(read(cache1.getNativeHandle()->data[0], &dummyByte, 1), 0);
-        ASSERT_GE(read(cache2.getNativeHandle()->data[0], &dummyByte, 1), 0);
-        prepareModelFromCache(cache1, cache2, &preparedModel, &status);
+        // Advance the offset of each handle by one byte.
+        // The driver should be able to handle non-zero fd offset.
+        for (uint32_t i = 0; i < modelCache.size(); i++) {
+            ASSERT_GE(read(modelCache[i].getNativeHandle()->data[0], &dummyByte, 1), 0);
+        }
+        for (uint32_t i = 0; i < dataCache.size(); i++) {
+            ASSERT_GE(read(dataCache[i].getNativeHandle()->data[0], &dummyByte, 1), 0);
+        }
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
         if (!mIsCachingSupported) {
             ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
             ASSERT_EQ(preparedModel, nullptr);
             return;
+        } else if (checkEarlyTermination(status)) {
+            ASSERT_EQ(preparedModel, nullptr);
+            return;
         } else {
             ASSERT_EQ(status, ErrorStatus::NONE);
             ASSERT_NE(preparedModel, nullptr);
@@ -285,234 +358,512 @@
                                            /*testDynamicOutputShape=*/false);
 }
 
+TEST_F(CompilationCachingTest, SaveToCacheInvalidNumCache) {
+    // Create test HIDL model and compile.
+    Model testModel = createTestModel();
+
+    // Test with number of model cache files greater than mNumModelCache.
+    {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        // Pass an additional cache file for model cache.
+        mModelCache.push_back({mTmpCache});
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mModelCache.pop_back();
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
+        ErrorStatus status;
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Test with number of model cache files smaller than mNumModelCache.
+    if (mModelCache.size() > 0) {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        // Pop out the last cache file.
+        auto tmp = mModelCache.back();
+        mModelCache.pop_back();
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mModelCache.push_back(tmp);
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
+        ErrorStatus status;
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Test with number of data cache files greater than mNumDataCache.
+    {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        // Pass an additional cache file for data cache.
+        mDataCache.push_back({mTmpCache});
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mDataCache.pop_back();
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
+        ErrorStatus status;
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Test with number of data cache files smaller than mNumDataCache.
+    if (mDataCache.size() > 0) {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        // Pop out the last cache file.
+        auto tmp = mDataCache.back();
+        mDataCache.pop_back();
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mDataCache.push_back(tmp);
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
+        ErrorStatus status;
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+}
+
+TEST_F(CompilationCachingTest, PrepareModelFromCacheInvalidNumCache) {
+    // Create test HIDL model and compile.
+    Model testModel = createTestModel();
+
+    // Save the compilation to cache.
+    {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        saveModelToCache(testModel, modelCache, dataCache, &supported);
+        if (checkEarlyTermination(supported)) return;
+    }
+
+    // Test with number of model cache files greater than mNumModelCache.
+    {
+        sp<IPreparedModel> preparedModel = nullptr;
+        ErrorStatus status;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        mModelCache.push_back({mTmpCache});
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mModelCache.pop_back();
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::GENERAL_FAILURE) {
+            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Test with number of model cache files smaller than mNumModelCache.
+    if (mModelCache.size() > 0) {
+        sp<IPreparedModel> preparedModel = nullptr;
+        ErrorStatus status;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        auto tmp = mModelCache.back();
+        mModelCache.pop_back();
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mModelCache.push_back(tmp);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::GENERAL_FAILURE) {
+            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Test with number of data cache files greater than mNumDataCache.
+    {
+        sp<IPreparedModel> preparedModel = nullptr;
+        ErrorStatus status;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        mDataCache.push_back({mTmpCache});
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mDataCache.pop_back();
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::GENERAL_FAILURE) {
+            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Test with number of data cache files smaller than mNumDataCache.
+    if (mDataCache.size() > 0) {
+        sp<IPreparedModel> preparedModel = nullptr;
+        ErrorStatus status;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        auto tmp = mDataCache.back();
+        mDataCache.pop_back();
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mDataCache.push_back(tmp);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::GENERAL_FAILURE) {
+            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+}
+
 TEST_F(CompilationCachingTest, SaveToCacheInvalidNumFd) {
     // Create test HIDL model and compile.
     Model testModel = createTestModel();
-    sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
 
-    // cache1 with invalid NumFd.
-    {
+    // Go through each handle in model cache, test with NumFd greater than 1.
+    for (uint32_t i = 0; i < mNumModelCache; i++) {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        // Pass an invalid number of fds for handle i.
+        mModelCache[i].push_back(mTmpCache);
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mModelCache[i].pop_back();
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1, mCache3}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
         }
+        ASSERT_EQ(preparedModel, nullptr);
     }
 
-    // cache2 with invalid NumFd.
-    {
+    // Go through each handle in model cache, test with NumFd equal to 0.
+    for (uint32_t i = 0; i < mNumModelCache; i++) {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        // Pass an invalid number of fds for handle i.
+        auto tmp = mModelCache[i].back();
+        mModelCache[i].pop_back();
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mModelCache[i].push_back(tmp);
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2, mCache3}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
         }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Go through each handle in data cache, test with NumFd greater than 1.
+    for (uint32_t i = 0; i < mNumDataCache; i++) {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        // Pass an invalid number of fds for handle i.
+        mDataCache[i].push_back(mTmpCache);
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mDataCache[i].pop_back();
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
+        ErrorStatus status;
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Go through each handle in data cache, test with NumFd equal to 0.
+    for (uint32_t i = 0; i < mNumDataCache; i++) {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        // Pass an invalid number of fds for handle i.
+        auto tmp = mDataCache[i].back();
+        mDataCache[i].pop_back();
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mDataCache[i].push_back(tmp);
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
+        ErrorStatus status;
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
     }
 }
 
 TEST_F(CompilationCachingTest, PrepareModelFromCacheInvalidNumFd) {
     // Create test HIDL model and compile.
     Model testModel = createTestModel();
-    sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
 
     // Save the compilation to cache.
     {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::NONE);
-        }
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        saveModelToCache(testModel, modelCache, dataCache, &supported);
+        if (checkEarlyTermination(supported)) return;
     }
 
-    // cache1 with invalid NumFd.
-    {
-        preparedModel = nullptr;
+    // Go through each handle in model cache, test with NumFd greater than 1.
+    for (uint32_t i = 0; i < mNumModelCache; i++) {
+        sp<IPreparedModel> preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1, mCache3}, AccessMode::READ_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::READ_ONLY, &cache2);
-        prepareModelFromCache(cache1, cache2, &preparedModel, &status);
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        mModelCache[i].push_back(mTmpCache);
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mModelCache[i].pop_back();
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
         if (status != ErrorStatus::GENERAL_FAILURE) {
             ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-            ASSERT_EQ(preparedModel, nullptr);
         }
+        ASSERT_EQ(preparedModel, nullptr);
     }
 
-    // cache2 with invalid NumFd.
-    {
-        preparedModel = nullptr;
+    // Go through each handle in model cache, test with NumFd equal to 0.
+    for (uint32_t i = 0; i < mNumModelCache; i++) {
+        sp<IPreparedModel> preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::READ_ONLY, &cache1);
-        createCacheHandle({mCache2, mCache3}, AccessMode::READ_ONLY, &cache2);
-        prepareModelFromCache(cache1, cache2, &preparedModel, &status);
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        auto tmp = mModelCache[i].back();
+        mModelCache[i].pop_back();
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mModelCache[i].push_back(tmp);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
         if (status != ErrorStatus::GENERAL_FAILURE) {
             ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
-            ASSERT_EQ(preparedModel, nullptr);
         }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Go through each handle in data cache, test with NumFd greater than 1.
+    for (uint32_t i = 0; i < mNumDataCache; i++) {
+        sp<IPreparedModel> preparedModel = nullptr;
+        ErrorStatus status;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        mDataCache[i].push_back(mTmpCache);
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mDataCache[i].pop_back();
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::GENERAL_FAILURE) {
+            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
+    }
+
+    // Go through each handle in data cache, test with NumFd equal to 0.
+    for (uint32_t i = 0; i < mNumDataCache; i++) {
+        sp<IPreparedModel> preparedModel = nullptr;
+        ErrorStatus status;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        auto tmp = mDataCache[i].back();
+        mDataCache[i].pop_back();
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        mDataCache[i].push_back(tmp);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::GENERAL_FAILURE) {
+            ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
     }
 }
 
 TEST_F(CompilationCachingTest, SaveToCacheInvalidAccessMode) {
     // Create test HIDL model and compile.
     Model testModel = createTestModel();
-    sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
+    std::vector<AccessMode> modelCacheMode(mNumModelCache, AccessMode::READ_WRITE);
+    std::vector<AccessMode> dataCacheMode(mNumDataCache, AccessMode::READ_WRITE);
 
-    // cache1 with invalid access mode.
-    {
+    // Go through each handle in model cache, test with invalid access mode.
+    for (uint32_t i = 0; i < mNumModelCache; i++) {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        modelCacheMode[i] = AccessMode::READ_ONLY;
+        createCacheHandles(mModelCache, modelCacheMode, &modelCache);
+        createCacheHandles(mDataCache, dataCacheMode, &dataCache);
+        modelCacheMode[i] = AccessMode::READ_WRITE;
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::READ_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
     }
 
-    // cache2 with invalid access mode.
-    {
+    // Go through each handle in data cache, test with invalid access mode.
+    for (uint32_t i = 0; i < mNumDataCache; i++) {
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        dataCacheMode[i] = AccessMode::READ_ONLY;
+        createCacheHandles(mModelCache, modelCacheMode, &modelCache);
+        createCacheHandles(mDataCache, dataCacheMode, &dataCache);
+        dataCacheMode[i] = AccessMode::READ_WRITE;
+        sp<IPreparedModel> preparedModel = nullptr;
+        saveModelToCache(testModel, modelCache, dataCache, &supported, &preparedModel);
+        if (checkEarlyTermination(supported)) return;
+        ASSERT_NE(preparedModel, nullptr);
+        // Execute and verify results.
+        generated_tests::EvaluatePreparedModel(preparedModel, [](int) { return false; },
+                                               get_examples(),
+                                               testModel.relaxComputationFloat32toFloat16,
+                                               /*testDynamicOutputShape=*/false);
+        // Check if prepareModelFromCache fails.
+        preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::READ_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+        if (status != ErrorStatus::INVALID_ARGUMENT) {
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+        }
+        ASSERT_EQ(preparedModel, nullptr);
     }
 }
 
 TEST_F(CompilationCachingTest, PrepareModelFromCacheInvalidAccessMode) {
     // Create test HIDL model and compile.
     Model testModel = createTestModel();
-    sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
+    std::vector<AccessMode> modelCacheMode(mNumModelCache, AccessMode::READ_WRITE);
+    std::vector<AccessMode> dataCacheMode(mNumDataCache, AccessMode::READ_WRITE);
 
     // Save the compilation to cache.
     {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        if (status != ErrorStatus::GENERAL_FAILURE) {
-            ASSERT_EQ(status, ErrorStatus::NONE);
-        }
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        saveModelToCache(testModel, modelCache, dataCache, &supported);
+        if (checkEarlyTermination(supported)) return;
     }
 
-    // cache1 with invalid access mode.
-    {
-        preparedModel = nullptr;
+    // Go through each handle in model cache, test with invalid access mode.
+    for (uint32_t i = 0; i < mNumModelCache; i++) {
+        sp<IPreparedModel> preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::READ_ONLY, &cache2);
-        prepareModelFromCache(cache1, cache2, &preparedModel, &status);
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        modelCacheMode[i] = AccessMode::WRITE_ONLY;
+        createCacheHandles(mModelCache, modelCacheMode, &modelCache);
+        createCacheHandles(mDataCache, dataCacheMode, &dataCache);
+        modelCacheMode[i] = AccessMode::READ_WRITE;
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
         ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
         ASSERT_EQ(preparedModel, nullptr);
     }
 
-    // cache2 with invalid access mode.
-    {
-        preparedModel = nullptr;
+    // Go through each handle in data cache, test with invalid access mode.
+    for (uint32_t i = 0; i < mNumDataCache; i++) {
+        sp<IPreparedModel> preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::READ_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        prepareModelFromCache(cache1, cache2, &preparedModel, &status);
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        dataCacheMode[i] = AccessMode::WRITE_ONLY;
+        createCacheHandles(mModelCache, modelCacheMode, &modelCache);
+        createCacheHandles(mDataCache, dataCacheMode, &dataCache);
+        dataCacheMode[i] = AccessMode::READ_WRITE;
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
         ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
         ASSERT_EQ(preparedModel, nullptr);
     }
 }
 
-TEST_F(CompilationCachingTest, SaveToCacheInvalidOffset) {
-    // Create test HIDL model and compile.
-    Model testModel = createTestModel();
-    sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
-
-    // cache1 with invalid file descriptor offset.
-    {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        uint8_t dummyByte = 0;
-        // Advance offset by one byte.
-        ASSERT_EQ(write(cache1.getNativeHandle()->data[0], &dummyByte, 1), 1);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-    }
-
-    // cache2 with invalid file descriptor offset.
-    {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        uint8_t dummyByte = 0;
-        // Advance offset by one byte.
-        ASSERT_EQ(write(cache2.getNativeHandle()->data[0], &dummyByte, 1), 1);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-    }
-}
-
-TEST_F(CompilationCachingTest, SaveToCacheInvalidFileSize) {
-    // Create test HIDL model and compile.
-    Model testModel = createTestModel();
-    sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
-
-    // cache1 with invalid file size.
-    {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        uint8_t dummyByte = 0;
-        // Write one byte and seek back to the beginning.
-        ASSERT_EQ(write(cache1.getNativeHandle()->data[0], &dummyByte, 1), 1);
-        ASSERT_EQ(lseek(cache1.getNativeHandle()->data[0], 0, SEEK_SET), 0);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-    }
-
-    // cache2 with invalid file size.
-    {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        uint8_t dummyByte = 0;
-        // Write one byte and seek back to the beginning.
-        ASSERT_EQ(write(cache2.getNativeHandle()->data[0], &dummyByte, 1), 1);
-        ASSERT_EQ(lseek(cache2.getNativeHandle()->data[0], 0, SEEK_SET), 0);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-    }
-}
-
 class CompilationCachingSecurityTest : public CompilationCachingTest,
                                        public ::testing::WithParamInterface<uint32_t> {
   protected:
@@ -537,44 +888,44 @@
 
     // Create test HIDL model and compile.
     Model testModel = createTestModel();
-    sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
 
-    // Save the compilation to cache.
-    {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        if (checkEarlyTermination(status)) return;
-        ASSERT_EQ(status, ErrorStatus::NONE);
-    }
+    for (uint32_t i = 0; i < mNumModelCache; i++) {
+        // Save the compilation to cache.
+        {
+            bool supported;
+            hidl_vec<hidl_handle> modelCache, dataCache;
+            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+            saveModelToCache(testModel, modelCache, dataCache, &supported);
+            if (checkEarlyTermination(supported)) return;
+        }
 
-    // Randomly flip one single bit of the cache entry.
-    FILE* pFile = fopen(mCache1.c_str(), "r+");
-    ASSERT_EQ(fseek(pFile, 0, SEEK_END), 0);
-    long int fileSize = ftell(pFile);
-    ASSERT_GT(fileSize, 0);
-    ASSERT_EQ(fseek(pFile, getRandomInt(0l, fileSize - 1), SEEK_SET), 0);
-    int readByte = fgetc(pFile);
-    ASSERT_NE(readByte, EOF);
-    ASSERT_EQ(fseek(pFile, -1, SEEK_CUR), 0);
-    ASSERT_NE(fputc(static_cast<uint8_t>(readByte) ^ (1U << getRandomInt(0, 7)), pFile), EOF);
-    fclose(pFile);
+        // Randomly flip one single bit of the cache entry.
+        FILE* pFile = fopen(mModelCache[i][0].c_str(), "r+");
+        ASSERT_EQ(fseek(pFile, 0, SEEK_END), 0);
+        long int fileSize = ftell(pFile);
+        if (fileSize == 0) {
+            fclose(pFile);
+            continue;
+        }
+        ASSERT_EQ(fseek(pFile, getRandomInt(0l, fileSize - 1), SEEK_SET), 0);
+        int readByte = fgetc(pFile);
+        ASSERT_NE(readByte, EOF);
+        ASSERT_EQ(fseek(pFile, -1, SEEK_CUR), 0);
+        ASSERT_NE(fputc(static_cast<uint8_t>(readByte) ^ (1U << getRandomInt(0, 7)), pFile), EOF);
+        fclose(pFile);
 
-    // Retrieve preparedModel from cache, expect failure.
-    {
-        preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::READ_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::READ_ONLY, &cache2);
-        prepareModelFromCache(cache1, cache2, &preparedModel, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        ASSERT_EQ(preparedModel, nullptr);
+        // Retrieve preparedModel from cache, expect failure.
+        {
+            sp<IPreparedModel> preparedModel = nullptr;
+            ErrorStatus status;
+            hidl_vec<hidl_handle> modelCache, dataCache;
+            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+            prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+            ASSERT_EQ(preparedModel, nullptr);
+        }
     }
 }
 
@@ -583,40 +934,37 @@
 
     // Create test HIDL model and compile.
     Model testModel = createTestModel();
-    sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
 
-    // Save the compilation to cache.
-    {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        if (checkEarlyTermination(status)) return;
-        ASSERT_EQ(status, ErrorStatus::NONE);
-    }
+    for (uint32_t i = 0; i < mNumModelCache; i++) {
+        // Save the compilation to cache.
+        {
+            bool supported;
+            hidl_vec<hidl_handle> modelCache, dataCache;
+            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+            saveModelToCache(testModel, modelCache, dataCache, &supported);
+            if (checkEarlyTermination(supported)) return;
+        }
 
-    // Randomly append bytes to the cache entry.
-    FILE* pFile = fopen(mCache1.c_str(), "a");
-    uint32_t appendLength = getRandomInt(1, 256);
-    for (uint32_t i = 0; i < appendLength; i++) {
-        ASSERT_NE(fputc(getRandomInt<uint8_t>(0, 255), pFile), EOF);
-    }
-    fclose(pFile);
+        // Randomly append bytes to the cache entry.
+        FILE* pFile = fopen(mModelCache[i][0].c_str(), "a");
+        uint32_t appendLength = getRandomInt(1, 256);
+        for (uint32_t i = 0; i < appendLength; i++) {
+            ASSERT_NE(fputc(getRandomInt<uint8_t>(0, 255), pFile), EOF);
+        }
+        fclose(pFile);
 
-    // Retrieve preparedModel from cache, expect failure.
-    {
-        preparedModel = nullptr;
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::READ_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::READ_ONLY, &cache2);
-        prepareModelFromCache(cache1, cache2, &preparedModel, &status);
-        ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
-        ASSERT_EQ(preparedModel, nullptr);
+        // Retrieve preparedModel from cache, expect failure.
+        {
+            sp<IPreparedModel> preparedModel = nullptr;
+            ErrorStatus status;
+            hidl_vec<hidl_handle> modelCache, dataCache;
+            createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+            createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+            prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+            ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+            ASSERT_EQ(preparedModel, nullptr);
+        }
     }
 }
 
@@ -625,20 +973,15 @@
 
     // Create test HIDL model and compile.
     Model testModel = createTestModel();
-    sp<IPreparedModel> preparedModel = nullptr;
-    generated_tests::PrepareModel(device, testModel, &preparedModel);
-    // Terminate early if the driver cannot prepare the model.
-    if (preparedModel == nullptr) return;
 
     // Save the compilation to cache.
     {
-        ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::WRITE_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::WRITE_ONLY, &cache2);
-        saveModelToCache(preparedModel, cache1, cache2, &status);
-        if (checkEarlyTermination(status)) return;
-        ASSERT_EQ(status, ErrorStatus::NONE);
+        bool supported;
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        saveModelToCache(testModel, modelCache, dataCache, &supported);
+        if (checkEarlyTermination(supported)) return;
     }
 
     // Randomly flip one single bit in mToken.
@@ -647,12 +990,12 @@
 
     // Retrieve the preparedModel from cache, expect failure.
     {
-        preparedModel = nullptr;
+        sp<IPreparedModel> preparedModel = nullptr;
         ErrorStatus status;
-        hidl_handle cache1, cache2;
-        createCacheHandle({mCache1}, AccessMode::READ_ONLY, &cache1);
-        createCacheHandle({mCache2}, AccessMode::READ_ONLY, &cache2);
-        prepareModelFromCache(cache1, cache2, &preparedModel, &status);
+        hidl_vec<hidl_handle> modelCache, dataCache;
+        createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+        createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+        prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
         ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
         ASSERT_EQ(preparedModel, nullptr);
     }
diff --git a/neuralnetworks/1.2/vts/functional/ValidateModel.cpp b/neuralnetworks/1.2/vts/functional/ValidateModel.cpp
index 7f4d385..dc452e9 100644
--- a/neuralnetworks/1.2/vts/functional/ValidateModel.cpp
+++ b/neuralnetworks/1.2/vts/functional/ValidateModel.cpp
@@ -33,6 +33,7 @@
 
 using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
 using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
+using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
 
 ///////////////////////// UTILITY FUNCTIONS /////////////////////////
 
@@ -54,7 +55,8 @@
     sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
     ASSERT_NE(nullptr, preparedModelCallback.get());
     Return<ErrorStatus> prepareLaunchStatus =
-        device->prepareModel_1_2(model, preference, preparedModelCallback);
+            device->prepareModel_1_2(model, preference, hidl_vec<hidl_handle>(),
+                                     hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
     ASSERT_TRUE(prepareLaunchStatus.isOk());
     ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
 
@@ -388,8 +390,9 @@
             case OperationType::GROUPED_CONV_2D:
             case OperationType::DEPTHWISE_CONV_2D:
             case OperationType::CONV_2D: {
-                if (operand == 1 && (type == OperandType::TENSOR_QUANT8_ASYMM ||
-                                     type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
+                if (operand == operation.inputs[1] &&
+                    (type == OperandType::TENSOR_QUANT8_ASYMM ||
+                     type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
                     return true;
                 }
             } break;
diff --git a/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp b/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp
index d411da4..b15f657 100644
--- a/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp
+++ b/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp
@@ -37,6 +37,7 @@
 using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
 using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
 using ::android::hidl::memory::V1_0::IMemory;
+using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
 using test_helper::for_all;
 using test_helper::MixedTyped;
 using test_helper::MixedTypedExample;
@@ -66,7 +67,8 @@
     sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
     ASSERT_NE(nullptr, preparedModelCallback.get());
     Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
-        model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
+            model, ExecutionPreference::FAST_SINGLE_ANSWER, hidl_vec<hidl_handle>(),
+            hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
     ASSERT_TRUE(prepareLaunchStatus.isOk());
     ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));