Add Sensors HAL 2.1
Creates Sensors HAL 2.1 to support the addition of a new sensor type for
hinge angle sensors.
Bug: 144139857
Test: mma
Change-Id: Id78fb16324d28f2291b3ad1950197bfd2632d6f4
diff --git a/current.txt b/current.txt
index 29e95fe..73a18ff 100644
--- a/current.txt
+++ b/current.txt
@@ -693,6 +693,9 @@
a2977755bc5f1ef47f04b7f2400632efda6218e1515dba847da487145cfabc4f android.hardware.radio.config@1.3::IRadioConfig
742360c775313438b0f82256eac62fb5bbc76a6ae6f388573f3aa142fb2c1eea android.hardware.radio.config@1.3::IRadioConfigIndication
0006ab8e8b0910cbd3bbb08d5f17d5fac7d65a2bdad5f2334e4851db9d1e6fa8 android.hardware.radio.config@1.3::IRadioConfigResponse
+3ca6616381080bdd6c08141ad12775a94ae868c58b02b1274ae3326f7de724ab android.hardware.sensors@2.1::ISensors
+3d4141c6373cd9ca02fe221a7d12343840de2255d032c38248fe8e35816b58b2 android.hardware.sensors@2.1::ISensorsCallback
+8051cc50fc90ed447f058a8b15d81f35a65f1bd9004b1de4f127edeb89b47978 android.hardware.sensors@2.1::types
4a6517ea4ad807855428b0101d8e1a486497bd88ab4300ba3b2be43d46d32580 android.hardware.soundtrigger@2.3::types
12d7533ff0754f45bf59ab300799074570a99a676545652c2c23abc73cb4515d android.hardware.soundtrigger@2.3::ISoundTriggerHw
7746fda1fbf9c7c132bae701cc5a161309e4f5e7f3e8065811045975ee86196d android.hardware.usb.gadget@1.1::IUsbGadget
diff --git a/sensors/2.1/Android.bp b/sensors/2.1/Android.bp
new file mode 100644
index 0000000..8e80e1f
--- /dev/null
+++ b/sensors/2.1/Android.bp
@@ -0,0 +1,21 @@
+// This file is autogenerated by hidl-gen -Landroidbp.
+
+hidl_interface {
+ name: "android.hardware.sensors@2.1",
+ root: "android.hardware",
+ vndk: {
+ enabled: true,
+ },
+ srcs: [
+ "types.hal",
+ "ISensors.hal",
+ "ISensorsCallback.hal",
+ ],
+ interfaces: [
+ "android.hardware.sensors@1.0",
+ "android.hardware.sensors@2.0",
+ "android.hidl.base@1.0",
+ ],
+ gen_java: false,
+ gen_java_constants: true,
+}
diff --git a/sensors/2.1/ISensors.hal b/sensors/2.1/ISensors.hal
new file mode 100644
index 0000000..d401fa5
--- /dev/null
+++ b/sensors/2.1/ISensors.hal
@@ -0,0 +1,148 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package android.hardware.sensors@2.1;
+
+import @1.0::Result;
+import @2.0::ISensors;
+import @2.1::ISensorsCallback;
+
+interface ISensors extends @2.0::ISensors {
+ /**
+ * Enumerate all available (static) sensors.
+ *
+ * The SensorInfo for each sensor returned by getSensorsList must be stable
+ * from the initial call to getSensorsList after a device boot until the
+ * entire system restarts. The SensorInfo for each sensor must not change
+ * between subsequent calls to getSensorsList, even across restarts of the
+ * HAL and its dependencies (for example, the sensor handle for a given
+ * sensor must not change across HAL restarts).
+ */
+ getSensorsList_2_1() generates (vec<SensorInfo> list);
+
+ /**
+ * Initialize the Sensors HAL's Fast Message Queues (FMQ) and callback.
+ *
+ * The Fast Message Queues (FMQ) that are used to send data between the
+ * framework and the HAL. The callback is used by the HAL to notify the
+ * framework of asynchronous events, such as a dynamic sensor connection.
+ *
+ * The Event FMQ is used to transport sensor events from the HAL to the
+ * framework. The Event FMQ is created using the eventQueueDescriptor.
+ * Data may only be written to the Event FMQ. Data must not be read from
+ * the Event FMQ since the framework is the only reader. Upon receiving
+ * sensor events, the HAL writes the sensor events to the Event FMQ.
+ *
+ * Once the HAL is finished writing sensor events to the Event FMQ, the HAL
+ * must notify the framework that sensor events are available to be read and
+ * processed. This is accomplished by either:
+ * 1) Calling the Event FMQ’s EventFlag::wake() function with
+ EventQueueFlagBits::READ_AND_PROCESS
+ * 2) Setting the write notification in the Event FMQ’s writeBlocking()
+ * function to EventQueueFlagBits::READ_AND_PROCESS.
+ *
+ * If the Event FMQ’s writeBlocking() function is used, the read
+ * notification must be set to EventQueueFlagBits::EVENTS_READ in order to
+ * be notified and unblocked when the framework has successfully read events
+ * from the Event FMQ.
+ *
+ * The Wake Lock FMQ is used by the framework to notify the HAL when it is
+ * safe to release its wake_lock. When the framework receives WAKE_UP events
+ * from the Event FMQ and the framework has acquired a wake_lock, the
+ * framework must write the number of WAKE_UP events processed to the Wake
+ * Lock FMQ. When the HAL reads the data from the Wake Lock FMQ, the HAL
+ * decrements its current count of unprocessed WAKE_UP events and releases
+ * its wake_lock if the current count of unprocessed WAKE_UP events is
+ * zero. It is important to note that the HAL must acquire the wake lock and
+ * update its internal state regarding the number of outstanding WAKE_UP
+ * events _before_ posting the event to the Wake Lock FMQ, in order to avoid
+ * a race condition that can lead to loss of wake lock synchronization with
+ * the framework.
+ *
+ * The framework must use the WakeLockQueueFlagBits::DATA_WRITTEN value to
+ * notify the HAL that data has been written to the Wake Lock FMQ and must
+ * be read by HAL.
+ *
+ * The ISensorsCallback is used by the HAL to notify the framework of
+ * asynchronous events, such as a dynamic sensor connection.
+ *
+ * The name of any wake_lock acquired by the Sensors HAL for WAKE_UP events
+ * must begin with "SensorsHAL_WAKEUP".
+ *
+ * If WAKE_LOCK_TIMEOUT_SECONDS has elapsed since the most recent WAKE_UP
+ * event was written to the Event FMQ without receiving a message on the
+ * Wake Lock FMQ, then any held wake_lock for WAKE_UP events must be
+ * released.
+ *
+ * If either the Event FMQ or the Wake Lock FMQ is already initialized when
+ * initialize is invoked, then both existing FMQs must be discarded and the
+ * new descriptors must be used to create new FMQs within the HAL. The
+ * number of outstanding WAKE_UP events should also be reset to zero, and
+ * any outstanding wake_locks held as a result of WAKE_UP events should be
+ * released.
+ *
+ * All active sensor requests and direct channels must be closed and
+ * properly cleaned up when initialize is called in order to ensure that the
+ * HAL and framework's state is consistent (e.g. after a runtime restart).
+ *
+ * initialize must be thread safe and prevent concurrent calls
+ * to initialize from simultaneously modifying state.
+ *
+ * @param eventQueueDescriptor Fast Message Queue descriptor that is used to
+ * create the Event FMQ which is where sensor events are written. The
+ * descriptor is obtained from the framework's FMQ that is used to read
+ * sensor events.
+ * @param wakeLockDescriptor Fast Message Queue descriptor that is used to
+ * create the Wake Lock FMQ which is where wake_lock events are read
+ * from. The descriptor is obtained from the framework's FMQ that is
+ * used to write wake_lock events.
+ * @param sensorsCallback sensors callback that receives asynchronous data
+ * from the Sensors HAL.
+ * @return result OK on success; BAD_VALUE if descriptor is invalid (such
+ * as null)
+ */
+ @entry
+ @callflow(next = {"getSensorsList"})
+ initialize_2_1(fmq_sync<Event> eventQueueDescriptor,
+ fmq_sync<uint32_t> wakeLockDescriptor,
+ ISensorsCallback sensorsCallback)
+ generates
+ (Result result);
+
+ /**
+ * Inject a single sensor event or push operation environment parameters to
+ * device.
+ *
+ * When device is in NORMAL mode, this function is called to push operation
+ * environment data to device. In this operation, Event is always of
+ * SensorType::AdditionalInfo type. See operation evironment parameters
+ * section in AdditionalInfoType.
+ *
+ * When device is in DATA_INJECTION mode, this function is also used for
+ * injecting sensor events.
+ *
+ * Regardless of OperationMode, injected SensorType::ADDITIONAL_INFO
+ * type events should not be routed back to the sensor event queue.
+ *
+ * @see AdditionalInfoType
+ * @see OperationMode
+ * @param event sensor event to be injected
+ * @return result OK on success; PERMISSION_DENIED if operation is not
+ * allowed; INVALID_OPERATION, if this functionality is unsupported;
+ * BAD_VALUE if sensor event cannot be injected.
+ */
+ injectSensorData_2_1(Event event) generates (Result result);
+};
diff --git a/sensors/2.1/ISensorsCallback.hal b/sensors/2.1/ISensorsCallback.hal
new file mode 100644
index 0000000..de521d5
--- /dev/null
+++ b/sensors/2.1/ISensorsCallback.hal
@@ -0,0 +1,33 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package android.hardware.sensors@2.1;
+
+import @2.0::ISensorsCallback;
+import @2.1::SensorInfo;
+
+interface ISensorsCallback extends @2.0::ISensorsCallback {
+ /**
+ * Notify the framework that new dynamic sensors have been connected.
+ *
+ * If a dynamic sensor was previously connected and has not been
+ * disconnected, then that sensor must not be included in sensorInfos.
+ *
+ * @param sensorInfos vector of SensorInfo for each dynamic sensor that
+ * was connected.
+ */
+ oneway onDynamicSensorsConnected_2_1(vec<SensorInfo> sensorInfos);
+};
diff --git a/sensors/2.1/types.hal b/sensors/2.1/types.hal
new file mode 100644
index 0000000..503bece
--- /dev/null
+++ b/sensors/2.1/types.hal
@@ -0,0 +1,160 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package android.hardware.sensors@2.1;
+
+import @1.0::EventPayload;
+import @1.0::SensorType;
+import @1.0::SensorFlagBits;
+
+@export(name="", value_prefix="SENSOR_TYPE_")
+enum SensorType : @1.0::SensorType {
+ /**
+ * HINGE_ANGLE
+ * reporting-mode: on-change
+ * wake-up sensor: yes
+ *
+ * A sensor of this type measures the angle, in degrees, between two
+ * integral parts of the device. Movement of a hinge measured by this sensor
+ * type is expected to alter the ways in which the user may interact with
+ * the device, for example by unfolding or revealing a display.
+ *
+ * Sensor data is output using @1.0::EventPayload.scalar.
+ *
+ * Implement wake-up proximity sensor before implementing a non wake-up
+ * proximity sensor.
+ */
+ HINGE_ANGLE = 36,
+};
+
+struct Event {
+ /** Time measured in nanoseconds, in "elapsedRealtimeNano()'s" timebase. */
+ int64_t timestamp;
+
+ /** sensor identifier */
+ int32_t sensorHandle;
+
+ @2.1::SensorType sensorType;
+
+ /** Union discriminated on sensorType */
+ EventPayload u;
+};
+
+struct SensorInfo {
+ /**
+ * handle that identifies this sensors. This handle is used to reference
+ * this sensor throughout the HAL API.
+ */
+ int32_t sensorHandle;
+
+ /**
+ * Name of this sensor.
+ * All sensors of the same "type" must have a different "name".
+ */
+ string name;
+
+ /** vendor of the hardware part */
+ string vendor;
+
+ /**
+ * version of the hardware part + driver. The value of this field
+ * must increase when the driver is updated in a way that changes the
+ * output of this sensor. This is important for fused sensors when the
+ * fusion algorithm is updated.
+ */
+ int32_t version;
+
+ /** this sensor's type. */
+ @2.1::SensorType type;
+
+ /**
+ * type of this sensor as a string.
+ *
+ * When defining an OEM specific sensor or sensor manufacturer specific
+ * sensor, use your reserve domain name as a prefix.
+ * e.g. com.google.glass.onheaddetector
+ *
+ * For sensors of known type defined in SensorType (value <
+ * SensorType::DEVICE_PRIVATE_BASE), this can be an empty string.
+ */
+ string typeAsString;
+
+ /** maximum range of this sensor's value in SI units */
+ float maxRange;
+
+ /** smallest difference between two values reported by this sensor */
+ float resolution;
+
+ /** rough estimate of this sensor's power consumption in mA */
+ float power;
+
+ /**
+ * this value depends on the reporting mode:
+ *
+ * continuous: minimum sample period allowed in microseconds
+ * on-change : 0
+ * one-shot :-1
+ * special : 0, unless otherwise noted
+ */
+ int32_t minDelay;
+
+ /**
+ * number of events reserved for this sensor in the batch mode FIFO.
+ * If there is a dedicated FIFO for this sensor, then this is the
+ * size of this FIFO. If the FIFO is shared with other sensors,
+ * this is the size reserved for that sensor and it can be zero.
+ */
+ uint32_t fifoReservedEventCount;
+
+ /**
+ * maximum number of events of this sensor that could be batched.
+ * This is especially relevant when the FIFO is shared between
+ * several sensors; this value is then set to the size of that FIFO.
+ */
+ uint32_t fifoMaxEventCount;
+
+ /**
+ * permission required to see this sensor, register to it and receive data.
+ * Set to "" if no permission is required. Some sensor types like the
+ * heart rate monitor have a mandatory require_permission.
+ * For sensors that always require a specific permission, like the heart
+ * rate monitor, the android framework might overwrite this string
+ * automatically.
+ */
+ string requiredPermission;
+
+ /**
+ * This value is defined only for continuous mode and on-change sensors.
+ * It is the delay between two sensor events corresponding to the lowest
+ * frequency that this sensor supports. When lower frequencies are requested
+ * through batch()/setDelay() the events will be generated at this frequency
+ * instead.
+ * It can be used by the framework or applications to estimate when the
+ * batch FIFO may be full.
+ *
+ * NOTE: periodNs is in nanoseconds where as maxDelay/minDelay are in
+ * microseconds.
+ *
+ * continuous, on-change: maximum sampling period allowed in
+ * microseconds.
+ *
+ * one-shot, special : 0
+ */
+ int32_t maxDelay;
+
+ /** Bitmask of SensorFlagBits */
+ bitfield<SensorFlagBits> flags;
+};
\ No newline at end of file