Merge "Revert "Increase neuralnetworks compatibility to 1.3""
diff --git a/current.txt b/current.txt
index aa2494e..972fe16 100644
--- a/current.txt
+++ b/current.txt
@@ -586,5 +586,3 @@
# HALs released in Android R
07d0a252b2d8fa35887908a996ba395cf392968395fc30afab791f46e0c22a52 android.hardware.boot@1.1::IBootControl
74049a402be913963edfdd80828a53736570e9d8124a1bf18166b6ed46a6b0ab android.hardware.boot@1.1::types
-34515afa2bb792d3c6d8495a5f5d907d179c8507ca5e55c10050d02ae1d516ef android.hardware.neuralnetworks@1.3::IDevice
-e2d20d4eb24f40b44a3766d05f77052581cb3f4df35fb48c0cc5d9cdcf5c872e android.hardware.neuralnetworks@1.3::types
diff --git a/neuralnetworks/1.2/vts/functional/Android.bp b/neuralnetworks/1.2/vts/functional/Android.bp
index fc727b7..3ba8879 100644
--- a/neuralnetworks/1.2/vts/functional/Android.bp
+++ b/neuralnetworks/1.2/vts/functional/Android.bp
@@ -14,28 +14,12 @@
// limitations under the License.
//
-cc_library_static {
- name: "VtsHalNeuralNetworksV1_2Callbacks",
- defaults: ["VtsHalTargetTestDefaults"],
- export_include_dirs: ["include"],
- srcs: [
- "Callbacks.cpp",
- ],
- static_libs: [
- "android.hardware.neuralnetworks@1.0",
- "android.hardware.neuralnetworks@1.1",
- "android.hardware.neuralnetworks@1.2",
- ],
- header_libs: [
- "libbase_headers",
- ]
-}
-
cc_test {
name: "VtsHalNeuralnetworksV1_2TargetTest",
defaults: ["VtsHalTargetTestDefaults"],
srcs: [
"BasicTests.cpp",
+ "Callbacks.cpp",
"CompilationCachingTests.cpp",
"GeneratedTestHarness.cpp",
"TestAssertions.cpp",
@@ -53,7 +37,6 @@
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
- "android.hardware.neuralnetworks@1.3",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libgmock",
@@ -61,7 +44,6 @@
"libneuralnetworks_generated_test_harness",
"libneuralnetworks_utils",
"VtsHalNeuralNetworksV1_0_utils",
- "VtsHalNeuralNetworksV1_2Callbacks",
],
whole_static_libs: [
"neuralnetworks_generated_V1_0_example",
diff --git a/neuralnetworks/1.3/Android.bp b/neuralnetworks/1.3/Android.bp
deleted file mode 100644
index 0615ec6..0000000
--- a/neuralnetworks/1.3/Android.bp
+++ /dev/null
@@ -1,21 +0,0 @@
-// This file is autogenerated by hidl-gen -Landroidbp.
-
-hidl_interface {
- name: "android.hardware.neuralnetworks@1.3",
- root: "android.hardware",
- vndk: {
- enabled: true,
- },
- srcs: [
- "types.hal",
- "IDevice.hal",
- ],
- interfaces: [
- "android.hardware.neuralnetworks@1.0",
- "android.hardware.neuralnetworks@1.1",
- "android.hardware.neuralnetworks@1.2",
- "android.hidl.base@1.0",
- "android.hidl.safe_union@1.0",
- ],
- gen_java: false,
-}
diff --git a/neuralnetworks/1.3/IDevice.hal b/neuralnetworks/1.3/IDevice.hal
deleted file mode 100644
index ee36fb4..0000000
--- a/neuralnetworks/1.3/IDevice.hal
+++ /dev/null
@@ -1,171 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package android.hardware.neuralnetworks@1.3;
-
-import @1.0::ErrorStatus;
-import @1.1::ExecutionPreference;
-import @1.2::Constant;
-import @1.2::DeviceType;
-import @1.2::Extension;
-import @1.2::IDevice;
-import @1.2::IPreparedModelCallback;
-
-/**
- * This interface represents a device driver.
- */
-interface IDevice extends @1.2::IDevice {
- /**
- * Gets the capabilities of a driver.
- *
- * @return status Error status of the call, must be:
- * - NONE if successful
- * - DEVICE_UNAVAILABLE if driver is offline or busy
- * - GENERAL_FAILURE if there is an unspecified error
- * @return capabilities Capabilities of the driver.
- */
- getCapabilities_1_3() generates (ErrorStatus status, Capabilities capabilities);
-
- /**
- * Gets the supported operations in a model.
- *
- * getSupportedOperations indicates which operations of a model are fully
- * supported by the vendor driver. If an operation may not be supported for
- * any reason, getSupportedOperations must return false for that operation.
- *
- * @param model A model whose operations--and their corresponding operands--
- * are to be verified by the driver.
- * @return status Error status of the call, must be:
- * - NONE if successful
- * - DEVICE_UNAVAILABLE if driver is offline or busy
- * - GENERAL_FAILURE if there is an unspecified error
- * - INVALID_ARGUMENT if provided model is invalid
- * @return supportedOperations A list of supported operations, where true
- * indicates the operation is supported and false indicates the
- * operation is not supported. The index of "supported" corresponds with
- * the index of the operation it is describing.
- */
- getSupportedOperations_1_3(Model model)
- generates (ErrorStatus status, vec<bool> supportedOperations);
-
- /**
- * Asynchronously creates a prepared model for execution and optionally
- * saves it into cache files.
- *
- * prepareModel is used to make any necessary transformations to or
- * alternative representations to a model for execution, possibly including
- * transformations on the constant data, optimization on the model's graph,
- * or compilation into the device's native binary format. The model itself
- * is not changed.
- *
- * Optionally, caching information may be provided for the driver to save
- * the prepared model to cache files for faster model compilation time when
- * the same model preparation is requested in the future. There are two
- * types of cache file handles provided to the driver: model cache and data
- * cache. For more information on the two types of cache handles, refer to
- * getNumberOfCacheFilesNeeded.
- *
- * The file descriptors must be opened with read and write permission. A
- * file may have any size, and the corresponding file descriptor may have
- * any offset. The driver must truncate a file to zero size before writing
- * to that file. The file descriptors may be closed by the client once the
- * asynchronous preparation has finished. The driver must dup a file
- * descriptor if it wants to get access to the cache file later.
- *
- * The model is prepared asynchronously with respect to the caller. The
- * prepareModel function must verify the inputs to the preparedModel
- * function related to preparing the model (as opposed to saving the
- * prepared model to cache) are correct. If there is an error, prepareModel
- * must immediately invoke the callback with the appropriate ErrorStatus
- * value and nullptr for the IPreparedModel, then return with the same
- * ErrorStatus. If the inputs to the prepareModel function that are related
- * to preparing the model are valid and there is no error, prepareModel must
- * launch an asynchronous task to prepare the model in the background, and
- * immediately return from prepareModel with ErrorStatus::NONE. If the
- * asynchronous task fails to launch, prepareModel must immediately invoke
- * the callback with ErrorStatus::GENERAL_FAILURE and nullptr for the
- * IPreparedModel, then return with ErrorStatus::GENERAL_FAILURE.
- *
- * When the asynchronous task has finished preparing the model, it must
- * immediately invoke the callback function provided as an input to
- * prepareModel. If the model was prepared successfully, the callback object
- * must be invoked with an error status of ErrorStatus::NONE and the
- * produced IPreparedModel object. If an error occurred preparing the model,
- * the callback object must be invoked with the appropriate ErrorStatus
- * value and nullptr for the IPreparedModel.
- *
- * Optionally, the driver may save the prepared model to cache during the
- * asynchronous preparation. Any error that occurs when saving to cache must
- * not affect the status of preparing the model. Even if the input arguments
- * related to the cache may be invalid, or the driver may fail to save to
- * cache, the prepareModel function must finish preparing the model. The
- * driver may choose not to save to cache even if the caching information is
- * provided and valid.
- *
- * The only information that may be unknown to the model at this stage is
- * the shape of the tensors, which may only be known at execution time. As
- * such, some driver services may return partially prepared models, where
- * the prepared model may only be finished when it is paired with a set of
- * inputs to the model. Note that the same prepared model object may be used
- * with different shapes of inputs on different (possibly concurrent)
- * executions.
- *
- * Multiple threads may call prepareModel on the same model concurrently.
- *
- * @param model The model to be prepared for execution.
- * @param preference Indicates the intended execution behavior of a prepared
- * model.
- * @param modelCache A vector of handles with each entry holding exactly one
- * cache file descriptor for the security-sensitive cache. The length of
- * the vector must either be 0 indicating that caching information is
- * not provided, or match the numModelCache returned from
- * getNumberOfCacheFilesNeeded. The cache handles will be provided in
- * the same order when retrieving the preparedModel from cache files
- * with prepareModelFromCache.
- * @param dataCache A vector of handles with each entry holding exactly one
- * cache file descriptor for the constants' cache. The length of the
- * vector must either be 0 indicating that caching information is not
- * provided, or match the numDataCache returned from
- * getNumberOfCacheFilesNeeded. The cache handles will be provided in
- * the same order when retrieving the preparedModel from cache files
- * with prepareModelFromCache.
- * @param token A caching token of length Constant::BYTE_SIZE_OF_CACHE_TOKEN
- * identifying the prepared model. The same token will be provided when
- * retrieving the prepared model from the cache files with
- * prepareModelFromCache. Tokens should be chosen to have a low rate of
- * collision for a particular application. The driver cannot detect a
- * collision; a collision will result in a failed execution or in a
- * successful execution that produces incorrect output values. If both
- * modelCache and dataCache are empty indicating that caching
- * information is not provided, this token must be ignored.
- * @param callback A callback object used to return the error status of
- * preparing the model for execution and the prepared model if
- * successful, nullptr otherwise. The callback object's notify function
- * must be called exactly once, even if the model could not be prepared.
- * @return status Error status of launching a task which prepares the model
- * in the background; must be:
- * - NONE if preparation task is successfully launched
- * - DEVICE_UNAVAILABLE if driver is offline or busy
- * - GENERAL_FAILURE if there is an unspecified error
- * - INVALID_ARGUMENT if one of the input arguments related to preparing
- * the model is invalid
- */
- prepareModel_1_3(Model model, ExecutionPreference preference,
- vec<handle> modelCache, vec<handle> dataCache,
- uint8_t[Constant:BYTE_SIZE_OF_CACHE_TOKEN] token,
- IPreparedModelCallback callback)
- generates (ErrorStatus status);
-};
diff --git a/neuralnetworks/1.3/types.hal b/neuralnetworks/1.3/types.hal
deleted file mode 100644
index db5dd51..0000000
--- a/neuralnetworks/1.3/types.hal
+++ /dev/null
@@ -1,361 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package android.hardware.neuralnetworks@1.3;
-
-import @1.0::DataLocation;
-import @1.0::OperandLifeTime;
-import @1.0::PerformanceInfo;
-import @1.2::OperandType;
-import @1.2::OperationType;
-import @1.2::SymmPerChannelQuantParams;
-
-import android.hidl.safe_union@1.0::Monostate;
-
-/**
- * NOTE: Since NNAPI 1.2, OEM operation and data type are deprecated. Extensions
- * are the preferred alternative.
- *
- * NOTE: Adding a new fundamental type requires updating the value of
- * OperandTypeRange::FUNDAMENTAL_MAX.
- */
-enum OperandType : @1.2::OperandType {
- /**
- * A tensor of 8 bit signed integers that represent real numbers.
- *
- * Attached to this tensor are two numbers that can be used to convert the
- * 8 bit integer to the real value and vice versa. These two numbers are:
- * - scale: a 32 bit floating point value greater than zero.
- * - zeroPoint: a 32 bit integer, in range [-128, 127].
- *
- * The formula is:
- * real_value = (integer_value - zeroPoint) * scale.
- *
- * Available since API level 30.
- */
- TENSOR_QUANT8_ASYMM_SIGNED = 14,
-};
-
-/**
- * The range of operand values in the OperandType enum.
- */
-enum OperandTypeRange : uint32_t {
- BASE_MIN = 0,
- FUNDAMENTAL_MIN = 0,
- FUNDAMENTAL_MAX = 14,
- OEM_MIN = 10000,
- OEM_MAX = 10001,
- BASE_MAX = 0xFFFF,
-};
-
-
-/**
- * The capabilities of a driver.
- *
- * Performance of an operation comes from the type of its first operand.
- * This represents performance for non extension operand types.
- */
-struct Capabilities {
- /**
- * Driver performance when operating on float32 data but performing
- * calculations with range and/or precision as low as that of the IEEE
- * 754 16-bit floating-point format.
- */
- PerformanceInfo relaxedFloat32toFloat16PerformanceScalar;
- PerformanceInfo relaxedFloat32toFloat16PerformanceTensor;
-
- /**
- * Driver performance when operating on a particular data type.
- * In the case of float32 data, this is used when the calculations
- * are not relaxed.
- */
- struct OperandPerformance {
- OperandType type;
- PerformanceInfo info;
- };
-
- /**
- * Performance by operand type. Must be sorted by OperandType.
- * If a particular OperandType is not present in operandPerformance,
- * its performance is treated as
- * { .execTime = FLT_MAX, .powerUsage = FLT_MAX }.
- */
- vec<OperandPerformance> operandPerformance;
-};
-
-/**
- * Describes one operand of the model's graph.
- */
-struct Operand {
- /**
- * The data type.
- *
- * Besides the values listed in {@link OperandType}, any value above
- * {@link OperandTypeRange::BASE_MAX} is possible and should be interpreted
- * as an extension type according to {@link Model::extensionNameToPrefix}.
- */
- OperandType type;
-
- /**
- * Dimensions of the operand.
- *
- * For a scalar operand, dimensions.size() must be 0.
- *
- * A tensor operand with all dimensions specified has "fully
- * specified" dimensions. Whenever possible (i.e., whenever the
- * dimensions are known at model construction time), a tensor
- * operand should have (but is not required to have) fully
- * specified dimensions, in order to enable the best possible
- * performance.
- *
- * If a tensor operand's dimensions are not fully specified, the
- * dimensions of the operand are deduced from the operand
- * dimensions and values of the operation for which that operand
- * is an output.
- *
- * In the following situations, a tensor operand's dimensions must
- * be fully specified:
- *
- * . The operand has lifetime CONSTANT_COPY or
- * CONSTANT_REFERENCE.
- *
- * . The operand has lifetime MODEL_INPUT. Fully
- * specified dimensions must either be present in the
- * Operand or they must be provided in the corresponding
- * RequestArgument.
- * EXCEPTION: If the input is optional and omitted
- * (by setting the hasNoValue field of the corresponding
- * RequestArgument to true) then it need not have fully
- * specified dimensions.
- *
- * A tensor operand with some number of unspecified dimensions is
- * represented by setting each unspecified dimension to 0.
- *
- * A tensor operand with unspecified rank is represented by providing
- * an empty dimensions vector.
- */
- vec<uint32_t> dimensions;
-
- /**
- * The number of times this operand appears as an operation input.
- *
- * (For example, if this operand appears once in one operation's
- * input list, and three times in another operation's input list,
- * then numberOfConsumers = 4.)
- */
- uint32_t numberOfConsumers;
-
- /**
- * Quantized scale of the operand.
- *
- * Only applicable if the operand is of type TENSOR_QUANT8_ASYMM or
- * TENSOR_INT32.
- */
- float scale;
-
- /**
- * Quantized zero-point offset of the operand.
- *
- * Only applicable if the operand is of type TENSOR_QUANT8_ASYMM.
- */
- int32_t zeroPoint;
-
- /**
- * How the operand is used.
- */
- OperandLifeTime lifetime;
-
- /**
- * Where to find the data for this operand.
- * If the lifetime is TEMPORARY_VARIABLE, MODEL_INPUT, MODEL_OUTPUT, or
- * NO_VALUE:
- * - All the fields must be 0.
- * If the lifetime is CONSTANT_COPY:
- * - location.poolIndex is 0.
- * - location.offset is the offset in bytes into Model.operandValues.
- * - location.length is set.
- * If the lifetime is CONSTANT_REFERENCE:
- * - location.poolIndex is set.
- * - location.offset is the offset in bytes into the specified pool.
- * - location.length is set.
- */
- DataLocation location;
-
- /**
- * Additional parameters specific to a particular operand type.
- */
- safe_union ExtraParams {
- /**
- * No additional parameters.
- */
- Monostate none;
-
- /**
- * Symmetric per-channel quantization parameters.
- *
- * Only applicable to operands of type TENSOR_QUANT8_SYMM_PER_CHANNEL.
- */
- SymmPerChannelQuantParams channelQuant;
-
- /**
- * Extension operand parameters.
- *
- * The framework treats this as an opaque data blob.
- * The format is up to individual extensions.
- */
- vec<uint8_t> extension;
- } extraParams;
-};
-
-/**
- * Describes one operation of the model's graph.
- */
-struct Operation {
- /**
- * The operation type.
- */
- OperationType type;
-
- /**
- * Describes the table that contains the indexes of the inputs of the
- * operation. The offset is the index in the operandIndexes table.
- */
- vec<uint32_t> inputs;
-
- /**
- * Describes the table that contains the indexes of the outputs of the
- * operation. The offset is the index in the operandIndexes table.
- */
- vec<uint32_t> outputs;
-};
-
-/**
- * A Neural Network Model.
- *
- * This includes not only the execution graph, but also constant data such as
- * weights or scalars added at construction time. The only information that
- * may not be known is the shape of the input tensors.
- */
-struct Model {
- /**
- * All operands included in the model.
- */
- vec<Operand> operands;
-
- /**
- * All operations included in the model.
- *
- * The operations are sorted into execution order. Every operand
- * with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
- * written before it is read.
- */
- vec<Operation> operations;
-
- /**
- * Input indexes of the model. There must be at least one.
- *
- * Each value corresponds to the index of the operand in "operands".
- */
- vec<uint32_t> inputIndexes;
-
- /**
- * Output indexes of the model. There must be at least one.
- *
- * Each value corresponds to the index of the operand in "operands".
- */
- vec<uint32_t> outputIndexes;
-
- /**
- * A byte buffer containing operand data that were copied into the model.
- *
- * An operand's value must be located here if and only if Operand::lifetime
- * equals OperandLifeTime::CONSTANT_COPY.
- */
- vec<uint8_t> operandValues;
-
- /**
- * A collection of shared memory pools containing operand values.
- *
- * An operand's value must be located here if and only if Operand::lifetime
- * equals OperandLifeTime::CONSTANT_REFERENCE.
- */
- vec<memory> pools;
-
- /**
- * 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
- * precision as low as that of the IEEE 754 16-bit floating-point format.
- * 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
- * range and precision of the IEEE 754 32-bit floating-point format.
- */
- bool relaxComputationFloat32toFloat16;
-
- /**
- * The mapping between extension names and prefixes of operand and
- * operation type values.
- *
- * An operand or operation whose numeric type value is above
- * {@link OperandTypeRange::BASE_MAX} or
- * {@link OperationTypeRange::BASE_MAX} respectively should be interpreted
- * as an extension operand. The low
- * {@link Model::ExtensionTypeEncoding::LOW_BITS_TYPE} bits of the value
- * correspond to the type ID within the extension and the high
- * {@link Model::ExtensionTypeEncoding::HIGH_BITS_PREFIX} bits encode
- * the "prefix", which maps uniquely to the extension name.
- *
- * For example, if a model contains an operation whose value is
- * 0xAAAABBBB and extensionNameToPrefix contains an entry with
- * prefix=0xAAAA and name="vendor.test.test_extension", then
- * the operation should be interpreted as the operation 0xBBBB
- * of the extension named vendor.test.test_extension.
- *
- * This is a one-to-one correspondence. That is, there must be at most one
- * prefix corresponding to each extension name and at most one extension
- * name corresponding to each prefix.
- */
- vec<ExtensionNameAndPrefix> extensionNameToPrefix;
-
- /**
- * A correspondence between an extension name and a prefix of operand and
- * operation type values.
- */
- struct ExtensionNameAndPrefix {
- /**
- * The extension name.
- *
- * See {@link Extension::name} for the format specification.
- */
- string name;
-
- /**
- * The unique extension identifier within the model.
- *
- * See {@link Model::extensionNameToPrefix}.
- */
- uint16_t prefix;
- };
-
- /**
- * Numeric values of extension operand and operation types have the
- * following structure:
- * - 16 high bits represent the "prefix", which corresponds uniquely to the
- * extension name.
- * - 16 low bits represent the type ID within the extension.
- */
- enum ExtensionTypeEncoding : uint8_t {
- HIGH_BITS_PREFIX = 16,
- LOW_BITS_TYPE = 16,
- };
-};
diff --git a/neuralnetworks/1.3/vts/OWNERS b/neuralnetworks/1.3/vts/OWNERS
deleted file mode 100644
index b5a8e1f..0000000
--- a/neuralnetworks/1.3/vts/OWNERS
+++ /dev/null
@@ -1,16 +0,0 @@
-# Neuralnetworks team
-butlermichael@google.com
-dgross@google.com
-jeanluc@google.com
-levp@google.com
-miaowang@google.com
-mikie@google.com
-mks@google.com
-pszczepaniak@google.com
-slavash@google.com
-vddang@google.com
-xusongw@google.com
-
-# VTS team
-yim@google.com
-yuexima@google.com
diff --git a/neuralnetworks/1.3/vts/functional/Android.bp b/neuralnetworks/1.3/vts/functional/Android.bp
deleted file mode 100644
index 90ce852..0000000
--- a/neuralnetworks/1.3/vts/functional/Android.bp
+++ /dev/null
@@ -1,58 +0,0 @@
-//
-// Copyright (C) 2019 The Android Open Source Project
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-
-cc_test {
- name: "VtsHalNeuralNetworksV1_3TargetTest",
- defaults: ["VtsHalTargetTestDefaults"],
- srcs: [
- "BasicTests.cpp",
- "CompilationCachingTests.cpp",
- "GeneratedTestHarness.cpp",
- "TestAssertions.cpp",
- "ValidateBurst.cpp",
- "ValidateModel.cpp",
- "ValidateRequest.cpp",
- "VtsHalNeuralnetworks.cpp",
- ],
- shared_libs: [
- "libfmq",
- "libnativewindow",
- ],
- static_libs: [
- "android.hardware.neuralnetworks@1.0",
- "android.hardware.neuralnetworks@1.1",
- "android.hardware.neuralnetworks@1.2",
- "android.hardware.neuralnetworks@1.3",
- "android.hidl.allocator@1.0",
- "android.hidl.memory@1.0",
- "libgmock",
- "libhidlmemory",
- "libneuralnetworks_generated_test_harness",
- "libneuralnetworks_utils",
- "VtsHalNeuralNetworksV1_0_utils",
- "VtsHalNeuralNetworksV1_2Callbacks",
- ],
- whole_static_libs: [
- "neuralnetworks_generated_V1_0_example",
- "neuralnetworks_generated_V1_1_example",
- "neuralnetworks_generated_V1_2_example",
- "neuralnetworks_generated_V1_3_example",
- ],
- header_libs: [
- "libneuralnetworks_headers",
- ],
- test_suites: ["general-tests"],
-}
diff --git a/neuralnetworks/1.3/vts/functional/BasicTests.cpp b/neuralnetworks/1.3/vts/functional/BasicTests.cpp
deleted file mode 100644
index b64dc2f..0000000
--- a/neuralnetworks/1.3/vts/functional/BasicTests.cpp
+++ /dev/null
@@ -1,64 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_3::vts::functional {
-
-using V1_0::DeviceStatus;
-using V1_0::ErrorStatus;
-using V1_0::PerformanceInfo;
-using V1_2::Constant;
-using V1_2::DeviceType;
-using V1_2::Extension;
-
-// create device test
-TEST_P(NeuralnetworksHidlTest, CreateDevice) {}
-
-// status test
-TEST_P(NeuralnetworksHidlTest, StatusTest) {
- Return<DeviceStatus> status = kDevice->getStatus();
- ASSERT_TRUE(status.isOk());
- EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
-}
-
-// initialization
-TEST_P(NeuralnetworksHidlTest, GetCapabilitiesTest) {
- using OperandPerformance = Capabilities::OperandPerformance;
- Return<void> ret = kDevice->getCapabilities_1_3([](ErrorStatus status,
- const Capabilities& capabilities) {
- EXPECT_EQ(ErrorStatus::NONE, status);
-
- auto isPositive = [](const PerformanceInfo& perf) {
- return perf.execTime > 0.0f && perf.powerUsage > 0.0f;
- };
-
- EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceScalar));
- EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceTensor));
- const auto& opPerf = capabilities.operandPerformance;
- EXPECT_TRUE(std::all_of(
- opPerf.begin(), opPerf.end(),
- [isPositive](const OperandPerformance& a) { return isPositive(a.info); }));
- EXPECT_TRUE(std::is_sorted(opPerf.begin(), opPerf.end(),
- [](const OperandPerformance& a, const OperandPerformance& b) {
- return a.type < b.type;
- }));
- });
- EXPECT_TRUE(ret.isOk());
-}
-} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/CompilationCachingTests.cpp b/neuralnetworks/1.3/vts/functional/CompilationCachingTests.cpp
deleted file mode 100644
index 0ac4738..0000000
--- a/neuralnetworks/1.3/vts/functional/CompilationCachingTests.cpp
+++ /dev/null
@@ -1,1377 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include <android-base/logging.h>
-#include <fcntl.h>
-#include <ftw.h>
-#include <gtest/gtest.h>
-#include <hidlmemory/mapping.h>
-#include <unistd.h>
-
-#include <cstdio>
-#include <cstdlib>
-#include <random>
-#include <thread>
-
-#include "1.2/Callbacks.h"
-#include "GeneratedTestHarness.h"
-#include "MemoryUtils.h"
-#include "TestHarness.h"
-#include "Utils.h"
-#include "VtsHalNeuralnetworks.h"
-
-// Forward declaration of the mobilenet generated test models in
-// frameworks/ml/nn/runtime/test/generated/.
-namespace generated_tests::mobilenet_224_gender_basic_fixed {
-const test_helper::TestModel& get_test_model();
-} // namespace generated_tests::mobilenet_224_gender_basic_fixed
-
-namespace generated_tests::mobilenet_quantized {
-const test_helper::TestModel& get_test_model();
-} // namespace generated_tests::mobilenet_quantized
-
-namespace android::hardware::neuralnetworks::V1_3::vts::functional {
-
-using namespace test_helper;
-using V1_0::ErrorStatus;
-using V1_1::ExecutionPreference;
-using V1_2::Constant;
-using V1_2::IPreparedModel;
-using V1_2::OperationType;
-using V1_2::implementation::PreparedModelCallback;
-
-namespace float32_model {
-
-constexpr auto get_test_model = generated_tests::mobilenet_224_gender_basic_fixed::get_test_model;
-
-} // namespace float32_model
-
-namespace quant8_model {
-
-constexpr auto get_test_model = generated_tests::mobilenet_quantized::get_test_model;
-
-} // namespace quant8_model
-
-namespace {
-
-enum class AccessMode { READ_WRITE, READ_ONLY, WRITE_ONLY };
-
-// Creates cache handles based on provided file groups.
-// The outer vector corresponds to handles and the inner vector is for fds held by each handle.
-void createCacheHandles(const std::vector<std::vector<std::string>>& fileGroups,
- const std::vector<AccessMode>& mode, hidl_vec<hidl_handle>* handles) {
- handles->resize(fileGroups.size());
- for (uint32_t i = 0; i < fileGroups.size(); i++) {
- std::vector<int> fds;
- for (const auto& file : fileGroups[i]) {
- int fd;
- if (mode[i] == AccessMode::READ_ONLY) {
- fd = open(file.c_str(), O_RDONLY);
- } else if (mode[i] == AccessMode::WRITE_ONLY) {
- fd = open(file.c_str(), O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
- } else if (mode[i] == AccessMode::READ_WRITE) {
- fd = open(file.c_str(), O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
- } else {
- FAIL();
- }
- ASSERT_GE(fd, 0);
- fds.push_back(fd);
- }
- native_handle_t* cacheNativeHandle = native_handle_create(fds.size(), 0);
- ASSERT_NE(cacheNativeHandle, nullptr);
- std::copy(fds.begin(), fds.end(), &cacheNativeHandle->data[0]);
- (*handles)[i].setTo(cacheNativeHandle, /*shouldOwn=*/true);
- }
-}
-
-void createCacheHandles(const std::vector<std::vector<std::string>>& fileGroups, AccessMode mode,
- hidl_vec<hidl_handle>* handles) {
- createCacheHandles(fileGroups, std::vector<AccessMode>(fileGroups.size(), mode), handles);
-}
-
-// Create a chain of broadcast operations. The second operand is always constant tensor [1].
-// For simplicity, activation scalar is shared. The second operand is not shared
-// in the model to let driver maintain a non-trivial size of constant data and the corresponding
-// data locations in cache.
-//
-// --------- activation --------
-// ↓ ↓ ↓ ↓
-// E.g. input -> ADD -> ADD -> ADD -> ... -> ADD -> output
-// ↑ ↑ ↑ ↑
-// [1] [1] [1] [1]
-//
-// This function assumes the operation is either ADD or MUL.
-template <typename CppType, TestOperandType operandType>
-TestModel createLargeTestModelImpl(TestOperationType op, uint32_t len) {
- EXPECT_TRUE(op == TestOperationType::ADD || op == TestOperationType::MUL);
-
- // Model operations and operands.
- std::vector<TestOperation> operations(len);
- std::vector<TestOperand> operands(len * 2 + 2);
-
- // The activation scalar, value = 0.
- operands[0] = {
- .type = TestOperandType::INT32,
- .dimensions = {},
- .numberOfConsumers = len,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = TestOperandLifeTime::CONSTANT_COPY,
- .data = TestBuffer::createFromVector<int32_t>({0}),
- };
-
- // The buffer value of the constant second operand. The logical value is always 1.0f.
- CppType bufferValue;
- // The scale of the first and second operand.
- float scale1, scale2;
- if (operandType == TestOperandType::TENSOR_FLOAT32) {
- bufferValue = 1.0f;
- scale1 = 0.0f;
- scale2 = 0.0f;
- } else if (op == TestOperationType::ADD) {
- bufferValue = 1;
- scale1 = 1.0f;
- scale2 = 1.0f;
- } else {
- // To satisfy the constraint on quant8 MUL: input0.scale * input1.scale < output.scale,
- // set input1 to have scale = 0.5f and bufferValue = 2, i.e. 1.0f in floating point.
- bufferValue = 2;
- scale1 = 1.0f;
- scale2 = 0.5f;
- }
-
- for (uint32_t i = 0; i < len; i++) {
- const uint32_t firstInputIndex = i * 2 + 1;
- const uint32_t secondInputIndex = firstInputIndex + 1;
- const uint32_t outputIndex = secondInputIndex + 1;
-
- // The first operation input.
- operands[firstInputIndex] = {
- .type = operandType,
- .dimensions = {1},
- .numberOfConsumers = 1,
- .scale = scale1,
- .zeroPoint = 0,
- .lifetime = (i == 0 ? TestOperandLifeTime::MODEL_INPUT
- : TestOperandLifeTime::TEMPORARY_VARIABLE),
- .data = (i == 0 ? TestBuffer::createFromVector<CppType>({1}) : TestBuffer()),
- };
-
- // The second operation input, value = 1.
- operands[secondInputIndex] = {
- .type = operandType,
- .dimensions = {1},
- .numberOfConsumers = 1,
- .scale = scale2,
- .zeroPoint = 0,
- .lifetime = TestOperandLifeTime::CONSTANT_COPY,
- .data = TestBuffer::createFromVector<CppType>({bufferValue}),
- };
-
- // The operation. All operations share the same activation scalar.
- // The output operand is created as an input in the next iteration of the loop, in the case
- // of all but the last member of the chain; and after the loop as a model output, in the
- // case of the last member of the chain.
- operations[i] = {
- .type = op,
- .inputs = {firstInputIndex, secondInputIndex, /*activation scalar*/ 0},
- .outputs = {outputIndex},
- };
- }
-
- // For TestOperationType::ADD, output = 1 + 1 * len = len + 1
- // For TestOperationType::MUL, output = 1 * 1 ^ len = 1
- CppType outputResult = static_cast<CppType>(op == TestOperationType::ADD ? len + 1u : 1u);
-
- // The model output.
- operands.back() = {
- .type = operandType,
- .dimensions = {1},
- .numberOfConsumers = 0,
- .scale = scale1,
- .zeroPoint = 0,
- .lifetime = TestOperandLifeTime::MODEL_OUTPUT,
- .data = TestBuffer::createFromVector<CppType>({outputResult}),
- };
-
- return {
- .operands = std::move(operands),
- .operations = std::move(operations),
- .inputIndexes = {1},
- .outputIndexes = {len * 2 + 1},
- .isRelaxed = false,
- };
-}
-
-} // namespace
-
-// Tag for the compilation caching tests.
-class CompilationCachingTestBase : public testing::Test {
- protected:
- CompilationCachingTestBase(sp<IDevice> device, OperandType type)
- : kDevice(std::move(device)), kOperandType(type) {}
-
- void SetUp() override {
- testing::Test::SetUp();
- ASSERT_NE(kDevice.get(), nullptr);
-
- // Create cache directory. The cache directory and a temporary cache file is always created
- // to test the behavior of prepareModelFromCache, even when caching is not supported.
- char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX";
- char* cacheDir = mkdtemp(cacheDirTemp);
- ASSERT_NE(cacheDir, nullptr);
- mCacheDir = cacheDir;
- mCacheDir.push_back('/');
-
- Return<void> ret = kDevice->getNumberOfCacheFilesNeeded(
- [this](ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache) {
- EXPECT_EQ(ErrorStatus::NONE, status);
- mNumModelCache = numModelCache;
- mNumDataCache = numDataCache;
- });
- EXPECT_TRUE(ret.isOk());
- mIsCachingSupported = mNumModelCache > 0 || mNumDataCache > 0;
-
- // Create empty cache files.
- mTmpCache = mCacheDir + "tmp";
- for (uint32_t i = 0; i < mNumModelCache; i++) {
- mModelCache.push_back({mCacheDir + "model" + std::to_string(i)});
- }
- for (uint32_t i = 0; i < mNumDataCache; i++) {
- mDataCache.push_back({mCacheDir + "data" + std::to_string(i)});
- }
- // Dummy handles, use AccessMode::WRITE_ONLY for createCacheHandles to create files.
- hidl_vec<hidl_handle> modelHandle, dataHandle, tmpHandle;
- createCacheHandles(mModelCache, AccessMode::WRITE_ONLY, &modelHandle);
- createCacheHandles(mDataCache, AccessMode::WRITE_ONLY, &dataHandle);
- createCacheHandles({{mTmpCache}}, AccessMode::WRITE_ONLY, &tmpHandle);
-
- if (!mIsCachingSupported) {
- LOG(INFO) << "NN VTS: Early termination of test because vendor service does not "
- "support compilation caching.";
- std::cout << "[ ] Early termination of test because vendor service does not "
- "support compilation caching."
- << std::endl;
- }
- }
-
- void TearDown() override {
- // If the test passes, remove the tmp directory. Otherwise, keep it for debugging purposes.
- if (!testing::Test::HasFailure()) {
- // Recursively remove the cache directory specified by mCacheDir.
- auto callback = [](const char* entry, const struct stat*, int, struct FTW*) {
- return remove(entry);
- };
- nftw(mCacheDir.c_str(), callback, 128, FTW_DEPTH | FTW_MOUNT | FTW_PHYS);
- }
- testing::Test::TearDown();
- }
-
- // Model and examples creators. According to kOperandType, the following methods will return
- // either float32 model/examples or the quant8 variant.
- TestModel createTestModel() {
- if (kOperandType == OperandType::TENSOR_FLOAT32) {
- return float32_model::get_test_model();
- } else {
- return quant8_model::get_test_model();
- }
- }
-
- TestModel createLargeTestModel(OperationType op, uint32_t len) {
- if (kOperandType == OperandType::TENSOR_FLOAT32) {
- return createLargeTestModelImpl<float, TestOperandType::TENSOR_FLOAT32>(
- static_cast<TestOperationType>(op), len);
- } else {
- return createLargeTestModelImpl<uint8_t, TestOperandType::TENSOR_QUANT8_ASYMM>(
- static_cast<TestOperationType>(op), len);
- }
- }
-
- // See if the service can handle the model.
- bool isModelFullySupported(const Model& model) {
- bool fullySupportsModel = false;
- Return<void> supportedCall = kDevice->getSupportedOperations_1_3(
- model,
- [&fullySupportsModel, &model](ErrorStatus status, const hidl_vec<bool>& supported) {
- ASSERT_EQ(ErrorStatus::NONE, status);
- ASSERT_EQ(supported.size(), model.operations.size());
- fullySupportsModel = std::all_of(supported.begin(), supported.end(),
- [](bool valid) { return valid; });
- });
- EXPECT_TRUE(supportedCall.isOk());
- return fullySupportsModel;
- }
-
- void saveModelToCache(const Model& model, const hidl_vec<hidl_handle>& modelCache,
- const hidl_vec<hidl_handle>& dataCache,
- sp<IPreparedModel>* preparedModel = nullptr) {
- if (preparedModel != nullptr) *preparedModel = nullptr;
-
- // Launch prepare model.
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
- Return<ErrorStatus> prepareLaunchStatus =
- kDevice->prepareModel_1_3(model, ExecutionPreference::FAST_SINGLE_ANSWER,
- modelCache, dataCache, cacheToken, preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- ASSERT_EQ(static_cast<ErrorStatus>(prepareLaunchStatus), ErrorStatus::NONE);
-
- // Retrieve prepared model.
- preparedModelCallback->wait();
- ASSERT_EQ(preparedModelCallback->getStatus(), ErrorStatus::NONE);
- if (preparedModel != nullptr) {
- *preparedModel = IPreparedModel::castFrom(preparedModelCallback->getPreparedModel())
- .withDefault(nullptr);
- }
- }
-
- bool checkEarlyTermination(ErrorStatus status) {
- if (status == ErrorStatus::GENERAL_FAILURE) {
- LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
- "save the prepared model that it does not support.";
- std::cout << "[ ] Early termination of test because vendor service cannot "
- "save the prepared model that it does not support."
- << std::endl;
- return true;
- }
- return false;
- }
-
- bool checkEarlyTermination(const Model& model) {
- if (!isModelFullySupported(model)) {
- LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
- "prepare model that it does not support.";
- std::cout << "[ ] Early termination of test because vendor service cannot "
- "prepare model that it does not support."
- << std::endl;
- return true;
- }
- return false;
- }
-
- void prepareModelFromCache(const hidl_vec<hidl_handle>& modelCache,
- const hidl_vec<hidl_handle>& dataCache,
- sp<IPreparedModel>* preparedModel, ErrorStatus* status) {
- // Launch prepare model from cache.
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
- Return<ErrorStatus> prepareLaunchStatus = kDevice->prepareModelFromCache(
- modelCache, dataCache, cacheToken, preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- if (static_cast<ErrorStatus>(prepareLaunchStatus) != ErrorStatus::NONE) {
- *preparedModel = nullptr;
- *status = static_cast<ErrorStatus>(prepareLaunchStatus);
- return;
- }
-
- // Retrieve prepared model.
- preparedModelCallback->wait();
- *status = preparedModelCallback->getStatus();
- *preparedModel = IPreparedModel::castFrom(preparedModelCallback->getPreparedModel())
- .withDefault(nullptr);
- }
-
- // Absolute path to the temporary cache directory.
- std::string mCacheDir;
-
- // Groups of file paths for model and data cache in the tmp cache directory, initialized with
- // outer_size = mNum{Model|Data}Cache, inner_size = 1. The outer vector corresponds to handles
- // and the inner vector is for fds held by each handle.
- std::vector<std::vector<std::string>> mModelCache;
- std::vector<std::vector<std::string>> mDataCache;
-
- // A separate temporary file path in the tmp cache directory.
- std::string mTmpCache;
-
- uint8_t mToken[static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)] = {};
- uint32_t mNumModelCache;
- uint32_t mNumDataCache;
- uint32_t mIsCachingSupported;
-
- const sp<IDevice> kDevice;
- // The primary data type of the testModel.
- const OperandType kOperandType;
-};
-
-using CompilationCachingTestParam = std::tuple<NamedDevice, OperandType>;
-
-// A parameterized fixture of CompilationCachingTestBase. Every test will run twice, with the first
-// pass running with float32 models and the second pass running with quant8 models.
-class CompilationCachingTest : public CompilationCachingTestBase,
- public testing::WithParamInterface<CompilationCachingTestParam> {
- protected:
- CompilationCachingTest()
- : CompilationCachingTestBase(getData(std::get<NamedDevice>(GetParam())),
- std::get<OperandType>(GetParam())) {}
-};
-
-TEST_P(CompilationCachingTest, CacheSavingAndRetrieval) {
- // Create test HIDL model and compile.
- const TestModel& testModel = createTestModel();
- const Model model = createModel(testModel);
- if (checkEarlyTermination(model)) return;
- sp<IPreparedModel> preparedModel = nullptr;
-
- // Save the compilation to cache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(model, modelCache, dataCache);
- }
-
- // Retrieve preparedModel from cache.
- {
- preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (!mIsCachingSupported) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- ASSERT_EQ(preparedModel, nullptr);
- return;
- } else if (checkEarlyTermination(status)) {
- ASSERT_EQ(preparedModel, nullptr);
- return;
- } else {
- ASSERT_EQ(status, ErrorStatus::NONE);
- ASSERT_NE(preparedModel, nullptr);
- }
- }
-
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
-}
-
-TEST_P(CompilationCachingTest, CacheSavingAndRetrievalNonZeroOffset) {
- // Create test HIDL model and compile.
- const TestModel& testModel = createTestModel();
- const Model model = createModel(testModel);
- if (checkEarlyTermination(model)) return;
- sp<IPreparedModel> preparedModel = nullptr;
-
- // Save the compilation to cache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- uint8_t dummyBytes[] = {0, 0};
- // Write a dummy integer to the cache.
- // The driver should be able to handle non-empty cache and non-zero fd offset.
- for (uint32_t i = 0; i < modelCache.size(); i++) {
- ASSERT_EQ(write(modelCache[i].getNativeHandle()->data[0], &dummyBytes,
- sizeof(dummyBytes)),
- sizeof(dummyBytes));
- }
- for (uint32_t i = 0; i < dataCache.size(); i++) {
- ASSERT_EQ(
- write(dataCache[i].getNativeHandle()->data[0], &dummyBytes, sizeof(dummyBytes)),
- sizeof(dummyBytes));
- }
- saveModelToCache(model, modelCache, dataCache);
- }
-
- // Retrieve preparedModel from cache.
- {
- preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- uint8_t dummyByte = 0;
- // Advance the offset of each handle by one byte.
- // The driver should be able to handle non-zero fd offset.
- for (uint32_t i = 0; i < modelCache.size(); i++) {
- ASSERT_GE(read(modelCache[i].getNativeHandle()->data[0], &dummyByte, 1), 0);
- }
- for (uint32_t i = 0; i < dataCache.size(); i++) {
- ASSERT_GE(read(dataCache[i].getNativeHandle()->data[0], &dummyByte, 1), 0);
- }
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (!mIsCachingSupported) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- ASSERT_EQ(preparedModel, nullptr);
- return;
- } else if (checkEarlyTermination(status)) {
- ASSERT_EQ(preparedModel, nullptr);
- return;
- } else {
- ASSERT_EQ(status, ErrorStatus::NONE);
- ASSERT_NE(preparedModel, nullptr);
- }
- }
-
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
-}
-
-TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
- // Create test HIDL model and compile.
- const TestModel& testModel = createTestModel();
- const Model model = createModel(testModel);
- if (checkEarlyTermination(model)) return;
-
- // Test with number of model cache files greater than mNumModelCache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- // Pass an additional cache file for model cache.
- mModelCache.push_back({mTmpCache});
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mModelCache.pop_back();
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Test with number of model cache files smaller than mNumModelCache.
- if (mModelCache.size() > 0) {
- hidl_vec<hidl_handle> modelCache, dataCache;
- // Pop out the last cache file.
- auto tmp = mModelCache.back();
- mModelCache.pop_back();
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mModelCache.push_back(tmp);
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Test with number of data cache files greater than mNumDataCache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- // Pass an additional cache file for data cache.
- mDataCache.push_back({mTmpCache});
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mDataCache.pop_back();
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Test with number of data cache files smaller than mNumDataCache.
- if (mDataCache.size() > 0) {
- hidl_vec<hidl_handle> modelCache, dataCache;
- // Pop out the last cache file.
- auto tmp = mDataCache.back();
- mDataCache.pop_back();
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mDataCache.push_back(tmp);
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-}
-
-TEST_P(CompilationCachingTest, PrepareModelFromCacheInvalidNumCache) {
- // Create test HIDL model and compile.
- const TestModel& testModel = createTestModel();
- const Model model = createModel(testModel);
- if (checkEarlyTermination(model)) return;
-
- // Save the compilation to cache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(model, modelCache, dataCache);
- }
-
- // Test with number of model cache files greater than mNumModelCache.
- {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- mModelCache.push_back({mTmpCache});
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mModelCache.pop_back();
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::GENERAL_FAILURE) {
- ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Test with number of model cache files smaller than mNumModelCache.
- if (mModelCache.size() > 0) {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- auto tmp = mModelCache.back();
- mModelCache.pop_back();
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mModelCache.push_back(tmp);
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::GENERAL_FAILURE) {
- ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Test with number of data cache files greater than mNumDataCache.
- {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- mDataCache.push_back({mTmpCache});
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mDataCache.pop_back();
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::GENERAL_FAILURE) {
- ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Test with number of data cache files smaller than mNumDataCache.
- if (mDataCache.size() > 0) {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- auto tmp = mDataCache.back();
- mDataCache.pop_back();
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mDataCache.push_back(tmp);
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::GENERAL_FAILURE) {
- ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-}
-
-TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
- // Create test HIDL model and compile.
- const TestModel& testModel = createTestModel();
- const Model model = createModel(testModel);
- if (checkEarlyTermination(model)) return;
-
- // Go through each handle in model cache, test with NumFd greater than 1.
- for (uint32_t i = 0; i < mNumModelCache; i++) {
- hidl_vec<hidl_handle> modelCache, dataCache;
- // Pass an invalid number of fds for handle i.
- mModelCache[i].push_back(mTmpCache);
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mModelCache[i].pop_back();
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Go through each handle in model cache, test with NumFd equal to 0.
- for (uint32_t i = 0; i < mNumModelCache; i++) {
- hidl_vec<hidl_handle> modelCache, dataCache;
- // Pass an invalid number of fds for handle i.
- auto tmp = mModelCache[i].back();
- mModelCache[i].pop_back();
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mModelCache[i].push_back(tmp);
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Go through each handle in data cache, test with NumFd greater than 1.
- for (uint32_t i = 0; i < mNumDataCache; i++) {
- hidl_vec<hidl_handle> modelCache, dataCache;
- // Pass an invalid number of fds for handle i.
- mDataCache[i].push_back(mTmpCache);
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mDataCache[i].pop_back();
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Go through each handle in data cache, test with NumFd equal to 0.
- for (uint32_t i = 0; i < mNumDataCache; i++) {
- hidl_vec<hidl_handle> modelCache, dataCache;
- // Pass an invalid number of fds for handle i.
- auto tmp = mDataCache[i].back();
- mDataCache[i].pop_back();
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mDataCache[i].push_back(tmp);
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-}
-
-TEST_P(CompilationCachingTest, PrepareModelFromCacheInvalidNumFd) {
- // Create test HIDL model and compile.
- const TestModel& testModel = createTestModel();
- const Model model = createModel(testModel);
- if (checkEarlyTermination(model)) return;
-
- // Save the compilation to cache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(model, modelCache, dataCache);
- }
-
- // Go through each handle in model cache, test with NumFd greater than 1.
- for (uint32_t i = 0; i < mNumModelCache; i++) {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- mModelCache[i].push_back(mTmpCache);
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mModelCache[i].pop_back();
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::GENERAL_FAILURE) {
- ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Go through each handle in model cache, test with NumFd equal to 0.
- for (uint32_t i = 0; i < mNumModelCache; i++) {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- auto tmp = mModelCache[i].back();
- mModelCache[i].pop_back();
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mModelCache[i].push_back(tmp);
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::GENERAL_FAILURE) {
- ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Go through each handle in data cache, test with NumFd greater than 1.
- for (uint32_t i = 0; i < mNumDataCache; i++) {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- mDataCache[i].push_back(mTmpCache);
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mDataCache[i].pop_back();
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::GENERAL_FAILURE) {
- ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Go through each handle in data cache, test with NumFd equal to 0.
- for (uint32_t i = 0; i < mNumDataCache; i++) {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- auto tmp = mDataCache[i].back();
- mDataCache[i].pop_back();
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- mDataCache[i].push_back(tmp);
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::GENERAL_FAILURE) {
- ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-}
-
-TEST_P(CompilationCachingTest, SaveToCacheInvalidAccessMode) {
- // Create test HIDL model and compile.
- const TestModel& testModel = createTestModel();
- const Model model = createModel(testModel);
- if (checkEarlyTermination(model)) return;
- std::vector<AccessMode> modelCacheMode(mNumModelCache, AccessMode::READ_WRITE);
- std::vector<AccessMode> dataCacheMode(mNumDataCache, AccessMode::READ_WRITE);
-
- // Go through each handle in model cache, test with invalid access mode.
- for (uint32_t i = 0; i < mNumModelCache; i++) {
- hidl_vec<hidl_handle> modelCache, dataCache;
- modelCacheMode[i] = AccessMode::READ_ONLY;
- createCacheHandles(mModelCache, modelCacheMode, &modelCache);
- createCacheHandles(mDataCache, dataCacheMode, &dataCache);
- modelCacheMode[i] = AccessMode::READ_WRITE;
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Go through each handle in data cache, test with invalid access mode.
- for (uint32_t i = 0; i < mNumDataCache; i++) {
- hidl_vec<hidl_handle> modelCache, dataCache;
- dataCacheMode[i] = AccessMode::READ_ONLY;
- createCacheHandles(mModelCache, modelCacheMode, &modelCache);
- createCacheHandles(mDataCache, dataCacheMode, &dataCache);
- dataCacheMode[i] = AccessMode::READ_WRITE;
- sp<IPreparedModel> preparedModel = nullptr;
- saveModelToCache(model, modelCache, dataCache, &preparedModel);
- ASSERT_NE(preparedModel, nullptr);
- // Execute and verify results.
- EvaluatePreparedModel(preparedModel, testModel,
- /*testDynamicOutputShape=*/false);
- // Check if prepareModelFromCache fails.
- preparedModel = nullptr;
- ErrorStatus status;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- if (status != ErrorStatus::INVALID_ARGUMENT) {
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- }
- ASSERT_EQ(preparedModel, nullptr);
- }
-}
-
-TEST_P(CompilationCachingTest, PrepareModelFromCacheInvalidAccessMode) {
- // Create test HIDL model and compile.
- const TestModel& testModel = createTestModel();
- const Model model = createModel(testModel);
- if (checkEarlyTermination(model)) return;
- std::vector<AccessMode> modelCacheMode(mNumModelCache, AccessMode::READ_WRITE);
- std::vector<AccessMode> dataCacheMode(mNumDataCache, AccessMode::READ_WRITE);
-
- // Save the compilation to cache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(model, modelCache, dataCache);
- }
-
- // Go through each handle in model cache, test with invalid access mode.
- for (uint32_t i = 0; i < mNumModelCache; i++) {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- modelCacheMode[i] = AccessMode::WRITE_ONLY;
- createCacheHandles(mModelCache, modelCacheMode, &modelCache);
- createCacheHandles(mDataCache, dataCacheMode, &dataCache);
- modelCacheMode[i] = AccessMode::READ_WRITE;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- ASSERT_EQ(preparedModel, nullptr);
- }
-
- // Go through each handle in data cache, test with invalid access mode.
- for (uint32_t i = 0; i < mNumDataCache; i++) {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- dataCacheMode[i] = AccessMode::WRITE_ONLY;
- createCacheHandles(mModelCache, modelCacheMode, &modelCache);
- createCacheHandles(mDataCache, dataCacheMode, &dataCache);
- dataCacheMode[i] = AccessMode::READ_WRITE;
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- ASSERT_EQ(preparedModel, nullptr);
- }
-}
-
-// Copy file contents between file groups.
-// The outer vector corresponds to handles and the inner vector is for fds held by each handle.
-// The outer vector sizes must match and the inner vectors must have size = 1.
-static void copyCacheFiles(const std::vector<std::vector<std::string>>& from,
- const std::vector<std::vector<std::string>>& to) {
- constexpr size_t kBufferSize = 1000000;
- uint8_t buffer[kBufferSize];
-
- ASSERT_EQ(from.size(), to.size());
- for (uint32_t i = 0; i < from.size(); i++) {
- ASSERT_EQ(from[i].size(), 1u);
- ASSERT_EQ(to[i].size(), 1u);
- int fromFd = open(from[i][0].c_str(), O_RDONLY);
- int toFd = open(to[i][0].c_str(), O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
- ASSERT_GE(fromFd, 0);
- ASSERT_GE(toFd, 0);
-
- ssize_t readBytes;
- while ((readBytes = read(fromFd, &buffer, kBufferSize)) > 0) {
- ASSERT_EQ(write(toFd, &buffer, readBytes), readBytes);
- }
- ASSERT_GE(readBytes, 0);
-
- close(fromFd);
- close(toFd);
- }
-}
-
-// Number of operations in the large test model.
-constexpr uint32_t kLargeModelSize = 100;
-constexpr uint32_t kNumIterationsTOCTOU = 100;
-
-TEST_P(CompilationCachingTest, SaveToCache_TOCTOU) {
- if (!mIsCachingSupported) return;
-
- // Create test models and check if fully supported by the service.
- const TestModel testModelMul = createLargeTestModel(OperationType::MUL, kLargeModelSize);
- const Model modelMul = createModel(testModelMul);
- if (checkEarlyTermination(modelMul)) return;
- const TestModel testModelAdd = createLargeTestModel(OperationType::ADD, kLargeModelSize);
- const Model modelAdd = createModel(testModelAdd);
- if (checkEarlyTermination(modelAdd)) return;
-
- // Save the modelMul compilation to cache.
- auto modelCacheMul = mModelCache;
- for (auto& cache : modelCacheMul) {
- cache[0].append("_mul");
- }
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(modelCacheMul, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(modelMul, modelCache, dataCache);
- }
-
- // Use a different token for modelAdd.
- mToken[0]++;
-
- // This test is probabilistic, so we run it multiple times.
- for (uint32_t i = 0; i < kNumIterationsTOCTOU; i++) {
- // Save the modelAdd compilation to cache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-
- // Spawn a thread to copy the cache content concurrently while saving to cache.
- std::thread thread(copyCacheFiles, std::cref(modelCacheMul), std::cref(mModelCache));
- saveModelToCache(modelAdd, modelCache, dataCache);
- thread.join();
- }
-
- // Retrieve preparedModel from cache.
- {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-
- // The preparation may fail or succeed, but must not crash. If the preparation succeeds,
- // the prepared model must be executed with the correct result and not crash.
- if (status != ErrorStatus::NONE) {
- ASSERT_EQ(preparedModel, nullptr);
- } else {
- ASSERT_NE(preparedModel, nullptr);
- EvaluatePreparedModel(preparedModel, testModelAdd,
- /*testDynamicOutputShape=*/false);
- }
- }
- }
-}
-
-TEST_P(CompilationCachingTest, PrepareFromCache_TOCTOU) {
- if (!mIsCachingSupported) return;
-
- // Create test models and check if fully supported by the service.
- const TestModel testModelMul = createLargeTestModel(OperationType::MUL, kLargeModelSize);
- const Model modelMul = createModel(testModelMul);
- if (checkEarlyTermination(modelMul)) return;
- const TestModel testModelAdd = createLargeTestModel(OperationType::ADD, kLargeModelSize);
- const Model modelAdd = createModel(testModelAdd);
- if (checkEarlyTermination(modelAdd)) return;
-
- // Save the modelMul compilation to cache.
- auto modelCacheMul = mModelCache;
- for (auto& cache : modelCacheMul) {
- cache[0].append("_mul");
- }
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(modelCacheMul, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(modelMul, modelCache, dataCache);
- }
-
- // Use a different token for modelAdd.
- mToken[0]++;
-
- // This test is probabilistic, so we run it multiple times.
- for (uint32_t i = 0; i < kNumIterationsTOCTOU; i++) {
- // Save the modelAdd compilation to cache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(modelAdd, modelCache, dataCache);
- }
-
- // Retrieve preparedModel from cache.
- {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
-
- // Spawn a thread to copy the cache content concurrently while preparing from cache.
- std::thread thread(copyCacheFiles, std::cref(modelCacheMul), std::cref(mModelCache));
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- thread.join();
-
- // The preparation may fail or succeed, but must not crash. If the preparation succeeds,
- // the prepared model must be executed with the correct result and not crash.
- if (status != ErrorStatus::NONE) {
- ASSERT_EQ(preparedModel, nullptr);
- } else {
- ASSERT_NE(preparedModel, nullptr);
- EvaluatePreparedModel(preparedModel, testModelAdd,
- /*testDynamicOutputShape=*/false);
- }
- }
- }
-}
-
-TEST_P(CompilationCachingTest, ReplaceSecuritySensitiveCache) {
- if (!mIsCachingSupported) return;
-
- // Create test models and check if fully supported by the service.
- const TestModel testModelMul = createLargeTestModel(OperationType::MUL, kLargeModelSize);
- const Model modelMul = createModel(testModelMul);
- if (checkEarlyTermination(modelMul)) return;
- const TestModel testModelAdd = createLargeTestModel(OperationType::ADD, kLargeModelSize);
- const Model modelAdd = createModel(testModelAdd);
- if (checkEarlyTermination(modelAdd)) return;
-
- // Save the modelMul compilation to cache.
- auto modelCacheMul = mModelCache;
- for (auto& cache : modelCacheMul) {
- cache[0].append("_mul");
- }
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(modelCacheMul, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(modelMul, modelCache, dataCache);
- }
-
- // Use a different token for modelAdd.
- mToken[0]++;
-
- // Save the modelAdd compilation to cache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(modelAdd, modelCache, dataCache);
- }
-
- // Replace the model cache of modelAdd with modelMul.
- copyCacheFiles(modelCacheMul, mModelCache);
-
- // Retrieve the preparedModel from cache, expect failure.
- {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- ASSERT_EQ(preparedModel, nullptr);
- }
-}
-
-static const auto kNamedDeviceChoices = testing::ValuesIn(getNamedDevices());
-static const auto kOperandTypeChoices =
- testing::Values(OperandType::TENSOR_FLOAT32, OperandType::TENSOR_QUANT8_ASYMM);
-
-std::string printCompilationCachingTest(
- const testing::TestParamInfo<CompilationCachingTestParam>& info) {
- const auto& [namedDevice, operandType] = info.param;
- const std::string type = (operandType == OperandType::TENSOR_FLOAT32 ? "float32" : "quant8");
- return gtestCompliantName(getName(namedDevice) + "_" + type);
-}
-
-INSTANTIATE_TEST_CASE_P(TestCompilationCaching, CompilationCachingTest,
- testing::Combine(kNamedDeviceChoices, kOperandTypeChoices),
- printCompilationCachingTest);
-
-using CompilationCachingSecurityTestParam = std::tuple<NamedDevice, OperandType, uint32_t>;
-
-class CompilationCachingSecurityTest
- : public CompilationCachingTestBase,
- public testing::WithParamInterface<CompilationCachingSecurityTestParam> {
- protected:
- CompilationCachingSecurityTest()
- : CompilationCachingTestBase(getData(std::get<NamedDevice>(GetParam())),
- std::get<OperandType>(GetParam())) {}
-
- void SetUp() {
- CompilationCachingTestBase::SetUp();
- generator.seed(kSeed);
- }
-
- // Get a random integer within a closed range [lower, upper].
- template <typename T>
- T getRandomInt(T lower, T upper) {
- std::uniform_int_distribution<T> dis(lower, upper);
- return dis(generator);
- }
-
- // Randomly flip one single bit of the cache entry.
- void flipOneBitOfCache(const std::string& filename, bool* skip) {
- FILE* pFile = fopen(filename.c_str(), "r+");
- ASSERT_EQ(fseek(pFile, 0, SEEK_END), 0);
- long int fileSize = ftell(pFile);
- if (fileSize == 0) {
- fclose(pFile);
- *skip = true;
- return;
- }
- ASSERT_EQ(fseek(pFile, getRandomInt(0l, fileSize - 1), SEEK_SET), 0);
- int readByte = fgetc(pFile);
- ASSERT_NE(readByte, EOF);
- ASSERT_EQ(fseek(pFile, -1, SEEK_CUR), 0);
- ASSERT_NE(fputc(static_cast<uint8_t>(readByte) ^ (1U << getRandomInt(0, 7)), pFile), EOF);
- fclose(pFile);
- *skip = false;
- }
-
- // Randomly append bytes to the cache entry.
- void appendBytesToCache(const std::string& filename, bool* skip) {
- FILE* pFile = fopen(filename.c_str(), "a");
- uint32_t appendLength = getRandomInt(1, 256);
- for (uint32_t i = 0; i < appendLength; i++) {
- ASSERT_NE(fputc(getRandomInt<uint8_t>(0, 255), pFile), EOF);
- }
- fclose(pFile);
- *skip = false;
- }
-
- enum class ExpectedResult { GENERAL_FAILURE, NOT_CRASH };
-
- // Test if the driver behaves as expected when given corrupted cache or token.
- // The modifier will be invoked after save to cache but before prepare from cache.
- // The modifier accepts one pointer argument "skip" as the returning value, indicating
- // whether the test should be skipped or not.
- void testCorruptedCache(ExpectedResult expected, std::function<void(bool*)> modifier) {
- const TestModel& testModel = createTestModel();
- const Model model = createModel(testModel);
- if (checkEarlyTermination(model)) return;
-
- // Save the compilation to cache.
- {
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- saveModelToCache(model, modelCache, dataCache);
- }
-
- bool skip = false;
- modifier(&skip);
- if (skip) return;
-
- // Retrieve preparedModel from cache.
- {
- sp<IPreparedModel> preparedModel = nullptr;
- ErrorStatus status;
- hidl_vec<hidl_handle> modelCache, dataCache;
- createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
- createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
- prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
-
- switch (expected) {
- case ExpectedResult::GENERAL_FAILURE:
- ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
- ASSERT_EQ(preparedModel, nullptr);
- break;
- case ExpectedResult::NOT_CRASH:
- ASSERT_EQ(preparedModel == nullptr, status != ErrorStatus::NONE);
- break;
- default:
- FAIL();
- }
- }
- }
-
- const uint32_t kSeed = std::get<uint32_t>(GetParam());
- std::mt19937 generator;
-};
-
-TEST_P(CompilationCachingSecurityTest, CorruptedModelCache) {
- if (!mIsCachingSupported) return;
- for (uint32_t i = 0; i < mNumModelCache; i++) {
- testCorruptedCache(ExpectedResult::GENERAL_FAILURE,
- [this, i](bool* skip) { flipOneBitOfCache(mModelCache[i][0], skip); });
- }
-}
-
-TEST_P(CompilationCachingSecurityTest, WrongLengthModelCache) {
- if (!mIsCachingSupported) return;
- for (uint32_t i = 0; i < mNumModelCache; i++) {
- testCorruptedCache(ExpectedResult::GENERAL_FAILURE,
- [this, i](bool* skip) { appendBytesToCache(mModelCache[i][0], skip); });
- }
-}
-
-TEST_P(CompilationCachingSecurityTest, CorruptedDataCache) {
- if (!mIsCachingSupported) return;
- for (uint32_t i = 0; i < mNumDataCache; i++) {
- testCorruptedCache(ExpectedResult::NOT_CRASH,
- [this, i](bool* skip) { flipOneBitOfCache(mDataCache[i][0], skip); });
- }
-}
-
-TEST_P(CompilationCachingSecurityTest, WrongLengthDataCache) {
- if (!mIsCachingSupported) return;
- for (uint32_t i = 0; i < mNumDataCache; i++) {
- testCorruptedCache(ExpectedResult::NOT_CRASH,
- [this, i](bool* skip) { appendBytesToCache(mDataCache[i][0], skip); });
- }
-}
-
-TEST_P(CompilationCachingSecurityTest, WrongToken) {
- if (!mIsCachingSupported) return;
- testCorruptedCache(ExpectedResult::GENERAL_FAILURE, [this](bool* skip) {
- // Randomly flip one single bit in mToken.
- uint32_t ind =
- getRandomInt(0u, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN) - 1);
- mToken[ind] ^= (1U << getRandomInt(0, 7));
- *skip = false;
- });
-}
-
-std::string printCompilationCachingSecurityTest(
- const testing::TestParamInfo<CompilationCachingSecurityTestParam>& info) {
- const auto& [namedDevice, operandType, seed] = info.param;
- const std::string type = (operandType == OperandType::TENSOR_FLOAT32 ? "float32" : "quant8");
- return gtestCompliantName(getName(namedDevice) + "_" + type + "_" + std::to_string(seed));
-}
-
-INSTANTIATE_TEST_CASE_P(TestCompilationCaching, CompilationCachingSecurityTest,
- testing::Combine(kNamedDeviceChoices, kOperandTypeChoices,
- testing::Range(0U, 10U)),
- printCompilationCachingSecurityTest);
-
-} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp
deleted file mode 100644
index 16a7d70..0000000
--- a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp
+++ /dev/null
@@ -1,418 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "GeneratedTestHarness.h"
-
-#include <android-base/logging.h>
-#include <android/hardware/neuralnetworks/1.0/IDevice.h>
-#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
-#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
-#include <android/hardware/neuralnetworks/1.0/types.h>
-#include <android/hardware/neuralnetworks/1.1/IDevice.h>
-#include <android/hardware/neuralnetworks/1.2/IDevice.h>
-#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
-#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
-#include <android/hardware/neuralnetworks/1.2/types.h>
-#include <android/hardware/neuralnetworks/1.3/IDevice.h>
-#include <android/hardware/neuralnetworks/1.3/types.h>
-#include <android/hidl/allocator/1.0/IAllocator.h>
-#include <android/hidl/memory/1.0/IMemory.h>
-#include <hidlmemory/mapping.h>
-
-#include <gtest/gtest.h>
-#include <algorithm>
-#include <iostream>
-#include <numeric>
-
-#include "1.0/Utils.h"
-#include "1.2/Callbacks.h"
-#include "ExecutionBurstController.h"
-#include "MemoryUtils.h"
-#include "TestHarness.h"
-#include "Utils.h"
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_3::vts::functional {
-
-using namespace test_helper;
-using hidl::memory::V1_0::IMemory;
-using V1_0::DataLocation;
-using V1_0::ErrorStatus;
-using V1_0::OperandLifeTime;
-using V1_0::Request;
-using V1_1::ExecutionPreference;
-using V1_2::Constant;
-using V1_2::IPreparedModel;
-using V1_2::MeasureTiming;
-using V1_2::OperationType;
-using V1_2::OutputShape;
-using V1_2::SymmPerChannelQuantParams;
-using V1_2::Timing;
-using V1_2::implementation::ExecutionCallback;
-using V1_2::implementation::PreparedModelCallback;
-using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
-
-enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
-
-Model createModel(const TestModel& testModel) {
- // Model operands.
- hidl_vec<Operand> operands(testModel.operands.size());
- size_t constCopySize = 0, constRefSize = 0;
- for (uint32_t i = 0; i < testModel.operands.size(); i++) {
- const auto& op = testModel.operands[i];
-
- DataLocation loc = {};
- if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
- loc = {.poolIndex = 0,
- .offset = static_cast<uint32_t>(constCopySize),
- .length = static_cast<uint32_t>(op.data.size())};
- constCopySize += op.data.alignedSize();
- } else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
- loc = {.poolIndex = 0,
- .offset = static_cast<uint32_t>(constRefSize),
- .length = static_cast<uint32_t>(op.data.size())};
- constRefSize += op.data.alignedSize();
- }
-
- Operand::ExtraParams extraParams;
- if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
- extraParams.channelQuant(SymmPerChannelQuantParams{
- .scales = op.channelQuant.scales, .channelDim = op.channelQuant.channelDim});
- }
-
- operands[i] = {.type = static_cast<OperandType>(op.type),
- .dimensions = op.dimensions,
- .numberOfConsumers = op.numberOfConsumers,
- .scale = op.scale,
- .zeroPoint = op.zeroPoint,
- .lifetime = static_cast<OperandLifeTime>(op.lifetime),
- .location = loc,
- .extraParams = std::move(extraParams)};
- }
-
- // Model operations.
- hidl_vec<Operation> operations(testModel.operations.size());
- std::transform(testModel.operations.begin(), testModel.operations.end(), operations.begin(),
- [](const TestOperation& op) -> Operation {
- return {.type = static_cast<OperationType>(op.type),
- .inputs = op.inputs,
- .outputs = op.outputs};
- });
-
- // Constant copies.
- hidl_vec<uint8_t> operandValues(constCopySize);
- for (uint32_t i = 0; i < testModel.operands.size(); i++) {
- const auto& op = testModel.operands[i];
- if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
- const uint8_t* begin = op.data.get<uint8_t>();
- const uint8_t* end = begin + op.data.size();
- std::copy(begin, end, operandValues.data() + operands[i].location.offset);
- }
- }
-
- // Shared memory.
- hidl_vec<hidl_memory> pools = {};
- if (constRefSize > 0) {
- hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize));
- CHECK_NE(pools[0].size(), 0u);
-
- // load data
- sp<IMemory> mappedMemory = mapMemory(pools[0]);
- CHECK(mappedMemory.get() != nullptr);
- uint8_t* mappedPtr =
- reinterpret_cast<uint8_t*>(static_cast<void*>(mappedMemory->getPointer()));
- CHECK(mappedPtr != nullptr);
-
- for (uint32_t i = 0; i < testModel.operands.size(); i++) {
- const auto& op = testModel.operands[i];
- if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
- const uint8_t* begin = op.data.get<uint8_t>();
- const uint8_t* end = begin + op.data.size();
- std::copy(begin, end, mappedPtr + operands[i].location.offset);
- }
- }
- }
-
- return {.operands = std::move(operands),
- .operations = std::move(operations),
- .inputIndexes = testModel.inputIndexes,
- .outputIndexes = testModel.outputIndexes,
- .operandValues = std::move(operandValues),
- .pools = std::move(pools),
- .relaxComputationFloat32toFloat16 = testModel.isRelaxed};
-}
-
-static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) {
- const auto byteSize = testModel.operands[testModel.outputIndexes[index]].data.size();
- return byteSize > 1u;
-}
-
-static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
- auto& length = request->outputs[outputIndex].location.length;
- ASSERT_GT(length, 1u);
- length -= 1u;
-}
-
-static void makeOutputDimensionsUnspecified(Model* model) {
- for (auto i : model->outputIndexes) {
- auto& dims = model->operands[i].dimensions;
- std::fill(dims.begin(), dims.end(), 0);
- }
-}
-
-static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
- const Request& request, MeasureTiming measure,
- sp<ExecutionCallback>& callback) {
- return preparedModel->execute_1_2(request, measure, callback);
-}
-static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
- const Request& request, MeasureTiming measure,
- hidl_vec<OutputShape>* outputShapes,
- Timing* timing) {
- ErrorStatus result;
- Return<void> ret = preparedModel->executeSynchronously(
- request, measure,
- [&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
- const Timing& time) {
- result = error;
- *outputShapes = shapes;
- *timing = time;
- });
- if (!ret.isOk()) {
- return ErrorStatus::GENERAL_FAILURE;
- }
- return result;
-}
-static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
- const sp<IPreparedModel>& preparedModel) {
- return android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true);
-}
-enum class Executor { ASYNC, SYNC, BURST };
-
-void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
- Executor executor, MeasureTiming measure, OutputType outputType) {
- // If output0 does not have size larger than one byte, we can not test with insufficient buffer.
- if (outputType == OutputType::INSUFFICIENT && !isOutputSizeGreaterThanOne(testModel, 0)) {
- return;
- }
-
- Request request = createRequest(testModel);
- if (outputType == OutputType::INSUFFICIENT) {
- makeOutputInsufficientSize(/*outputIndex=*/0, &request);
- }
-
- ErrorStatus executionStatus;
- hidl_vec<OutputShape> outputShapes;
- Timing timing;
- switch (executor) {
- case Executor::ASYNC: {
- SCOPED_TRACE("asynchronous");
-
- // launch execution
- sp<ExecutionCallback> executionCallback = new ExecutionCallback();
- Return<ErrorStatus> executionLaunchStatus =
- ExecutePreparedModel(preparedModel, request, measure, executionCallback);
- ASSERT_TRUE(executionLaunchStatus.isOk());
- EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
-
- // retrieve execution status
- executionCallback->wait();
- executionStatus = executionCallback->getStatus();
- outputShapes = executionCallback->getOutputShapes();
- timing = executionCallback->getTiming();
-
- break;
- }
- case Executor::SYNC: {
- SCOPED_TRACE("synchronous");
-
- // execute
- Return<ErrorStatus> executionReturnStatus =
- ExecutePreparedModel(preparedModel, request, measure, &outputShapes, &timing);
- ASSERT_TRUE(executionReturnStatus.isOk());
- executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
-
- break;
- }
- case Executor::BURST: {
- SCOPED_TRACE("burst");
-
- // create burst
- const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
- CreateBurst(preparedModel);
- ASSERT_NE(nullptr, controller.get());
-
- // create memory keys
- std::vector<intptr_t> keys(request.pools.size());
- for (size_t i = 0; i < keys.size(); ++i) {
- keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
- }
-
- // execute burst
- std::tie(executionStatus, outputShapes, timing) =
- controller->compute(request, measure, keys);
-
- break;
- }
- }
-
- if (outputType != OutputType::FULLY_SPECIFIED &&
- executionStatus == ErrorStatus::GENERAL_FAILURE) {
- LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
- "execute model that it does not support.";
- std::cout << "[ ] Early termination of test because vendor service cannot "
- "execute model that it does not support."
- << std::endl;
- GTEST_SKIP();
- }
- if (measure == MeasureTiming::NO) {
- EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
- EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
- } else {
- if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
- EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
- }
- }
-
- switch (outputType) {
- case OutputType::FULLY_SPECIFIED:
- // If the model output operands are fully specified, outputShapes must be either
- // either empty, or have the same number of elements as the number of outputs.
- ASSERT_EQ(ErrorStatus::NONE, executionStatus);
- ASSERT_TRUE(outputShapes.size() == 0 ||
- outputShapes.size() == testModel.outputIndexes.size());
- break;
- case OutputType::UNSPECIFIED:
- // If the model output operands are not fully specified, outputShapes must have
- // the same number of elements as the number of outputs.
- ASSERT_EQ(ErrorStatus::NONE, executionStatus);
- ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
- break;
- case OutputType::INSUFFICIENT:
- ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
- ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
- ASSERT_FALSE(outputShapes[0].isSufficient);
- return;
- }
-
- // Go through all outputs, check returned output shapes.
- for (uint32_t i = 0; i < outputShapes.size(); i++) {
- EXPECT_TRUE(outputShapes[i].isSufficient);
- const auto& expect = testModel.operands[testModel.outputIndexes[i]].dimensions;
- const std::vector<uint32_t> actual = outputShapes[i].dimensions;
- EXPECT_EQ(expect, actual);
- }
-
- // Retrieve execution results.
- const std::vector<TestBuffer> outputs = getOutputBuffers(request);
-
- // We want "close-enough" results.
- checkResults(testModel, outputs);
-}
-
-void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
- bool testDynamicOutputShape) {
- if (testDynamicOutputShape) {
- EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
- OutputType::UNSPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
- OutputType::UNSPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
- OutputType::UNSPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
- OutputType::UNSPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
- OutputType::UNSPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
- OutputType::UNSPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
- OutputType::INSUFFICIENT);
- EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
- OutputType::INSUFFICIENT);
- EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
- OutputType::INSUFFICIENT);
- EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
- OutputType::INSUFFICIENT);
- EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
- OutputType::INSUFFICIENT);
- EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
- OutputType::INSUFFICIENT);
- } else {
- EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
- OutputType::FULLY_SPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
- OutputType::FULLY_SPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
- OutputType::FULLY_SPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
- OutputType::FULLY_SPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
- OutputType::FULLY_SPECIFIED);
- EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
- OutputType::FULLY_SPECIFIED);
- }
-}
-
-void Execute(const sp<IDevice>& device, const TestModel& testModel, bool testDynamicOutputShape) {
- Model model = createModel(testModel);
- if (testDynamicOutputShape) {
- makeOutputDimensionsUnspecified(&model);
- }
-
- sp<IPreparedModel> preparedModel;
- createPreparedModel(device, model, &preparedModel);
- if (preparedModel == nullptr) return;
-
- EvaluatePreparedModel(preparedModel, testModel, testDynamicOutputShape);
-}
-
-void GeneratedTestBase::SetUp() {
- testing::TestWithParam<GeneratedTestParam>::SetUp();
- ASSERT_NE(kDevice, nullptr);
-}
-
-std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
- return TestModelManager::get().getTestModels(filter);
-}
-
-std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
- const auto& [namedDevice, namedModel] = info.param;
- return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
-}
-
-// Tag for the generated tests
-class GeneratedTest : public GeneratedTestBase {};
-
-// Tag for the dynamic output shape tests
-class DynamicOutputShapeTest : public GeneratedTest {};
-
-TEST_P(GeneratedTest, Test) {
- Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/false);
-}
-
-TEST_P(DynamicOutputShapeTest, Test) {
- Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/true);
-}
-
-INSTANTIATE_GENERATED_TEST(GeneratedTest,
- [](const TestModel& testModel) { return !testModel.expectFailure; });
-
-INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest,
- [](const TestModel& testModel) { return !testModel.expectFailure; });
-
-} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.h b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.h
deleted file mode 100644
index b9277cf..0000000
--- a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.h
+++ /dev/null
@@ -1,66 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#ifndef ANDROID_HARDWARE_NEURALNETWORKS_V1_3_GENERATED_TEST_HARNESS_H
-#define ANDROID_HARDWARE_NEURALNETWORKS_V1_3_GENERATED_TEST_HARNESS_H
-
-#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.3/IDevice.h>
-#include <android/hardware/neuralnetworks/1.3/types.h>
-#include <functional>
-#include <vector>
-#include "1.0/Utils.h"
-#include "TestHarness.h"
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_3::vts::functional {
-
-using NamedModel = Named<const test_helper::TestModel*>;
-using GeneratedTestParam = std::tuple<NamedDevice, NamedModel>;
-
-class GeneratedTestBase : public testing::TestWithParam<GeneratedTestParam> {
- protected:
- void SetUp() override;
- const sp<IDevice> kDevice = getData(std::get<NamedDevice>(GetParam()));
- const test_helper::TestModel& kTestModel = *getData(std::get<NamedModel>(GetParam()));
-};
-
-using FilterFn = std::function<bool(const test_helper::TestModel&)>;
-std::vector<NamedModel> getNamedModels(const FilterFn& filter);
-
-std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info);
-
-#define INSTANTIATE_GENERATED_TEST(TestSuite, filter) \
- INSTANTIATE_TEST_SUITE_P(TestGenerated, TestSuite, \
- testing::Combine(testing::ValuesIn(getNamedDevices()), \
- testing::ValuesIn(getNamedModels(filter))), \
- printGeneratedTest)
-
-// Tag for the validation tests, instantiated in VtsHalNeuralnetworks.cpp.
-// TODO: Clean up the hierarchy for ValidationTest.
-class ValidationTest : public GeneratedTestBase {};
-
-Model createModel(const test_helper::TestModel& testModel);
-
-void PrepareModel(const sp<IDevice>& device, const Model& model,
- sp<V1_2::IPreparedModel>* preparedModel);
-
-void EvaluatePreparedModel(const sp<V1_2::IPreparedModel>& preparedModel,
- const test_helper::TestModel& testModel, bool testDynamicOutputShape);
-
-} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
-
-#endif // ANDROID_HARDWARE_NEURALNETWORKS_V1_3_GENERATED_TEST_HARNESS_H
diff --git a/neuralnetworks/1.3/vts/functional/TestAssertions.cpp b/neuralnetworks/1.3/vts/functional/TestAssertions.cpp
deleted file mode 100644
index 7361078..0000000
--- a/neuralnetworks/1.3/vts/functional/TestAssertions.cpp
+++ /dev/null
@@ -1,144 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include <android/hardware/neuralnetworks/1.3/types.h>
-#include "TestHarness.h"
-
-namespace android::hardware::neuralnetworks::V1_3 {
-
-// Make sure that the HIDL enums are compatible with the values defined in
-// frameworks/ml/nn/tools/test_generator/test_harness/include/TestHarness.h.
-using namespace test_helper;
-#define CHECK_TEST_ENUM(EnumType, enumValue) \
- static_assert(static_cast<EnumType>(Test##EnumType::enumValue) == EnumType::enumValue)
-
-using V1_2::OperationType;
-
-CHECK_TEST_ENUM(OperandType, FLOAT32);
-CHECK_TEST_ENUM(OperandType, INT32);
-CHECK_TEST_ENUM(OperandType, UINT32);
-CHECK_TEST_ENUM(OperandType, TENSOR_FLOAT32);
-CHECK_TEST_ENUM(OperandType, TENSOR_INT32);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_ASYMM);
-CHECK_TEST_ENUM(OperandType, BOOL);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT16_SYMM);
-CHECK_TEST_ENUM(OperandType, TENSOR_FLOAT16);
-CHECK_TEST_ENUM(OperandType, TENSOR_BOOL8);
-CHECK_TEST_ENUM(OperandType, FLOAT16);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_SYMM_PER_CHANNEL);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT16_ASYMM);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_SYMM);
-CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_ASYMM_SIGNED);
-
-CHECK_TEST_ENUM(OperationType, ADD);
-CHECK_TEST_ENUM(OperationType, AVERAGE_POOL_2D);
-CHECK_TEST_ENUM(OperationType, CONCATENATION);
-CHECK_TEST_ENUM(OperationType, CONV_2D);
-CHECK_TEST_ENUM(OperationType, DEPTHWISE_CONV_2D);
-CHECK_TEST_ENUM(OperationType, DEPTH_TO_SPACE);
-CHECK_TEST_ENUM(OperationType, DEQUANTIZE);
-CHECK_TEST_ENUM(OperationType, EMBEDDING_LOOKUP);
-CHECK_TEST_ENUM(OperationType, FLOOR);
-CHECK_TEST_ENUM(OperationType, FULLY_CONNECTED);
-CHECK_TEST_ENUM(OperationType, HASHTABLE_LOOKUP);
-CHECK_TEST_ENUM(OperationType, L2_NORMALIZATION);
-CHECK_TEST_ENUM(OperationType, L2_POOL_2D);
-CHECK_TEST_ENUM(OperationType, LOCAL_RESPONSE_NORMALIZATION);
-CHECK_TEST_ENUM(OperationType, LOGISTIC);
-CHECK_TEST_ENUM(OperationType, LSH_PROJECTION);
-CHECK_TEST_ENUM(OperationType, LSTM);
-CHECK_TEST_ENUM(OperationType, MAX_POOL_2D);
-CHECK_TEST_ENUM(OperationType, MUL);
-CHECK_TEST_ENUM(OperationType, RELU);
-CHECK_TEST_ENUM(OperationType, RELU1);
-CHECK_TEST_ENUM(OperationType, RELU6);
-CHECK_TEST_ENUM(OperationType, RESHAPE);
-CHECK_TEST_ENUM(OperationType, RESIZE_BILINEAR);
-CHECK_TEST_ENUM(OperationType, RNN);
-CHECK_TEST_ENUM(OperationType, SOFTMAX);
-CHECK_TEST_ENUM(OperationType, SPACE_TO_DEPTH);
-CHECK_TEST_ENUM(OperationType, SVDF);
-CHECK_TEST_ENUM(OperationType, TANH);
-CHECK_TEST_ENUM(OperationType, BATCH_TO_SPACE_ND);
-CHECK_TEST_ENUM(OperationType, DIV);
-CHECK_TEST_ENUM(OperationType, MEAN);
-CHECK_TEST_ENUM(OperationType, PAD);
-CHECK_TEST_ENUM(OperationType, SPACE_TO_BATCH_ND);
-CHECK_TEST_ENUM(OperationType, SQUEEZE);
-CHECK_TEST_ENUM(OperationType, STRIDED_SLICE);
-CHECK_TEST_ENUM(OperationType, SUB);
-CHECK_TEST_ENUM(OperationType, TRANSPOSE);
-CHECK_TEST_ENUM(OperationType, ABS);
-CHECK_TEST_ENUM(OperationType, ARGMAX);
-CHECK_TEST_ENUM(OperationType, ARGMIN);
-CHECK_TEST_ENUM(OperationType, AXIS_ALIGNED_BBOX_TRANSFORM);
-CHECK_TEST_ENUM(OperationType, BIDIRECTIONAL_SEQUENCE_LSTM);
-CHECK_TEST_ENUM(OperationType, BIDIRECTIONAL_SEQUENCE_RNN);
-CHECK_TEST_ENUM(OperationType, BOX_WITH_NMS_LIMIT);
-CHECK_TEST_ENUM(OperationType, CAST);
-CHECK_TEST_ENUM(OperationType, CHANNEL_SHUFFLE);
-CHECK_TEST_ENUM(OperationType, DETECTION_POSTPROCESSING);
-CHECK_TEST_ENUM(OperationType, EQUAL);
-CHECK_TEST_ENUM(OperationType, EXP);
-CHECK_TEST_ENUM(OperationType, EXPAND_DIMS);
-CHECK_TEST_ENUM(OperationType, GATHER);
-CHECK_TEST_ENUM(OperationType, GENERATE_PROPOSALS);
-CHECK_TEST_ENUM(OperationType, GREATER);
-CHECK_TEST_ENUM(OperationType, GREATER_EQUAL);
-CHECK_TEST_ENUM(OperationType, GROUPED_CONV_2D);
-CHECK_TEST_ENUM(OperationType, HEATMAP_MAX_KEYPOINT);
-CHECK_TEST_ENUM(OperationType, INSTANCE_NORMALIZATION);
-CHECK_TEST_ENUM(OperationType, LESS);
-CHECK_TEST_ENUM(OperationType, LESS_EQUAL);
-CHECK_TEST_ENUM(OperationType, LOG);
-CHECK_TEST_ENUM(OperationType, LOGICAL_AND);
-CHECK_TEST_ENUM(OperationType, LOGICAL_NOT);
-CHECK_TEST_ENUM(OperationType, LOGICAL_OR);
-CHECK_TEST_ENUM(OperationType, LOG_SOFTMAX);
-CHECK_TEST_ENUM(OperationType, MAXIMUM);
-CHECK_TEST_ENUM(OperationType, MINIMUM);
-CHECK_TEST_ENUM(OperationType, NEG);
-CHECK_TEST_ENUM(OperationType, NOT_EQUAL);
-CHECK_TEST_ENUM(OperationType, PAD_V2);
-CHECK_TEST_ENUM(OperationType, POW);
-CHECK_TEST_ENUM(OperationType, PRELU);
-CHECK_TEST_ENUM(OperationType, QUANTIZE);
-CHECK_TEST_ENUM(OperationType, QUANTIZED_16BIT_LSTM);
-CHECK_TEST_ENUM(OperationType, RANDOM_MULTINOMIAL);
-CHECK_TEST_ENUM(OperationType, REDUCE_ALL);
-CHECK_TEST_ENUM(OperationType, REDUCE_ANY);
-CHECK_TEST_ENUM(OperationType, REDUCE_MAX);
-CHECK_TEST_ENUM(OperationType, REDUCE_MIN);
-CHECK_TEST_ENUM(OperationType, REDUCE_PROD);
-CHECK_TEST_ENUM(OperationType, REDUCE_SUM);
-CHECK_TEST_ENUM(OperationType, ROI_ALIGN);
-CHECK_TEST_ENUM(OperationType, ROI_POOLING);
-CHECK_TEST_ENUM(OperationType, RSQRT);
-CHECK_TEST_ENUM(OperationType, SELECT);
-CHECK_TEST_ENUM(OperationType, SIN);
-CHECK_TEST_ENUM(OperationType, SLICE);
-CHECK_TEST_ENUM(OperationType, SPLIT);
-CHECK_TEST_ENUM(OperationType, SQRT);
-CHECK_TEST_ENUM(OperationType, TILE);
-CHECK_TEST_ENUM(OperationType, TOPK_V2);
-CHECK_TEST_ENUM(OperationType, TRANSPOSE_CONV_2D);
-CHECK_TEST_ENUM(OperationType, UNIDIRECTIONAL_SEQUENCE_LSTM);
-CHECK_TEST_ENUM(OperationType, UNIDIRECTIONAL_SEQUENCE_RNN);
-CHECK_TEST_ENUM(OperationType, RESIZE_NEAREST_NEIGHBOR);
-
-#undef CHECK_TEST_ENUM
-
-} // namespace android::hardware::neuralnetworks::V1_3
diff --git a/neuralnetworks/1.3/vts/functional/ValidateBurst.cpp b/neuralnetworks/1.3/vts/functional/ValidateBurst.cpp
deleted file mode 100644
index 95f9f42..0000000
--- a/neuralnetworks/1.3/vts/functional/ValidateBurst.cpp
+++ /dev/null
@@ -1,407 +0,0 @@
-/*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "VtsHalNeuralnetworks.h"
-
-#include "1.2/Callbacks.h"
-#include "ExecutionBurstController.h"
-#include "ExecutionBurstServer.h"
-#include "GeneratedTestHarness.h"
-#include "TestHarness.h"
-#include "Utils.h"
-
-#include <android-base/logging.h>
-#include <cstring>
-
-namespace android::hardware::neuralnetworks::V1_3::vts::functional {
-
-using nn::ExecutionBurstController;
-using nn::RequestChannelSender;
-using nn::ResultChannelReceiver;
-using V1_0::ErrorStatus;
-using V1_0::Request;
-using V1_2::FmqRequestDatum;
-using V1_2::FmqResultDatum;
-using V1_2::IBurstCallback;
-using V1_2::IBurstContext;
-using V1_2::IPreparedModel;
-using V1_2::MeasureTiming;
-using V1_2::Timing;
-using ExecutionBurstCallback = ExecutionBurstController::ExecutionBurstCallback;
-
-// This constant value represents the length of an FMQ that is large enough to
-// return a result from a burst execution for all of the generated test cases.
-constexpr size_t kExecutionBurstChannelLength = 1024;
-
-// This constant value represents a length of an FMQ that is not large enough
-// to return a result from a burst execution for some of the generated test
-// cases.
-constexpr size_t kExecutionBurstChannelSmallLength = 8;
-
-///////////////////////// UTILITY FUNCTIONS /////////////////////////
-
-static bool badTiming(Timing timing) {
- return timing.timeOnDevice == UINT64_MAX && timing.timeInDriver == UINT64_MAX;
-}
-
-static void createBurst(const sp<IPreparedModel>& preparedModel, const sp<IBurstCallback>& callback,
- std::unique_ptr<RequestChannelSender>* sender,
- std::unique_ptr<ResultChannelReceiver>* receiver,
- sp<IBurstContext>* context,
- size_t resultChannelLength = kExecutionBurstChannelLength) {
- ASSERT_NE(nullptr, preparedModel.get());
- ASSERT_NE(nullptr, sender);
- ASSERT_NE(nullptr, receiver);
- ASSERT_NE(nullptr, context);
-
- // create FMQ objects
- auto [fmqRequestChannel, fmqRequestDescriptor] =
- RequestChannelSender::create(kExecutionBurstChannelLength, /*blocking=*/true);
- auto [fmqResultChannel, fmqResultDescriptor] =
- ResultChannelReceiver::create(resultChannelLength, /*blocking=*/true);
- ASSERT_NE(nullptr, fmqRequestChannel.get());
- ASSERT_NE(nullptr, fmqResultChannel.get());
- ASSERT_NE(nullptr, fmqRequestDescriptor);
- ASSERT_NE(nullptr, fmqResultDescriptor);
-
- // configure burst
- ErrorStatus errorStatus;
- sp<IBurstContext> burstContext;
- const Return<void> ret = preparedModel->configureExecutionBurst(
- callback, *fmqRequestDescriptor, *fmqResultDescriptor,
- [&errorStatus, &burstContext](ErrorStatus status, const sp<IBurstContext>& context) {
- errorStatus = status;
- burstContext = context;
- });
- ASSERT_TRUE(ret.isOk());
- ASSERT_EQ(ErrorStatus::NONE, errorStatus);
- ASSERT_NE(nullptr, burstContext.get());
-
- // return values
- *sender = std::move(fmqRequestChannel);
- *receiver = std::move(fmqResultChannel);
- *context = burstContext;
-}
-
-static void createBurstWithResultChannelLength(
- const sp<IPreparedModel>& preparedModel, size_t resultChannelLength,
- std::shared_ptr<ExecutionBurstController>* controller) {
- ASSERT_NE(nullptr, preparedModel.get());
- ASSERT_NE(nullptr, controller);
-
- // create FMQ objects
- std::unique_ptr<RequestChannelSender> sender;
- std::unique_ptr<ResultChannelReceiver> receiver;
- sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
- sp<IBurstContext> context;
- ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context,
- resultChannelLength));
- ASSERT_NE(nullptr, sender.get());
- ASSERT_NE(nullptr, receiver.get());
- ASSERT_NE(nullptr, context.get());
-
- // return values
- *controller = std::make_shared<ExecutionBurstController>(std::move(sender), std::move(receiver),
- context, callback);
-}
-
-// Primary validation function. This function will take a valid serialized
-// request, apply a mutation to it to invalidate the serialized request, then
-// pass it to interface calls that use the serialized request. Note that the
-// serialized request here is passed by value, and any mutation to the
-// serialized request does not leave this function.
-static void validate(RequestChannelSender* sender, ResultChannelReceiver* receiver,
- const std::string& message, std::vector<FmqRequestDatum> serialized,
- const std::function<void(std::vector<FmqRequestDatum>*)>& mutation) {
- mutation(&serialized);
-
- // skip if packet is too large to send
- if (serialized.size() > kExecutionBurstChannelLength) {
- return;
- }
-
- SCOPED_TRACE(message);
-
- // send invalid packet
- ASSERT_TRUE(sender->sendPacket(serialized));
-
- // receive error
- auto results = receiver->getBlocking();
- ASSERT_TRUE(results.has_value());
- const auto [status, outputShapes, timing] = std::move(*results);
- EXPECT_NE(ErrorStatus::NONE, status);
- EXPECT_EQ(0u, outputShapes.size());
- EXPECT_TRUE(badTiming(timing));
-}
-
-// For validation, valid packet entries are mutated to invalid packet entries,
-// or invalid packet entries are inserted into valid packets. This function
-// creates pre-set invalid packet entries for convenience.
-static std::vector<FmqRequestDatum> createBadRequestPacketEntries() {
- const FmqRequestDatum::PacketInformation packetInformation = {
- /*.packetSize=*/10, /*.numberOfInputOperands=*/10, /*.numberOfOutputOperands=*/10,
- /*.numberOfPools=*/10};
- const FmqRequestDatum::OperandInformation operandInformation = {
- /*.hasNoValue=*/false, /*.location=*/{}, /*.numberOfDimensions=*/10};
- const int32_t invalidPoolIdentifier = std::numeric_limits<int32_t>::max();
- std::vector<FmqRequestDatum> bad(7);
- bad[0].packetInformation(packetInformation);
- bad[1].inputOperandInformation(operandInformation);
- bad[2].inputOperandDimensionValue(0);
- bad[3].outputOperandInformation(operandInformation);
- bad[4].outputOperandDimensionValue(0);
- bad[5].poolIdentifier(invalidPoolIdentifier);
- bad[6].measureTiming(MeasureTiming::YES);
- return bad;
-}
-
-// For validation, valid packet entries are mutated to invalid packet entries,
-// or invalid packet entries are inserted into valid packets. This function
-// retrieves pre-set invalid packet entries for convenience. This function
-// caches these data so they can be reused on subsequent validation checks.
-static const std::vector<FmqRequestDatum>& getBadRequestPacketEntries() {
- static const std::vector<FmqRequestDatum> bad = createBadRequestPacketEntries();
- return bad;
-}
-
-///////////////////////// REMOVE DATUM ////////////////////////////////////
-
-static void removeDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
- const std::vector<FmqRequestDatum>& serialized) {
- for (size_t index = 0; index < serialized.size(); ++index) {
- const std::string message = "removeDatum: removed datum at index " + std::to_string(index);
- validate(sender, receiver, message, serialized,
- [index](std::vector<FmqRequestDatum>* serialized) {
- serialized->erase(serialized->begin() + index);
- });
- }
-}
-
-///////////////////////// ADD DATUM ////////////////////////////////////
-
-static void addDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
- const std::vector<FmqRequestDatum>& serialized) {
- const std::vector<FmqRequestDatum>& extra = getBadRequestPacketEntries();
- for (size_t index = 0; index <= serialized.size(); ++index) {
- for (size_t type = 0; type < extra.size(); ++type) {
- const std::string message = "addDatum: added datum type " + std::to_string(type) +
- " at index " + std::to_string(index);
- validate(sender, receiver, message, serialized,
- [index, type, &extra](std::vector<FmqRequestDatum>* serialized) {
- serialized->insert(serialized->begin() + index, extra[type]);
- });
- }
- }
-}
-
-///////////////////////// MUTATE DATUM ////////////////////////////////////
-
-static bool interestingCase(const FmqRequestDatum& lhs, const FmqRequestDatum& rhs) {
- using Discriminator = FmqRequestDatum::hidl_discriminator;
-
- const bool differentValues = (lhs != rhs);
- const bool sameDiscriminator = (lhs.getDiscriminator() == rhs.getDiscriminator());
- const auto discriminator = rhs.getDiscriminator();
- const bool isDimensionValue = (discriminator == Discriminator::inputOperandDimensionValue ||
- discriminator == Discriminator::outputOperandDimensionValue);
-
- return differentValues && !(sameDiscriminator && isDimensionValue);
-}
-
-static void mutateDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
- const std::vector<FmqRequestDatum>& serialized) {
- const std::vector<FmqRequestDatum>& change = getBadRequestPacketEntries();
- for (size_t index = 0; index < serialized.size(); ++index) {
- for (size_t type = 0; type < change.size(); ++type) {
- if (interestingCase(serialized[index], change[type])) {
- const std::string message = "mutateDatum: changed datum at index " +
- std::to_string(index) + " to datum type " +
- std::to_string(type);
- validate(sender, receiver, message, serialized,
- [index, type, &change](std::vector<FmqRequestDatum>* serialized) {
- (*serialized)[index] = change[type];
- });
- }
- }
- }
-}
-
-///////////////////////// BURST VALIATION TESTS ////////////////////////////////////
-
-static void validateBurstSerialization(const sp<IPreparedModel>& preparedModel,
- const Request& request) {
- // create burst
- std::unique_ptr<RequestChannelSender> sender;
- std::unique_ptr<ResultChannelReceiver> receiver;
- sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
- sp<IBurstContext> context;
- ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context));
- ASSERT_NE(nullptr, sender.get());
- ASSERT_NE(nullptr, receiver.get());
- ASSERT_NE(nullptr, context.get());
-
- // load memory into callback slots
- std::vector<intptr_t> keys;
- keys.reserve(request.pools.size());
- std::transform(request.pools.begin(), request.pools.end(), std::back_inserter(keys),
- [](const auto& pool) { return reinterpret_cast<intptr_t>(&pool); });
- const std::vector<int32_t> slots = callback->getSlots(request.pools, keys);
-
- // ensure slot std::numeric_limits<int32_t>::max() doesn't exist (for
- // subsequent slot validation testing)
- ASSERT_TRUE(std::all_of(slots.begin(), slots.end(), [](int32_t slot) {
- return slot != std::numeric_limits<int32_t>::max();
- }));
-
- // serialize the request
- const auto serialized = android::nn::serialize(request, MeasureTiming::YES, slots);
-
- // validations
- removeDatumTest(sender.get(), receiver.get(), serialized);
- addDatumTest(sender.get(), receiver.get(), serialized);
- mutateDatumTest(sender.get(), receiver.get(), serialized);
-}
-
-// This test validates that when the Result message size exceeds length of the
-// result FMQ, the service instance gracefully fails and returns an error.
-static void validateBurstFmqLength(const sp<IPreparedModel>& preparedModel,
- const Request& request) {
- // create regular burst
- std::shared_ptr<ExecutionBurstController> controllerRegular;
- ASSERT_NO_FATAL_FAILURE(createBurstWithResultChannelLength(
- preparedModel, kExecutionBurstChannelLength, &controllerRegular));
- ASSERT_NE(nullptr, controllerRegular.get());
-
- // create burst with small output channel
- std::shared_ptr<ExecutionBurstController> controllerSmall;
- ASSERT_NO_FATAL_FAILURE(createBurstWithResultChannelLength(
- preparedModel, kExecutionBurstChannelSmallLength, &controllerSmall));
- ASSERT_NE(nullptr, controllerSmall.get());
-
- // load memory into callback slots
- std::vector<intptr_t> keys(request.pools.size());
- for (size_t i = 0; i < keys.size(); ++i) {
- keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
- }
-
- // collect serialized result by running regular burst
- const auto [statusRegular, outputShapesRegular, timingRegular] =
- controllerRegular->compute(request, MeasureTiming::NO, keys);
-
- // skip test if regular burst output isn't useful for testing a failure
- // caused by having too small of a length for the result FMQ
- const std::vector<FmqResultDatum> serialized =
- android::nn::serialize(statusRegular, outputShapesRegular, timingRegular);
- if (statusRegular != ErrorStatus::NONE ||
- serialized.size() <= kExecutionBurstChannelSmallLength) {
- return;
- }
-
- // by this point, execution should fail because the result channel isn't
- // large enough to return the serialized result
- const auto [statusSmall, outputShapesSmall, timingSmall] =
- controllerSmall->compute(request, MeasureTiming::NO, keys);
- EXPECT_NE(ErrorStatus::NONE, statusSmall);
- EXPECT_EQ(0u, outputShapesSmall.size());
- EXPECT_TRUE(badTiming(timingSmall));
-}
-
-static bool isSanitized(const FmqResultDatum& datum) {
- using Discriminator = FmqResultDatum::hidl_discriminator;
-
- // check to ensure the padding values in the returned
- // FmqResultDatum::OperandInformation are initialized to 0
- if (datum.getDiscriminator() == Discriminator::operandInformation) {
- static_assert(
- offsetof(FmqResultDatum::OperandInformation, isSufficient) == 0,
- "unexpected value for offset of FmqResultDatum::OperandInformation::isSufficient");
- static_assert(
- sizeof(FmqResultDatum::OperandInformation::isSufficient) == 1,
- "unexpected value for size of FmqResultDatum::OperandInformation::isSufficient");
- static_assert(offsetof(FmqResultDatum::OperandInformation, numberOfDimensions) == 4,
- "unexpected value for offset of "
- "FmqResultDatum::OperandInformation::numberOfDimensions");
- static_assert(sizeof(FmqResultDatum::OperandInformation::numberOfDimensions) == 4,
- "unexpected value for size of "
- "FmqResultDatum::OperandInformation::numberOfDimensions");
- static_assert(sizeof(FmqResultDatum::OperandInformation) == 8,
- "unexpected value for size of "
- "FmqResultDatum::OperandInformation");
-
- constexpr size_t paddingOffset =
- offsetof(FmqResultDatum::OperandInformation, isSufficient) +
- sizeof(FmqResultDatum::OperandInformation::isSufficient);
- constexpr size_t paddingSize =
- offsetof(FmqResultDatum::OperandInformation, numberOfDimensions) - paddingOffset;
-
- FmqResultDatum::OperandInformation initialized{};
- std::memset(&initialized, 0, sizeof(initialized));
-
- const char* initializedPaddingStart =
- reinterpret_cast<const char*>(&initialized) + paddingOffset;
- const char* datumPaddingStart =
- reinterpret_cast<const char*>(&datum.operandInformation()) + paddingOffset;
-
- return std::memcmp(datumPaddingStart, initializedPaddingStart, paddingSize) == 0;
- }
-
- // there are no other padding initialization checks required, so return true
- // for any sum-type that isn't FmqResultDatum::OperandInformation
- return true;
-}
-
-static void validateBurstSanitized(const sp<IPreparedModel>& preparedModel,
- const Request& request) {
- // create burst
- std::unique_ptr<RequestChannelSender> sender;
- std::unique_ptr<ResultChannelReceiver> receiver;
- sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
- sp<IBurstContext> context;
- ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context));
- ASSERT_NE(nullptr, sender.get());
- ASSERT_NE(nullptr, receiver.get());
- ASSERT_NE(nullptr, context.get());
-
- // load memory into callback slots
- std::vector<intptr_t> keys;
- keys.reserve(request.pools.size());
- std::transform(request.pools.begin(), request.pools.end(), std::back_inserter(keys),
- [](const auto& pool) { return reinterpret_cast<intptr_t>(&pool); });
- const std::vector<int32_t> slots = callback->getSlots(request.pools, keys);
-
- // send valid request
- ASSERT_TRUE(sender->send(request, MeasureTiming::YES, slots));
-
- // receive valid result
- auto serialized = receiver->getPacketBlocking();
- ASSERT_TRUE(serialized.has_value());
-
- // sanitize result
- ASSERT_TRUE(std::all_of(serialized->begin(), serialized->end(), isSanitized))
- << "The result serialized data is not properly sanitized";
-}
-
-///////////////////////////// ENTRY POINT //////////////////////////////////
-
-void validateBurst(const sp<IPreparedModel>& preparedModel, const Request& request) {
- ASSERT_NO_FATAL_FAILURE(validateBurstSerialization(preparedModel, request));
- ASSERT_NO_FATAL_FAILURE(validateBurstFmqLength(preparedModel, request));
- ASSERT_NO_FATAL_FAILURE(validateBurstSanitized(preparedModel, request));
-}
-
-} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/ValidateModel.cpp b/neuralnetworks/1.3/vts/functional/ValidateModel.cpp
deleted file mode 100644
index 44b32a9..0000000
--- a/neuralnetworks/1.3/vts/functional/ValidateModel.cpp
+++ /dev/null
@@ -1,718 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "1.0/Utils.h"
-#include "1.2/Callbacks.h"
-#include "GeneratedTestHarness.h"
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_3::vts::functional {
-
-using V1_0::ErrorStatus;
-using V1_0::OperandLifeTime;
-using V1_1::ExecutionPreference;
-using V1_2::IPreparedModel;
-using V1_2::OperationType;
-using V1_2::OperationTypeRange;
-using V1_2::SymmPerChannelQuantParams;
-using V1_2::implementation::PreparedModelCallback;
-using HidlToken =
- hidl_array<uint8_t, static_cast<uint32_t>(V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
-
-///////////////////////// UTILITY FUNCTIONS /////////////////////////
-
-static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
- const Model& model) {
- SCOPED_TRACE(message + " [getSupportedOperations_1_3]");
-
- Return<void> ret = device->getSupportedOperations_1_3(
- model, [&](ErrorStatus status, const hidl_vec<bool>&) {
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
- });
- EXPECT_TRUE(ret.isOk());
-}
-
-static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
- const Model& model, ExecutionPreference preference) {
- SCOPED_TRACE(message + " [prepareModel_1_3]");
-
- sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- Return<ErrorStatus> prepareLaunchStatus =
- device->prepareModel_1_3(model, preference, hidl_vec<hidl_handle>(),
- hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
-
- preparedModelCallback->wait();
- ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
- ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
- sp<IPreparedModel> preparedModel = getPreparedModel_1_2(preparedModelCallback);
- ASSERT_EQ(nullptr, preparedModel.get());
-}
-
-static bool validExecutionPreference(ExecutionPreference preference) {
- return preference == ExecutionPreference::LOW_POWER ||
- preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
- preference == ExecutionPreference::SUSTAINED_SPEED;
-}
-
-// Primary validation function. This function will take a valid model, apply a
-// mutation to it to invalidate the model, then pass it to interface calls that
-// use the model. Note that the model here is passed by value, and any mutation
-// to the model does not leave this function.
-static void validate(const sp<IDevice>& device, const std::string& message, Model model,
- const std::function<void(Model*)>& mutation,
- ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
- mutation(&model);
- if (validExecutionPreference(preference)) {
- validateGetSupportedOperations(device, message, model);
- }
- validatePrepareModel(device, message, model, preference);
-}
-
-static uint32_t addOperand(Model* model) {
- return hidl_vec_push_back(&model->operands,
- {
- .type = OperandType::INT32,
- .dimensions = {},
- .numberOfConsumers = 0,
- .scale = 0.0f,
- .zeroPoint = 0,
- .lifetime = OperandLifeTime::MODEL_INPUT,
- .location = {.poolIndex = 0, .offset = 0, .length = 0},
- });
-}
-
-static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
- uint32_t index = addOperand(model);
- model->operands[index].numberOfConsumers = 1;
- model->operands[index].lifetime = lifetime;
- return index;
-}
-
-///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
-
-static const uint32_t invalidOperandTypes[] = {
- static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN) - 1,
- static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX) + 1,
- static_cast<uint32_t>(OperandTypeRange::OEM_MIN) - 1,
- static_cast<uint32_t>(OperandTypeRange::OEM_MAX) + 1,
-};
-
-static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operand = 0; operand < model.operands.size(); ++operand) {
- for (uint32_t invalidOperandType : invalidOperandTypes) {
- const std::string message = "mutateOperandTypeTest: operand " +
- std::to_string(operand) + " set to value " +
- std::to_string(invalidOperandType);
- validate(device, message, model, [operand, invalidOperandType](Model* model) {
- model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
- });
- }
- }
-}
-
-///////////////////////// VALIDATE OPERAND RANK /////////////////////////
-
-static uint32_t getInvalidRank(OperandType type) {
- switch (type) {
- case OperandType::FLOAT16:
- case OperandType::FLOAT32:
- case OperandType::INT32:
- case OperandType::UINT32:
- case OperandType::BOOL:
- return 1;
- case OperandType::TENSOR_BOOL8:
- case OperandType::TENSOR_FLOAT16:
- case OperandType::TENSOR_FLOAT32:
- case OperandType::TENSOR_INT32:
- case OperandType::TENSOR_QUANT8_ASYMM:
- case OperandType::TENSOR_QUANT8_SYMM:
- case OperandType::TENSOR_QUANT16_ASYMM:
- case OperandType::TENSOR_QUANT16_SYMM:
- case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
- return 0;
- default:
- return 0;
- }
-}
-
-static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operand = 0; operand < model.operands.size(); ++operand) {
- const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
- if (invalidRank == 0) {
- continue;
- }
- const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
- " has rank of " + std::to_string(invalidRank);
- validate(device, message, model, [operand, invalidRank](Model* model) {
- model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
- });
- }
-}
-
-///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
-
-static float getInvalidScale(OperandType type) {
- switch (type) {
- case OperandType::FLOAT16:
- case OperandType::FLOAT32:
- case OperandType::INT32:
- case OperandType::UINT32:
- case OperandType::BOOL:
- case OperandType::TENSOR_BOOL8:
- case OperandType::TENSOR_FLOAT16:
- case OperandType::TENSOR_FLOAT32:
- case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
- return 1.0f;
- case OperandType::TENSOR_INT32:
- return -1.0f;
- case OperandType::TENSOR_QUANT8_SYMM:
- case OperandType::TENSOR_QUANT8_ASYMM:
- case OperandType::TENSOR_QUANT16_ASYMM:
- case OperandType::TENSOR_QUANT16_SYMM:
- return 0.0f;
- default:
- return 0.0f;
- }
-}
-
-static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operand = 0; operand < model.operands.size(); ++operand) {
- const float invalidScale = getInvalidScale(model.operands[operand].type);
- const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
- " has scale of " + std::to_string(invalidScale);
- validate(device, message, model, [operand, invalidScale](Model* model) {
- model->operands[operand].scale = invalidScale;
- });
- }
-}
-
-///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
-
-static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
- switch (type) {
- case OperandType::FLOAT16:
- case OperandType::FLOAT32:
- case OperandType::INT32:
- case OperandType::UINT32:
- case OperandType::BOOL:
- case OperandType::TENSOR_BOOL8:
- case OperandType::TENSOR_FLOAT16:
- case OperandType::TENSOR_FLOAT32:
- case OperandType::TENSOR_INT32:
- case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
- return {1};
- case OperandType::TENSOR_QUANT8_ASYMM:
- return {-1, 256};
- case OperandType::TENSOR_QUANT8_SYMM:
- return {-129, -1, 1, 128};
- case OperandType::TENSOR_QUANT16_ASYMM:
- return {-1, 65536};
- case OperandType::TENSOR_QUANT16_SYMM:
- return {-32769, -1, 1, 32768};
- default:
- return {};
- }
-}
-
-static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operand = 0; operand < model.operands.size(); ++operand) {
- const std::vector<int32_t> invalidZeroPoints =
- getInvalidZeroPoints(model.operands[operand].type);
- for (int32_t invalidZeroPoint : invalidZeroPoints) {
- const std::string message = "mutateOperandZeroPointTest: operand " +
- std::to_string(operand) + " has zero point of " +
- std::to_string(invalidZeroPoint);
- validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
- model->operands[operand].zeroPoint = invalidZeroPoint;
- });
- }
- }
-}
-
-///////////////////////// VALIDATE EXTRA ??? /////////////////////////
-
-// TODO: Operand::lifetime
-// TODO: Operand::location
-
-///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
-
-static void mutateOperand(Operand* operand, OperandType type) {
- Operand newOperand = *operand;
- newOperand.type = type;
- switch (type) {
- case OperandType::FLOAT16:
- case OperandType::FLOAT32:
- case OperandType::INT32:
- case OperandType::UINT32:
- case OperandType::BOOL:
- newOperand.dimensions = hidl_vec<uint32_t>();
- newOperand.scale = 0.0f;
- newOperand.zeroPoint = 0;
- break;
- case OperandType::TENSOR_BOOL8:
- case OperandType::TENSOR_FLOAT16:
- case OperandType::TENSOR_FLOAT32:
- newOperand.dimensions =
- operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
- newOperand.scale = 0.0f;
- newOperand.zeroPoint = 0;
- break;
- case OperandType::TENSOR_INT32:
- newOperand.dimensions =
- operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
- newOperand.zeroPoint = 0;
- break;
- case OperandType::TENSOR_QUANT8_ASYMM:
- case OperandType::TENSOR_QUANT8_SYMM:
- case OperandType::TENSOR_QUANT16_ASYMM:
- case OperandType::TENSOR_QUANT16_SYMM:
- newOperand.dimensions =
- operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
- newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
- break;
- case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
- newOperand.dimensions =
- operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
- newOperand.scale = 0.0f;
- newOperand.zeroPoint = 0;
-
- SymmPerChannelQuantParams channelQuant;
- channelQuant.channelDim = 0;
- channelQuant.scales = hidl_vec<float>(
- operand->dimensions.size() > 0 ? static_cast<size_t>(operand->dimensions[0])
- : 0);
- for (size_t i = 0; i < channelQuant.scales.size(); ++i) {
- channelQuant.scales[i] = 1.0f;
- }
- newOperand.extraParams.channelQuant(std::move(channelQuant));
- } break;
- case OperandType::OEM:
- case OperandType::TENSOR_OEM_BYTE:
- default:
- break;
- }
- *operand = newOperand;
-}
-
-static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, const Model& model) {
- // Do not test OEM types
- if (type == model.operands[operand].type || type == OperandType::OEM ||
- type == OperandType::TENSOR_OEM_BYTE) {
- return true;
- }
- for (const Operation& operation : model.operations) {
- // Skip mutateOperationOperandTypeTest for the following operations.
- // - LSH_PROJECTION's second argument is allowed to have any type.
- // - ARGMIN and ARGMAX's first argument can be any of
- // TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
- // - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
- // - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
- // - DEQUANTIZE input can be any of
- // TENSOR_(QUANT8_ASYMM|QUANT8_SYMM|QUANT8_SYMM_PER_CHANNEL), output can
- // be of either TENSOR_FLOAT16 or TENSOR_FLOAT32.
- // - QUANTIZE input can be either TENSOR_FLOAT16 or TENSOR_FLOAT32
- // - CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
- // - DEPTHWISE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
- // - GROUPED_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
- // - TRANSPOSE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
- switch (operation.type) {
- case OperationType::LSH_PROJECTION: {
- if (operand == operation.inputs[1]) {
- return true;
- }
- } break;
- case OperationType::CAST:
- case OperationType::ARGMAX:
- case OperationType::ARGMIN: {
- if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32 ||
- type == OperandType::TENSOR_INT32 || type == OperandType::TENSOR_QUANT8_ASYMM) {
- return true;
- }
- } break;
- case OperationType::QUANTIZE:
- case OperationType::RANDOM_MULTINOMIAL: {
- if (operand == operation.inputs[0] &&
- (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
- return true;
- }
- } break;
- case OperationType::DEQUANTIZE: {
- if (operand == operation.inputs[0] &&
- (type == OperandType::TENSOR_QUANT8_ASYMM ||
- type == OperandType::TENSOR_QUANT8_SYMM ||
- type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
- return true;
- }
- if (operand == operation.outputs[0] &&
- (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
- return true;
- }
- } break;
- case OperationType::TRANSPOSE_CONV_2D:
- case OperationType::GROUPED_CONV_2D:
- case OperationType::DEPTHWISE_CONV_2D:
- case OperationType::CONV_2D: {
- if (operand == operation.inputs[1] &&
- (type == OperandType::TENSOR_QUANT8_ASYMM ||
- type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
- return true;
- }
- } break;
- default:
- break;
- }
- }
- return false;
-}
-
-static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operand = 0; operand < model.operands.size(); ++operand) {
- for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
- if (mutateOperationOperandTypeSkip(operand, invalidOperandType, model)) {
- continue;
- }
- const std::string message = "mutateOperationOperandTypeTest: operand " +
- std::to_string(operand) + " set to type " +
- toString(invalidOperandType);
- validate(device, message, model, [operand, invalidOperandType](Model* model) {
- mutateOperand(&model->operands[operand], invalidOperandType);
- });
- }
- }
-}
-
-///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
-
-static const uint32_t invalidOperationTypes[] = {
- static_cast<uint32_t>(OperationTypeRange::FUNDAMENTAL_MAX) + 1,
- static_cast<uint32_t>(OperationTypeRange::OEM_MIN) - 1,
- static_cast<uint32_t>(OperationTypeRange::OEM_MAX) + 1,
-};
-
-static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operation = 0; operation < model.operations.size(); ++operation) {
- for (uint32_t invalidOperationType : invalidOperationTypes) {
- const std::string message = "mutateOperationTypeTest: operation " +
- std::to_string(operation) + " set to value " +
- std::to_string(invalidOperationType);
- validate(device, message, model, [operation, invalidOperationType](Model* model) {
- model->operations[operation].type =
- static_cast<OperationType>(invalidOperationType);
- });
- }
- }
-}
-
-///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
-
-static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operation = 0; operation < model.operations.size(); ++operation) {
- const uint32_t invalidOperand = model.operands.size();
- for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
- const std::string message = "mutateOperationInputOperandIndexTest: operation " +
- std::to_string(operation) + " input " +
- std::to_string(input);
- validate(device, message, model, [operation, input, invalidOperand](Model* model) {
- model->operations[operation].inputs[input] = invalidOperand;
- });
- }
- }
-}
-
-///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
-
-static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operation = 0; operation < model.operations.size(); ++operation) {
- const uint32_t invalidOperand = model.operands.size();
- for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
- const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
- std::to_string(operation) + " output " +
- std::to_string(output);
- validate(device, message, model, [operation, output, invalidOperand](Model* model) {
- model->operations[operation].outputs[output] = invalidOperand;
- });
- }
- }
-}
-
-///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
-
-static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
- if (vec) {
- // remove elements matching "value"
- auto last = std::remove(vec->begin(), vec->end(), value);
- vec->resize(std::distance(vec->begin(), last));
-
- // decrement elements exceeding "value"
- std::transform(vec->begin(), vec->end(), vec->begin(),
- [value](uint32_t v) { return v > value ? v-- : v; });
- }
-}
-
-static void removeOperand(Model* model, uint32_t index) {
- hidl_vec_removeAt(&model->operands, index);
- for (Operation& operation : model->operations) {
- removeValueAndDecrementGreaterValues(&operation.inputs, index);
- removeValueAndDecrementGreaterValues(&operation.outputs, index);
- }
- removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
- removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
-}
-
-static bool removeOperandSkip(size_t operand, const Model& model) {
- for (const Operation& operation : model.operations) {
- // Skip removeOperandTest for the following operations.
- // - SPLIT's outputs are not checked during prepareModel.
- if (operation.type == OperationType::SPLIT) {
- for (const size_t outOprand : operation.outputs) {
- if (operand == outOprand) {
- return true;
- }
- }
- }
- // BIDIRECTIONAL_SEQUENCE_LSTM and BIDIRECTIONAL_SEQUENCE_RNN can have either one or two
- // outputs depending on their mergeOutputs parameter.
- if (operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_LSTM ||
- operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_RNN) {
- for (const size_t outOprand : operation.outputs) {
- if (operand == outOprand) {
- return true;
- }
- }
- }
- }
- return false;
-}
-
-static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operand = 0; operand < model.operands.size(); ++operand) {
- if (removeOperandSkip(operand, model)) {
- continue;
- }
- const std::string message = "removeOperandTest: operand " + std::to_string(operand);
- validate(device, message, model,
- [operand](Model* model) { removeOperand(model, operand); });
- }
-}
-
-///////////////////////// REMOVE OPERATION /////////////////////////
-
-static void removeOperation(Model* model, uint32_t index) {
- for (uint32_t operand : model->operations[index].inputs) {
- model->operands[operand].numberOfConsumers--;
- }
- hidl_vec_removeAt(&model->operations, index);
-}
-
-static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operation = 0; operation < model.operations.size(); ++operation) {
- const std::string message = "removeOperationTest: operation " + std::to_string(operation);
- validate(device, message, model,
- [operation](Model* model) { removeOperation(model, operation); });
- }
-}
-
-///////////////////////// REMOVE OPERATION INPUT /////////////////////////
-
-static bool removeOperationInputSkip(const Operation& op, size_t input) {
- // Skip removeOperationInputTest for the following operations.
- // - CONCATENATION has at least 2 inputs, with the last element being INT32.
- // - CONV_2D, DEPTHWISE_CONV_2D, MAX_POOL_2D, AVERAGE_POOL_2D, L2_POOL_2D, RESIZE_BILINEAR,
- // SPACE_TO_DEPTH, SPACE_TO_DEPTH, SPACE_TO_BATCH_ND, BATCH_TO_SPACE_ND can have an optional
- // layout parameter.
- // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional axis
- // parameter.
- switch (op.type) {
- case OperationType::CONCATENATION: {
- if (op.inputs.size() > 2 && input != op.inputs.size() - 1) {
- return true;
- }
- } break;
- case OperationType::DEPTHWISE_CONV_2D: {
- if ((op.inputs.size() == 12 && input == 11) || (op.inputs.size() == 9 && input == 8)) {
- return true;
- }
- } break;
- case OperationType::CONV_2D:
- case OperationType::AVERAGE_POOL_2D:
- case OperationType::MAX_POOL_2D:
- case OperationType::L2_POOL_2D: {
- if ((op.inputs.size() == 11 && input == 10) || (op.inputs.size() == 8 && input == 7)) {
- return true;
- }
- } break;
- case OperationType::RESIZE_BILINEAR: {
- if (op.inputs.size() == 4 && input == 3) {
- return true;
- }
- } break;
- case OperationType::SPACE_TO_DEPTH:
- case OperationType::DEPTH_TO_SPACE:
- case OperationType::BATCH_TO_SPACE_ND: {
- if (op.inputs.size() == 3 && input == 2) {
- return true;
- }
- } break;
- case OperationType::SPACE_TO_BATCH_ND: {
- if (op.inputs.size() == 4 && input == 3) {
- return true;
- }
- } break;
- case OperationType::L2_NORMALIZATION: {
- if (op.inputs.size() == 2 && input == 1) {
- return true;
- }
- } break;
- case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
- if (op.inputs.size() == 6 && input == 5) {
- return true;
- }
- } break;
- case OperationType::SOFTMAX: {
- if (op.inputs.size() == 3 && input == 2) {
- return true;
- }
- } break;
- default:
- break;
- }
- return false;
-}
-
-static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operation = 0; operation < model.operations.size(); ++operation) {
- for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
- const Operation& op = model.operations[operation];
- if (removeOperationInputSkip(op, input)) {
- continue;
- }
- const std::string message = "removeOperationInputTest: operation " +
- std::to_string(operation) + ", input " +
- std::to_string(input);
- validate(device, message, model, [operation, input](Model* model) {
- uint32_t operand = model->operations[operation].inputs[input];
- model->operands[operand].numberOfConsumers--;
- hidl_vec_removeAt(&model->operations[operation].inputs, input);
- });
- }
- }
-}
-
-///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
-
-static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operation = 0; operation < model.operations.size(); ++operation) {
- for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
- const std::string message = "removeOperationOutputTest: operation " +
- std::to_string(operation) + ", output " +
- std::to_string(output);
- validate(device, message, model, [operation, output](Model* model) {
- hidl_vec_removeAt(&model->operations[operation].outputs, output);
- });
- }
- }
-}
-
-///////////////////////// MODEL VALIDATION /////////////////////////
-
-// TODO: remove model input
-// TODO: remove model output
-// TODO: add unused operation
-
-///////////////////////// ADD OPERATION INPUT /////////////////////////
-
-static bool addOperationInputSkip(const Operation& op) {
- // Skip addOperationInputTest for the following operations.
- // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional INT32 axis
- // parameter.
- if ((op.type == OperationType::L2_NORMALIZATION && op.inputs.size() == 1) ||
- (op.type == OperationType::LOCAL_RESPONSE_NORMALIZATION && op.inputs.size() == 5) ||
- (op.type == OperationType::SOFTMAX && op.inputs.size() == 2)) {
- return true;
- }
- return false;
-}
-
-static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operation = 0; operation < model.operations.size(); ++operation) {
- if (addOperationInputSkip(model.operations[operation])) {
- continue;
- }
- const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
- validate(device, message, model, [operation](Model* model) {
- uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
- hidl_vec_push_back(&model->operations[operation].inputs, index);
- hidl_vec_push_back(&model->inputIndexes, index);
- });
- }
-}
-
-///////////////////////// ADD OPERATION OUTPUT /////////////////////////
-
-static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
- for (size_t operation = 0; operation < model.operations.size(); ++operation) {
- const std::string message =
- "addOperationOutputTest: operation " + std::to_string(operation);
- validate(device, message, model, [operation](Model* model) {
- uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
- hidl_vec_push_back(&model->operations[operation].outputs, index);
- hidl_vec_push_back(&model->outputIndexes, index);
- });
- }
-}
-
-///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
-
-static const int32_t invalidExecutionPreferences[] = {
- static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1, // lower bound
- static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1, // upper bound
-};
-
-static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
- for (int32_t preference : invalidExecutionPreferences) {
- const std::string message =
- "mutateExecutionPreferenceTest: preference " + std::to_string(preference);
- validate(
- device, message, model, [](Model*) {},
- static_cast<ExecutionPreference>(preference));
- }
-}
-
-////////////////////////// ENTRY POINT //////////////////////////////
-
-void validateModel(const sp<IDevice>& device, const Model& model) {
- mutateOperandTypeTest(device, model);
- mutateOperandRankTest(device, model);
- mutateOperandScaleTest(device, model);
- mutateOperandZeroPointTest(device, model);
- mutateOperationOperandTypeTest(device, model);
- mutateOperationTypeTest(device, model);
- mutateOperationInputOperandIndexTest(device, model);
- mutateOperationOutputOperandIndexTest(device, model);
- removeOperandTest(device, model);
- removeOperationTest(device, model);
- removeOperationInputTest(device, model);
- removeOperationOutputTest(device, model);
- addOperationInputTest(device, model);
- addOperationOutputTest(device, model);
- mutateExecutionPreferenceTest(device, model);
-}
-
-} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/ValidateRequest.cpp b/neuralnetworks/1.3/vts/functional/ValidateRequest.cpp
deleted file mode 100644
index 6122123..0000000
--- a/neuralnetworks/1.3/vts/functional/ValidateRequest.cpp
+++ /dev/null
@@ -1,172 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "1.0/Utils.h"
-#include "1.2/Callbacks.h"
-#include "ExecutionBurstController.h"
-#include "GeneratedTestHarness.h"
-#include "TestHarness.h"
-#include "Utils.h"
-#include "VtsHalNeuralnetworks.h"
-
-namespace android::hardware::neuralnetworks::V1_3::vts::functional {
-
-using V1_0::ErrorStatus;
-using V1_0::Request;
-using V1_2::IPreparedModel;
-using V1_2::MeasureTiming;
-using V1_2::OutputShape;
-using V1_2::Timing;
-using V1_2::implementation::ExecutionCallback;
-
-///////////////////////// UTILITY FUNCTIONS /////////////////////////
-
-static bool badTiming(Timing timing) {
- return timing.timeOnDevice == UINT64_MAX && timing.timeInDriver == UINT64_MAX;
-}
-
-// Primary validation function. This function will take a valid request, apply a
-// mutation to it to invalidate the request, then pass it to interface calls
-// that use the request. Note that the request here is passed by value, and any
-// mutation to the request does not leave this function.
-static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
- Request request, const std::function<void(Request*)>& mutation) {
- mutation(&request);
-
- // We'd like to test both with timing requested and without timing
- // requested. Rather than running each test both ways, we'll decide whether
- // to request timing by hashing the message. We do not use std::hash because
- // it is not guaranteed stable across executions.
- char hash = 0;
- for (auto c : message) {
- hash ^= c;
- };
- MeasureTiming measure = (hash & 1) ? MeasureTiming::YES : MeasureTiming::NO;
-
- // asynchronous
- {
- SCOPED_TRACE(message + " [execute_1_2]");
-
- sp<ExecutionCallback> executionCallback = new ExecutionCallback();
- Return<ErrorStatus> executeLaunchStatus =
- preparedModel->execute_1_2(request, measure, executionCallback);
- ASSERT_TRUE(executeLaunchStatus.isOk());
- ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
-
- executionCallback->wait();
- ErrorStatus executionReturnStatus = executionCallback->getStatus();
- const auto& outputShapes = executionCallback->getOutputShapes();
- Timing timing = executionCallback->getTiming();
- ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
- ASSERT_EQ(outputShapes.size(), 0);
- ASSERT_TRUE(badTiming(timing));
- }
-
- // synchronous
- {
- SCOPED_TRACE(message + " [executeSynchronously]");
-
- Return<void> executeStatus = preparedModel->executeSynchronously(
- request, measure,
- [](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes,
- const Timing& timing) {
- ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
- EXPECT_EQ(outputShapes.size(), 0);
- EXPECT_TRUE(badTiming(timing));
- });
- ASSERT_TRUE(executeStatus.isOk());
- }
-
- // burst
- {
- SCOPED_TRACE(message + " [burst]");
-
- // create burst
- std::shared_ptr<::android::nn::ExecutionBurstController> burst =
- android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true);
- ASSERT_NE(nullptr, burst.get());
-
- // create memory keys
- std::vector<intptr_t> keys(request.pools.size());
- for (size_t i = 0; i < keys.size(); ++i) {
- keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
- }
-
- // execute and verify
- ErrorStatus error;
- std::vector<OutputShape> outputShapes;
- Timing timing;
- std::tie(error, outputShapes, timing) = burst->compute(request, measure, keys);
- EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
- EXPECT_EQ(outputShapes.size(), 0);
- EXPECT_TRUE(badTiming(timing));
-
- // additional burst testing
- if (request.pools.size() > 0) {
- // valid free
- burst->freeMemory(keys.front());
-
- // negative test: invalid free of unknown (blank) memory
- burst->freeMemory(intptr_t{});
-
- // negative test: double free of memory
- burst->freeMemory(keys.front());
- }
- }
-}
-
-///////////////////////// REMOVE INPUT ////////////////////////////////////
-
-static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
- for (size_t input = 0; input < request.inputs.size(); ++input) {
- const std::string message = "removeInput: removed input " + std::to_string(input);
- validate(preparedModel, message, request,
- [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
- }
-}
-
-///////////////////////// REMOVE OUTPUT ////////////////////////////////////
-
-static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
- for (size_t output = 0; output < request.outputs.size(); ++output) {
- const std::string message = "removeOutput: removed Output " + std::to_string(output);
- validate(preparedModel, message, request,
- [output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
- }
-}
-
-///////////////////////////// ENTRY POINT //////////////////////////////////
-
-void validateRequest(const sp<IPreparedModel>& preparedModel, const Request& request) {
- removeInputTest(preparedModel, request);
- removeOutputTest(preparedModel, request);
-}
-
-void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const Request& request) {
- SCOPED_TRACE("Expecting request to fail [executeSynchronously]");
- Return<void> executeStatus = preparedModel->executeSynchronously(
- request, MeasureTiming::NO,
- [](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes, const Timing& timing) {
- ASSERT_NE(ErrorStatus::NONE, error);
- EXPECT_EQ(outputShapes.size(), 0);
- EXPECT_TRUE(badTiming(timing));
- });
- ASSERT_TRUE(executeStatus.isOk());
-}
-
-} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
deleted file mode 100644
index 4f0e150..0000000
--- a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
+++ /dev/null
@@ -1,173 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "neuralnetworks_hidl_hal_test"
-
-#include "VtsHalNeuralnetworks.h"
-#include <android-base/logging.h>
-#include <hidl/ServiceManagement.h>
-#include <string>
-#include <utility>
-#include "1.0/Callbacks.h"
-#include "1.0/Utils.h"
-#include "GeneratedTestHarness.h"
-#include "TestHarness.h"
-
-namespace android::hardware::neuralnetworks::V1_3::vts::functional {
-
-using HidlToken =
- hidl_array<uint8_t, static_cast<uint32_t>(V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
-using V1_0::ErrorStatus;
-using V1_0::Request;
-using V1_1::ExecutionPreference;
-using V1_2::IPreparedModel;
-using V1_2::implementation::PreparedModelCallback;
-
-// internal helper function
-void createPreparedModel(const sp<IDevice>& device, const Model& model,
- sp<IPreparedModel>* preparedModel) {
- ASSERT_NE(nullptr, preparedModel);
- *preparedModel = nullptr;
-
- // see if service can handle model
- bool fullySupportsModel = false;
- const Return<void> supportedCall = device->getSupportedOperations_1_3(
- model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
- ASSERT_EQ(ErrorStatus::NONE, status);
- ASSERT_NE(0ul, supported.size());
- fullySupportsModel = std::all_of(supported.begin(), supported.end(),
- [](bool valid) { return valid; });
- });
- ASSERT_TRUE(supportedCall.isOk());
-
- // launch prepare model
- const sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
- const Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_3(
- model, ExecutionPreference::FAST_SINGLE_ANSWER, hidl_vec<hidl_handle>(),
- hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
- ASSERT_TRUE(prepareLaunchStatus.isOk());
- ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
-
- // retrieve prepared model
- preparedModelCallback->wait();
- const ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
- *preparedModel = getPreparedModel_1_2(preparedModelCallback);
-
- // The getSupportedOperations_1_3 call returns a list of operations that are
- // guaranteed not to fail if prepareModel_1_3 is called, and
- // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
- // If a driver has any doubt that it can prepare an operation, it must
- // return false. So here, if a driver isn't sure if it can support an
- // operation, but reports that it successfully prepared the model, the test
- // can continue.
- if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
- ASSERT_EQ(nullptr, preparedModel->get());
- LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot prepare "
- "model that it does not support.";
- std::cout << "[ ] Early termination of test because vendor service cannot "
- "prepare model that it does not support."
- << std::endl;
- GTEST_SKIP();
- }
- ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
- ASSERT_NE(nullptr, preparedModel->get());
-}
-
-void NeuralnetworksHidlTest::SetUp() {
- testing::TestWithParam<NeuralnetworksHidlTestParam>::SetUp();
- ASSERT_NE(kDevice, nullptr);
-}
-
-static NamedDevice makeNamedDevice(const std::string& name) {
- return {name, IDevice::getService(name)};
-}
-
-static std::vector<NamedDevice> getNamedDevicesImpl() {
- // Retrieves the name of all service instances that implement IDevice,
- // including any Lazy HAL instances.
- const std::vector<std::string> names = hardware::getAllHalInstanceNames(IDevice::descriptor);
-
- // Get a handle to each device and pair it with its name.
- std::vector<NamedDevice> namedDevices;
- namedDevices.reserve(names.size());
- std::transform(names.begin(), names.end(), std::back_inserter(namedDevices), makeNamedDevice);
- return namedDevices;
-}
-
-const std::vector<NamedDevice>& getNamedDevices() {
- const static std::vector<NamedDevice> devices = getNamedDevicesImpl();
- return devices;
-}
-
-std::string printNeuralnetworksHidlTest(
- const testing::TestParamInfo<NeuralnetworksHidlTestParam>& info) {
- return gtestCompliantName(getName(info.param));
-}
-
-INSTANTIATE_DEVICE_TEST(NeuralnetworksHidlTest);
-
-// Forward declaration from ValidateModel.cpp
-void validateModel(const sp<IDevice>& device, const Model& model);
-// Forward declaration from ValidateRequest.cpp
-void validateRequest(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
-// Forward declaration from ValidateRequest.cpp
-void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
-// Forward declaration from ValidateBurst.cpp
-void validateBurst(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
-
-void validateEverything(const sp<IDevice>& device, const Model& model, const Request& request) {
- validateModel(device, model);
-
- // Create IPreparedModel.
- sp<IPreparedModel> preparedModel;
- createPreparedModel(device, model, &preparedModel);
- if (preparedModel == nullptr) return;
-
- validateRequest(preparedModel, request);
- validateBurst(preparedModel, request);
-}
-
-void validateFailure(const sp<IDevice>& device, const Model& model, const Request& request) {
- // TODO: Should this always succeed?
- // What if the invalid input is part of the model (i.e., a parameter).
- validateModel(device, model);
-
- // Create IPreparedModel.
- sp<IPreparedModel> preparedModel;
- createPreparedModel(device, model, &preparedModel);
- if (preparedModel == nullptr) return;
-
- validateRequestFailure(preparedModel, request);
-}
-
-TEST_P(ValidationTest, Test) {
- const Model model = createModel(kTestModel);
- const Request request = createRequest(kTestModel);
- if (kTestModel.expectFailure) {
- validateFailure(kDevice, model, request);
- } else {
- validateEverything(kDevice, model, request);
- }
-}
-
-INSTANTIATE_GENERATED_TEST(ValidationTest, [](const test_helper::TestModel&) { return true; });
-
-sp<IPreparedModel> getPreparedModel_1_2(const sp<PreparedModelCallback>& callback) {
- sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
- return IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
-}
-
-} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h
deleted file mode 100644
index fc654ce..0000000
--- a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h
+++ /dev/null
@@ -1,58 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#ifndef ANDROID_HARDWARE_NEURALNETWORKS_V1_3_VTS_HAL_NEURALNETWORKS_H
-#define ANDROID_HARDWARE_NEURALNETWORKS_V1_3_VTS_HAL_NEURALNETWORKS_H
-
-#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
-#include <android/hardware/neuralnetworks/1.3/IDevice.h>
-#include <android/hardware/neuralnetworks/1.3/types.h>
-#include <gtest/gtest.h>
-#include "1.0/Utils.h"
-#include "1.2/Callbacks.h"
-
-namespace android::hardware::neuralnetworks::V1_3::vts::functional {
-
-using NamedDevice = Named<sp<IDevice>>;
-using NeuralnetworksHidlTestParam = NamedDevice;
-
-class NeuralnetworksHidlTest : public testing::TestWithParam<NeuralnetworksHidlTestParam> {
- protected:
- void SetUp() override;
- const sp<IDevice> kDevice = getData(GetParam());
-};
-
-const std::vector<NamedDevice>& getNamedDevices();
-
-std::string printNeuralnetworksHidlTest(
- const testing::TestParamInfo<NeuralnetworksHidlTestParam>& info);
-
-#define INSTANTIATE_DEVICE_TEST(TestSuite) \
- INSTANTIATE_TEST_SUITE_P(PerInstance, TestSuite, testing::ValuesIn(getNamedDevices()), \
- printNeuralnetworksHidlTest)
-
-// Create an IPreparedModel object. If the model cannot be prepared,
-// "preparedModel" will be nullptr instead.
-void createPreparedModel(const sp<IDevice>& device, const Model& model,
- sp<V1_2::IPreparedModel>* preparedModel);
-
-// Utility function to get PreparedModel from callback and downcast to V1_2.
-sp<V1_2::IPreparedModel> getPreparedModel_1_2(
- const sp<V1_2::implementation::PreparedModelCallback>& callback);
-
-} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
-
-#endif // ANDROID_HARDWARE_NEURALNETWORKS_V1_3_VTS_HAL_NEURALNETWORKS_H
diff --git a/radio/1.2/vts/functional/radio_hidl_hal_api.cpp b/radio/1.2/vts/functional/radio_hidl_hal_api.cpp
index 5184ef9..a98f22a 100644
--- a/radio/1.2/vts/functional/radio_hidl_hal_api.cpp
+++ b/radio/1.2/vts/functional/radio_hidl_hal_api.cpp
@@ -46,7 +46,10 @@
::android::hardware::radio::V1_2::NetworkScanRequest request = {
.type = ScanType::ONE_SHOT,
.interval = 60,
- .specifiers = {::GERAN_SPECIFIER_P900, ::GERAN_SPECIFIER_850}};
+ .specifiers = {::GERAN_SPECIFIER_P900, ::GERAN_SPECIFIER_850},
+ .maxSearchTime = 60,
+ .incrementalResults = false,
+ .incrementalResultsPeriodicity = 1};
Return<void> res = radio_v1_2->startNetworkScan_1_2(serial, request);
ASSERT_OK(res);
diff --git a/radio/1.4/vts/functional/radio_hidl_hal_api.cpp b/radio/1.4/vts/functional/radio_hidl_hal_api.cpp
index b2d19a2..d3012bb 100644
--- a/radio/1.4/vts/functional/radio_hidl_hal_api.cpp
+++ b/radio/1.4/vts/functional/radio_hidl_hal_api.cpp
@@ -178,7 +178,12 @@
.channels = {1, 2}};
::android::hardware::radio::V1_2::NetworkScanRequest request = {
- .type = ScanType::ONE_SHOT, .interval = 60, .specifiers = {specifier}};
+ .type = ScanType::ONE_SHOT,
+ .interval = 60,
+ .specifiers = {specifier},
+ .maxSearchTime = 60,
+ .incrementalResults = false,
+ .incrementalResultsPeriodicity = 1};
Return<void> res = radio_v1_4->startNetworkScan_1_4(serial, request);
ASSERT_OK(res);