Adds sensors HAL AIDL interface

Bug: 195593357
Test: Compile
Change-Id: I6c63a6ba2dc3fbe5b25f401728d0724df2620bef
diff --git a/sensors/aidl/vts/Android.bp b/sensors/aidl/vts/Android.bp
new file mode 100644
index 0000000..5a519a5
--- /dev/null
+++ b/sensors/aidl/vts/Android.bp
@@ -0,0 +1,49 @@
+// Copyright 2021 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package {
+    // See: http://go/android-license-faq
+    // A large-scale-change added 'default_applicable_licenses' to import
+    // all of the 'license_kinds' from "hardware_interfaces_license"
+    // to get the below license kinds:
+    //   SPDX-license-identifier-Apache-2.0
+    default_applicable_licenses: ["hardware_interfaces_license"],
+}
+
+cc_test {
+    name: "VtsAidlHalSensorsTargetTest",
+    defaults: [
+        "VtsHalTargetTestDefaults",
+        "use_libaidlvintf_gtest_helper_static",
+    ],
+    srcs: [
+        "VtsAidlHalSensorsTargetTest.cpp",
+        "SensorsAidlEnvironment.cpp",
+    ],
+    shared_libs: [
+        "libbinder",
+        "libbinder_ndk",
+        "libfmq",
+        "android.hardware.common-V2-ndk",
+        "android.hardware.common.fmq-V1-ndk",
+    ],
+    static_libs: [
+        "android.hardware.sensors-V1-ndk",
+        "VtsHalSensorsTargetTestUtils",
+    ],
+    test_suites: [
+        "general-tests",
+        "vts",
+    ],
+}
diff --git a/sensors/aidl/vts/OWNERS b/sensors/aidl/vts/OWNERS
new file mode 100644
index 0000000..90c2330
--- /dev/null
+++ b/sensors/aidl/vts/OWNERS
@@ -0,0 +1,3 @@
+arthuri@google.com
+bduddie@google.com
+stange@google.com
diff --git a/sensors/aidl/vts/SensorsAidlEnvironment.cpp b/sensors/aidl/vts/SensorsAidlEnvironment.cpp
new file mode 100644
index 0000000..e71251f
--- /dev/null
+++ b/sensors/aidl/vts/SensorsAidlEnvironment.cpp
@@ -0,0 +1,164 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "SensorsAidlEnvironment.h"
+
+#include <android/binder_manager.h>
+#include <log/log.h>
+
+#include <aidl/android/hardware/sensors/BnSensorsCallback.h>
+
+using aidl::android::hardware::sensors::BnSensorsCallback;
+using aidl::android::hardware::sensors::SensorInfo;
+using android::hardware::EventFlag;
+using ndk::ScopedAStatus;
+using ndk::SpAIBinder;
+
+namespace {
+
+void serviceDied(void* /* cookie */) {
+    ALOGE("Sensors HAL died (likely crashed) during test");
+    FAIL() << "Sensors HAL died during test";
+}
+
+class NoOpSensorsCallback : public BnSensorsCallback {
+  public:
+    ScopedAStatus onDynamicSensorsConnected(
+            const std::vector<SensorInfo>& /* sensorInfos */) override {
+        return ScopedAStatus::ok();
+    }
+
+    ScopedAStatus onDynamicSensorsDisconnected(
+            const std::vector<int32_t>& /* sensorHandles */) override {
+        return ScopedAStatus::ok();
+    }
+};
+
+}  // anonymous namespace
+
+SensorsAidlEnvironment::SensorsAidlEnvironment(const std::string& service_name)
+    : SensorsVtsEnvironmentBase(service_name),
+      mCallback(ndk::SharedRefBase::make<NoOpSensorsCallback>()),
+      mDeathRecipient(AIBinder_DeathRecipient_new(serviceDied)) {}
+
+bool SensorsAidlEnvironment::resetHal() {
+    bool succeed = false;
+    do {
+        mSensors = ISensors::fromBinder(
+                SpAIBinder(AServiceManager_waitForService(mServiceName.c_str())));
+        if (mSensors == nullptr) {
+            break;
+        }
+
+        AIBinder_linkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
+
+        // Initialize FMQs
+        mWakeLockQueue = std::make_unique<WakeLockQueue>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
+                                                         true /* configureEventFlagWord */);
+        mEventQueue = std::make_unique<EventQueue>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
+                                                   true /* configureEventFlagWord */);
+
+        if (mWakeLockQueue == nullptr || mEventQueue == nullptr) {
+            break;
+        }
+
+        EventFlag::deleteEventFlag(&mEventQueueFlag);
+        EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
+        if (mEventQueueFlag == nullptr) {
+            break;
+        }
+
+        mSensors->initialize(mEventQueue->dupeDesc(), mWakeLockQueue->dupeDesc(), mCallback);
+
+        std::vector<SensorInfo> sensorList;
+        if (!mSensors->getSensorsList(&sensorList).isOk()) {
+            break;
+        }
+
+        // stop each sensor individually
+        bool ok = true;
+        for (const auto& i : sensorList) {
+            if (!mSensors->activate(i.sensorHandle, false).isOk()) {
+                ok = false;
+                break;
+            }
+        }
+
+        if (!ok) {
+            break;
+        }
+
+        // mark it done
+        succeed = true;
+    } while (0);
+
+    if (!succeed) {
+        mSensors = nullptr;
+    }
+
+    return succeed;
+}
+
+void SensorsAidlEnvironment::TearDown() {
+    mStopThread = true;
+
+    if (mEventQueueFlag != nullptr) {
+        // Wake up the event queue so the poll thread can exit
+        mEventQueueFlag->wake(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS);
+        if (mPollThread.joinable()) {
+            mPollThread.join();
+        }
+
+        EventFlag::deleteEventFlag(&mEventQueueFlag);
+    }
+}
+
+void SensorsAidlEnvironment::startPollingThread() {
+    mStopThread = false;
+    mEvents.reserve(MAX_RECEIVE_BUFFER_EVENT_COUNT);
+    mPollThread = std::thread(pollingThread, this);
+}
+
+void SensorsAidlEnvironment::readEvents() {
+    size_t availableEvents = mEventQueue->availableToRead();
+
+    if (availableEvents == 0) {
+        uint32_t eventFlagState = 0;
+
+        mEventQueueFlag->wait(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS, &eventFlagState);
+        availableEvents = mEventQueue->availableToRead();
+    }
+
+    size_t eventsToRead = std::min(availableEvents, mEventBuffer.size());
+    if (eventsToRead > 0) {
+        if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
+            mEventQueueFlag->wake(ISensors::EVENT_QUEUE_FLAG_BITS_EVENTS_READ);
+            for (size_t i = 0; i < eventsToRead; i++) {
+                addEvent(mEventBuffer[i]);
+            }
+        }
+    }
+}
+
+void SensorsAidlEnvironment::pollingThread(SensorsAidlEnvironment* env) {
+    ALOGD("polling thread start");
+
+    while (!env->mStopThread.load()) {
+        env->readEvents();
+    }
+
+    ALOGD("polling thread end");
+}
diff --git a/sensors/aidl/vts/SensorsAidlEnvironment.h b/sensors/aidl/vts/SensorsAidlEnvironment.h
new file mode 100644
index 0000000..2f5f287
--- /dev/null
+++ b/sensors/aidl/vts/SensorsAidlEnvironment.h
@@ -0,0 +1,110 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_SENSORS_AIDL_ENVIRONMENT_H
+#define ANDROID_SENSORS_AIDL_ENVIRONMENT_H
+
+#include "sensors-vts-utils/SensorsVtsEnvironmentBase.h"
+
+#include <atomic>
+#include <memory>
+#include <mutex>
+#include <thread>
+#include <vector>
+
+#include <aidl/android/hardware/sensors/ISensors.h>
+#include <fmq/AidlMessageQueue.h>
+
+using aidl::android::hardware::common::fmq::SynchronizedReadWrite;
+using aidl::android::hardware::sensors::Event;
+using aidl::android::hardware::sensors::ISensors;
+using aidl::android::hardware::sensors::ISensorsCallback;
+
+static constexpr size_t MAX_RECEIVE_BUFFER_EVENT_COUNT = 256;
+
+class SensorsAidlTest;
+
+class SensorsAidlEnvironment : public SensorsVtsEnvironmentBase<Event> {
+  public:
+    virtual void TearDown() override;
+
+  protected:
+    friend SensorsAidlTest;
+    SensorsAidlEnvironment(const std::string& service_name);
+
+    /**
+     * Resets the HAL with new FMQs and a new Event Flag
+     *
+     * @return bool true if successful, false otherwise
+     */
+    bool resetHal() override;
+
+    /**
+     * Starts the polling thread that reads sensor events from the Event FMQ
+     */
+    void startPollingThread() override;
+
+    /**
+     * Thread responsible for calling functions to read Event FMQ
+     *
+     * @param env SensorEnvironment to being polling for events on
+     */
+    static void pollingThread(SensorsAidlEnvironment* env);
+
+    /**
+     * Reads and saves sensor events from the Event FMQ
+     */
+    void readEvents();
+
+    GTEST_DISALLOW_COPY_AND_ASSIGN_(SensorsAidlEnvironment);
+
+    /**
+     * Pointer to the Sensors HAL Interface that allows the test to call HAL functions.
+     */
+    std::shared_ptr<ISensors> mSensors;
+    std::shared_ptr<ISensorsCallback> mCallback;
+
+    ndk::ScopedAIBinder_DeathRecipient mDeathRecipient;
+
+    /**
+     * Type used to simplify the creation of the Wake Lock FMQ
+     */
+    typedef android::AidlMessageQueue<int32_t, SynchronizedReadWrite> WakeLockQueue;
+    typedef android::AidlMessageQueue<Event, SynchronizedReadWrite> EventQueue;
+
+    /**
+     * The Wake Lock FMQ is used by the test to notify the Sensors HAL whenever it has processed
+     * WAKE_UP sensor events.
+     */
+    std::unique_ptr<WakeLockQueue> mWakeLockQueue;
+    std::unique_ptr<EventQueue> mEventQueue;
+
+    /**
+     * The Event Queue Flag notifies the test framework when sensor events have been written to the
+     * Event FMQ by the Sensors HAL.
+     */
+    ::android::hardware::EventFlag* mEventQueueFlag;
+
+    std::atomic_bool mStopThread;
+    std::thread mPollThread;
+
+    /**
+     * An array that is used to store sensor events read from the Event FMQ
+     */
+    std::array<Event, MAX_RECEIVE_BUFFER_EVENT_COUNT> mEventBuffer;
+};
+
+#endif  // ANDROID_SENSORS_AIDL_ENVIRONMENT_H
diff --git a/sensors/aidl/vts/VtsAidlHalSensorsTargetTest.cpp b/sensors/aidl/vts/VtsAidlHalSensorsTargetTest.cpp
new file mode 100644
index 0000000..33645b2
--- /dev/null
+++ b/sensors/aidl/vts/VtsAidlHalSensorsTargetTest.cpp
@@ -0,0 +1,871 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include <aidl/Gtest.h>
+#include <aidl/Vintf.h>
+
+#include <aidl/android/hardware/sensors/BnSensors.h>
+#include <aidl/android/hardware/sensors/ISensors.h>
+#include <android/binder_manager.h>
+#include <binder/IServiceManager.h>
+#include <binder/ProcessState.h>
+#include <hardware/sensors.h>
+#include <log/log.h>
+#include <utils/SystemClock.h>
+
+#include "SensorsAidlEnvironment.h"
+#include "sensors-vts-utils/SensorsVtsEnvironmentBase.h"
+
+#include <cinttypes>
+#include <condition_variable>
+#include <map>
+#include <unordered_map>
+#include <unordered_set>
+#include <vector>
+
+using aidl::android::hardware::sensors::Event;
+using aidl::android::hardware::sensors::ISensors;
+using aidl::android::hardware::sensors::SensorInfo;
+using aidl::android::hardware::sensors::SensorStatus;
+using aidl::android::hardware::sensors::SensorType;
+using android::ProcessState;
+using std::chrono::duration_cast;
+
+namespace {
+
+static void assertTypeMatchStringType(SensorType type, const std::string& stringType) {
+    if (type >= SensorType::DEVICE_PRIVATE_BASE) {
+        return;
+    }
+
+    switch (type) {
+#define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type)                      \
+    case SensorType::type:                                           \
+        ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
+        break;
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
+        default:
+            FAIL() << "Type " << static_cast<int>(type)
+                   << " in android defined range is not checked, "
+                   << "stringType = " << stringType;
+#undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
+    }
+}
+
+int expectedReportModeForType(SensorType type) {
+    switch (type) {
+        case SensorType::ACCELEROMETER:
+        case SensorType::ACCELEROMETER_UNCALIBRATED:
+        case SensorType::GYROSCOPE:
+        case SensorType::MAGNETIC_FIELD:
+        case SensorType::ORIENTATION:
+        case SensorType::PRESSURE:
+        case SensorType::GRAVITY:
+        case SensorType::LINEAR_ACCELERATION:
+        case SensorType::ROTATION_VECTOR:
+        case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
+        case SensorType::GAME_ROTATION_VECTOR:
+        case SensorType::GYROSCOPE_UNCALIBRATED:
+        case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
+        case SensorType::POSE_6DOF:
+        case SensorType::HEART_BEAT:
+            return SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE;
+
+        case SensorType::LIGHT:
+        case SensorType::PROXIMITY:
+        case SensorType::RELATIVE_HUMIDITY:
+        case SensorType::AMBIENT_TEMPERATURE:
+        case SensorType::HEART_RATE:
+        case SensorType::DEVICE_ORIENTATION:
+        case SensorType::STEP_COUNTER:
+        case SensorType::LOW_LATENCY_OFFBODY_DETECT:
+            return SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE;
+
+        case SensorType::SIGNIFICANT_MOTION:
+        case SensorType::WAKE_GESTURE:
+        case SensorType::GLANCE_GESTURE:
+        case SensorType::PICK_UP_GESTURE:
+        case SensorType::MOTION_DETECT:
+        case SensorType::STATIONARY_DETECT:
+            return SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE;
+
+        case SensorType::STEP_DETECTOR:
+        case SensorType::TILT_DETECTOR:
+        case SensorType::WRIST_TILT_GESTURE:
+        case SensorType::DYNAMIC_SENSOR_META:
+            return SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE;
+
+        default:
+            ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
+            return INT32_MAX;
+    }
+}
+
+void assertTypeMatchReportMode(SensorType type, int reportMode) {
+    if (type >= SensorType::DEVICE_PRIVATE_BASE) {
+        return;
+    }
+
+    int expected = expectedReportModeForType(type);
+
+    ASSERT_TRUE(expected == INT32_MAX || expected == reportMode)
+            << "reportMode=" << static_cast<int>(reportMode)
+            << "expected=" << static_cast<int>(expected);
+}
+
+void assertDelayMatchReportMode(int32_t minDelayUs, int32_t maxDelayUs, int reportMode) {
+    switch (reportMode) {
+        case SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE:
+            ASSERT_LT(0, minDelayUs);
+            ASSERT_LE(0, maxDelayUs);
+            break;
+        case SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE:
+            ASSERT_LE(0, minDelayUs);
+            ASSERT_LE(0, maxDelayUs);
+            break;
+        case SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE:
+            ASSERT_EQ(-1, minDelayUs);
+            ASSERT_EQ(0, maxDelayUs);
+            break;
+        case SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE:
+            // do not enforce anything for special reporting mode
+            break;
+        default:
+            FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
+    }
+}
+
+void checkIsOk(ndk::ScopedAStatus status) {
+    ASSERT_TRUE(status.isOk());
+}
+
+}  // namespace
+
+class EventCallback : public IEventCallback<Event> {
+  public:
+    void reset() {
+        mFlushMap.clear();
+        mEventMap.clear();
+    }
+
+    void onEvent(const Event& event) override {
+        if (event.sensorType == SensorType::META_DATA &&
+            event.payload.get<Event::EventPayload::Tag::meta>().what ==
+                    Event::EventPayload::MetaData::MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
+            std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
+            mFlushMap[event.sensorHandle]++;
+            mFlushCV.notify_all();
+        } else if (event.sensorType != SensorType::ADDITIONAL_INFO) {
+            std::unique_lock<std::recursive_mutex> lock(mEventMutex);
+            mEventMap[event.sensorHandle].push_back(event);
+            mEventCV.notify_all();
+        }
+    }
+
+    int32_t getFlushCount(int32_t sensorHandle) {
+        std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
+        return mFlushMap[sensorHandle];
+    }
+
+    void waitForFlushEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
+                            int32_t numCallsToFlush, std::chrono::milliseconds timeout) {
+        std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
+        mFlushCV.wait_for(lock, timeout,
+                          [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
+    }
+
+    const std::vector<Event> getEvents(int32_t sensorHandle) {
+        std::unique_lock<std::recursive_mutex> lock(mEventMutex);
+        return mEventMap[sensorHandle];
+    }
+
+    void waitForEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
+                       std::chrono::milliseconds timeout) {
+        std::unique_lock<std::recursive_mutex> lock(mEventMutex);
+        mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
+    }
+
+  protected:
+    bool flushesReceived(const std::vector<SensorInfo>& sensorsToWaitFor, int32_t numCallsToFlush) {
+        for (const SensorInfo& sensor : sensorsToWaitFor) {
+            if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    bool eventsReceived(const std::vector<SensorInfo>& sensorsToWaitFor) {
+        for (const SensorInfo& sensor : sensorsToWaitFor) {
+            if (getEvents(sensor.sensorHandle).size() == 0) {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    std::map<int32_t, int32_t> mFlushMap;
+    std::recursive_mutex mFlushMutex;
+    std::condition_variable_any mFlushCV;
+
+    std::map<int32_t, std::vector<Event>> mEventMap;
+    std::recursive_mutex mEventMutex;
+    std::condition_variable_any mEventCV;
+};
+
+class SensorsAidlTest : public testing::TestWithParam<std::string> {
+  public:
+    virtual void SetUp() override {
+        mEnvironment = new SensorsAidlEnvironment(GetParam());
+        mEnvironment->SetUp();
+
+        // Ensure that we have a valid environment before performing tests
+        ASSERT_NE(getSensors(), nullptr);
+    }
+
+    virtual void TearDown() override {
+        for (int32_t handle : mSensorHandles) {
+            activate(handle, false);
+        }
+        mSensorHandles.clear();
+
+        mEnvironment->TearDown();
+        delete mEnvironment;
+        mEnvironment = nullptr;
+    }
+
+  protected:
+    std::vector<SensorInfo> getNonOneShotSensors();
+    std::vector<SensorInfo> getNonOneShotAndNonSpecialSensors();
+    std::vector<SensorInfo> getNonOneShotAndNonOnChangeAndNonSpecialSensors();
+    std::vector<SensorInfo> getOneShotSensors();
+    std::vector<SensorInfo> getInjectEventSensors();
+
+    inline std::shared_ptr<ISensors>& getSensors() { return mEnvironment->mSensors; }
+
+    inline SensorsAidlEnvironment* getEnvironment() { return mEnvironment; }
+
+    inline bool isValidType(SensorType sensorType) { return (int)sensorType > 0; }
+
+    std::vector<SensorInfo> getSensorsList();
+
+    int32_t getInvalidSensorHandle() {
+        // Find a sensor handle that does not exist in the sensor list
+        int32_t maxHandle = 0;
+        for (const SensorInfo& sensor : getSensorsList()) {
+            maxHandle = std::max(maxHandle, sensor.sensorHandle);
+        }
+        return maxHandle + 1;
+    }
+
+    ndk::ScopedAStatus activate(int32_t sensorHandle, bool enable);
+    void activateAllSensors(bool enable);
+
+    ndk::ScopedAStatus batch(int32_t sensorHandle, int64_t samplingPeriodNs,
+                             int64_t maxReportLatencyNs) {
+        return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
+    }
+
+    ndk::ScopedAStatus flush(int32_t sensorHandle) { return getSensors()->flush(sensorHandle); }
+
+    void runSingleFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
+                            int32_t expectedFlushCount, bool expectedResult);
+
+    void runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
+                      int32_t flushCalls, int32_t expectedFlushCount, bool expectedResult);
+
+    inline static int32_t extractReportMode(int32_t flag) {
+        return (flag & (SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE |
+                        SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
+                        SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE |
+                        SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE));
+    }
+
+    // All sensors and direct channnels used
+    std::unordered_set<int32_t> mSensorHandles;
+    std::unordered_set<int32_t> mDirectChannelHandles;
+
+  private:
+    SensorsAidlEnvironment* mEnvironment;
+};
+
+std::vector<SensorInfo> SensorsAidlTest::getSensorsList() {
+    std::vector<SensorInfo> sensorInfoList;
+    checkIsOk(getSensors()->getSensorsList(&sensorInfoList));
+    return sensorInfoList;
+}
+
+ndk::ScopedAStatus SensorsAidlTest::activate(int32_t sensorHandle, bool enable) {
+    // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
+    // The handle is not removed when it is deactivating on purpose so that it is not necessary to
+    // check the return value of deactivation. Deactivating a sensor more than once does not have
+    // negative effect.
+    if (enable) {
+        mSensorHandles.insert(sensorHandle);
+    }
+    return getSensors()->activate(sensorHandle, enable);
+}
+
+void SensorsAidlTest::activateAllSensors(bool enable) {
+    for (const SensorInfo& sensorInfo : getSensorsList()) {
+        if (isValidType(sensorInfo.type)) {
+            checkIsOk(batch(sensorInfo.sensorHandle, sensorInfo.minDelayUs,
+                            0 /* maxReportLatencyNs */));
+            checkIsOk(activate(sensorInfo.sensorHandle, enable));
+        }
+    }
+}
+
+std::vector<SensorInfo> SensorsAidlTest::getNonOneShotSensors() {
+    std::vector<SensorInfo> sensors;
+    for (const SensorInfo& info : getSensorsList()) {
+        if (extractReportMode(info.flags) != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
+            sensors.push_back(info);
+        }
+    }
+    return sensors;
+}
+
+std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonSpecialSensors() {
+    std::vector<SensorInfo> sensors;
+    for (const SensorInfo& info : getSensorsList()) {
+        int reportMode = extractReportMode(info.flags);
+        if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
+            reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
+            sensors.push_back(info);
+        }
+    }
+    return sensors;
+}
+
+std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() {
+    std::vector<SensorInfo> sensors;
+    for (const SensorInfo& info : getSensorsList()) {
+        int reportMode = extractReportMode(info.flags);
+        if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
+            reportMode != SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE &&
+            reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
+            sensors.push_back(info);
+        }
+    }
+    return sensors;
+}
+
+std::vector<SensorInfo> SensorsAidlTest::getOneShotSensors() {
+    std::vector<SensorInfo> sensors;
+    for (const SensorInfo& info : getSensorsList()) {
+        if (extractReportMode(info.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
+            sensors.push_back(info);
+        }
+    }
+    return sensors;
+}
+
+std::vector<SensorInfo> SensorsAidlTest::getInjectEventSensors() {
+    std::vector<SensorInfo> out;
+    std::vector<SensorInfo> sensorInfoList = getSensorsList();
+    for (const SensorInfo& info : sensorInfoList) {
+        if (info.flags & SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION) {
+            out.push_back(info);
+        }
+    }
+    return out;
+}
+
+void SensorsAidlTest::runSingleFlushTest(const std::vector<SensorInfo>& sensors,
+                                         bool activateSensor, int32_t expectedFlushCount,
+                                         bool expectedResult) {
+    runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResult);
+}
+
+void SensorsAidlTest::runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
+                                   int32_t flushCalls, int32_t expectedFlushCount,
+                                   bool expectedResult) {
+    EventCallback callback;
+    getEnvironment()->registerCallback(&callback);
+
+    for (const SensorInfo& sensor : sensors) {
+        // Configure and activate the sensor
+        batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */);
+        activate(sensor.sensorHandle, activateSensor);
+
+        // Flush the sensor
+        for (int32_t i = 0; i < flushCalls; i++) {
+            SCOPED_TRACE(::testing::Message()
+                         << "Flush " << i << "/" << flushCalls << ": "
+                         << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
+                         << sensor.sensorHandle << std::dec
+                         << " type=" << static_cast<int>(sensor.type) << " name=" << sensor.name);
+
+            EXPECT_EQ(flush(sensor.sensorHandle).isOk(), expectedResult);
+        }
+    }
+
+    // Wait up to one second for the flush events
+    callback.waitForFlushEvents(sensors, flushCalls, std::chrono::milliseconds(1000) /* timeout */);
+
+    // Deactivate all sensors after waiting for flush events so pending flush events are not
+    // abandoned by the HAL.
+    for (const SensorInfo& sensor : sensors) {
+        activate(sensor.sensorHandle, false);
+    }
+    getEnvironment()->unregisterCallback();
+
+    // Check that the correct number of flushes are present for each sensor
+    for (const SensorInfo& sensor : sensors) {
+        SCOPED_TRACE(::testing::Message()
+                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
+                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
+                     << " name=" << sensor.name);
+        ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
+    }
+}
+
+TEST_P(SensorsAidlTest, SensorListValid) {
+    std::vector<SensorInfo> sensorInfoList = getSensorsList();
+    std::unordered_map<int32_t, std::vector<std::string>> sensorTypeNameMap;
+    for (size_t i = 0; i < sensorInfoList.size(); ++i) {
+        const SensorInfo& info = sensorInfoList[i];
+        SCOPED_TRACE(::testing::Message()
+                     << i << "/" << sensorInfoList.size() << ": "
+                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
+                     << info.sensorHandle << std::dec << " type=" << static_cast<int>(info.type)
+                     << " name=" << info.name);
+
+        // Test type string non-empty only for private sensor typeinfo.
+        if (info.type >= SensorType::DEVICE_PRIVATE_BASE) {
+            EXPECT_FALSE(info.typeAsString.empty());
+        } else if (!info.typeAsString.empty()) {
+            // Test type string matches framework string if specified for non-private typeinfo.
+            EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(info.type, info.typeAsString));
+        }
+
+        // Test if all sensor has name and vendor
+        EXPECT_FALSE(info.name.empty());
+        EXPECT_FALSE(info.vendor.empty());
+
+        // Make sure that sensors of the same type have a unique name.
+        std::vector<std::string>& v = sensorTypeNameMap[static_cast<int32_t>(info.type)];
+        bool isUniqueName = std::find(v.begin(), v.end(), info.name) == v.end();
+        EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << info.name;
+        if (isUniqueName) {
+            v.push_back(info.name);
+        }
+
+        EXPECT_LE(0, info.power);
+        EXPECT_LT(0, info.maxRange);
+
+        // Info type, should have no sensor
+        EXPECT_FALSE(info.type == SensorType::ADDITIONAL_INFO ||
+                     info.type == SensorType::META_DATA);
+
+        EXPECT_GE(info.fifoMaxEventCount, info.fifoReservedEventCount);
+
+        // Test Reporting mode valid
+        EXPECT_NO_FATAL_FAILURE(
+                assertTypeMatchReportMode(info.type, extractReportMode(info.flags)));
+
+        // Test min max are in the right order
+        EXPECT_LE(info.minDelayUs, info.maxDelayUs);
+        // Test min/max delay matches reporting mode
+        EXPECT_NO_FATAL_FAILURE(assertDelayMatchReportMode(info.minDelayUs, info.maxDelayUs,
+                                                           extractReportMode(info.flags)));
+    }
+}
+
+TEST_P(SensorsAidlTest, SetOperationMode) {
+    if (getInjectEventSensors().size() > 0) {
+        ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
+        ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
+        ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
+    } else {
+        ASSERT_EQ(getSensors()
+                          ->setOperationMode(ISensors::OperationMode::DATA_INJECTION)
+                          .getExceptionCode(),
+                  EX_UNSUPPORTED_OPERATION);
+    }
+}
+
+TEST_P(SensorsAidlTest, InjectSensorEventData) {
+    std::vector<SensorInfo> sensors = getInjectEventSensors();
+    if (sensors.size() == 0) {
+        return;
+    }
+
+    ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
+
+    EventCallback callback;
+    getEnvironment()->registerCallback(&callback);
+
+    // AdditionalInfo event should not be sent to Event FMQ
+    Event additionalInfoEvent;
+    additionalInfoEvent.sensorType = SensorType::ADDITIONAL_INFO;
+    additionalInfoEvent.timestamp = android::elapsedRealtimeNano();
+
+    Event injectedEvent;
+    injectedEvent.timestamp = android::elapsedRealtimeNano();
+    Event::EventPayload::Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
+    injectedEvent.payload.set<Event::EventPayload::Tag::vec3>(data);
+
+    for (const auto& s : sensors) {
+        additionalInfoEvent.sensorHandle = s.sensorHandle;
+        ASSERT_TRUE(getSensors()->injectSensorData(additionalInfoEvent).isOk());
+
+        injectedEvent.sensorType = s.type;
+        injectedEvent.sensorHandle = s.sensorHandle;
+        ASSERT_TRUE(getSensors()->injectSensorData(injectedEvent).isOk());
+    }
+
+    // Wait for events to be written back to the Event FMQ
+    callback.waitForEvents(sensors, std::chrono::milliseconds(1000) /* timeout */);
+    getEnvironment()->unregisterCallback();
+
+    for (const auto& s : sensors) {
+        auto events = callback.getEvents(s.sensorHandle);
+        if (events.empty()) {
+            FAIL() << "Received no events";
+        } else {
+            auto lastEvent = events.back();
+            SCOPED_TRACE(::testing::Message()
+                         << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
+                         << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
+                         << " name=" << s.name);
+
+            // Verify that only a single event has been received
+            ASSERT_EQ(events.size(), 1);
+
+            // Verify that the event received matches the event injected and is not the additional
+            // info event
+            ASSERT_EQ(lastEvent.sensorType, s.type);
+            ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
+            ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().x,
+                      injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().x);
+            ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().y,
+                      injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().y);
+            ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().z,
+                      injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().z);
+            ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().status,
+                      injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().status);
+        }
+    }
+
+    ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
+}
+
+TEST_P(SensorsAidlTest, CallInitializeTwice) {
+    // Create a helper class so that a second environment is able to be instantiated
+    class SensorsAidlEnvironmentTest : public SensorsAidlEnvironment {
+      public:
+        SensorsAidlEnvironmentTest(const std::string& service_name)
+            : SensorsAidlEnvironment(service_name) {}
+    };
+
+    if (getSensorsList().size() == 0) {
+        // No sensors
+        return;
+    }
+
+    constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
+    constexpr int32_t kNumEvents = 1;
+
+    // Create a new environment that calls initialize()
+    std::unique_ptr<SensorsAidlEnvironmentTest> newEnv =
+            std::make_unique<SensorsAidlEnvironmentTest>(GetParam());
+    newEnv->SetUp();
+    if (HasFatalFailure()) {
+        return;  // Exit early if setting up the new environment failed
+    }
+
+    activateAllSensors(true);
+    // Verify that the old environment does not receive any events
+    EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
+    // Verify that the new event queue receives sensor events
+    EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
+    activateAllSensors(false);
+
+    // Cleanup the test environment
+    newEnv->TearDown();
+
+    // Restore the test environment for future tests
+    getEnvironment()->TearDown();
+    getEnvironment()->SetUp();
+    if (HasFatalFailure()) {
+        return;  // Exit early if resetting the environment failed
+    }
+
+    // Ensure that the original environment is receiving events
+    activateAllSensors(true);
+    EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
+    activateAllSensors(false);
+}
+
+TEST_P(SensorsAidlTest, CleanupConnectionsOnInitialize) {
+    activateAllSensors(true);
+
+    // Verify that events are received
+    constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
+    constexpr int32_t kNumEvents = 1;
+    ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
+
+    // Clear the active sensor handles so they are not disabled during TearDown
+    auto handles = mSensorHandles;
+    mSensorHandles.clear();
+    getEnvironment()->TearDown();
+    getEnvironment()->SetUp();
+    if (HasFatalFailure()) {
+        return;  // Exit early if resetting the environment failed
+    }
+
+    // Verify no events are received until sensors are re-activated
+    ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
+    activateAllSensors(true);
+    ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
+
+    // Disable sensors
+    activateAllSensors(false);
+
+    // Restore active sensors prior to clearing the environment
+    mSensorHandles = handles;
+}
+
+TEST_P(SensorsAidlTest, FlushSensor) {
+    std::vector<SensorInfo> sensors = getNonOneShotSensors();
+    if (sensors.size() == 0) {
+        return;
+    }
+
+    constexpr int32_t kFlushes = 5;
+    runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */,
+                       true /* expectedResult */);
+    runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, true /* expectedResult */);
+}
+
+TEST_P(SensorsAidlTest, FlushOneShotSensor) {
+    // Find a sensor that is a one-shot sensor
+    std::vector<SensorInfo> sensors = getOneShotSensors();
+    if (sensors.size() == 0) {
+        return;
+    }
+
+    runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
+                       false /* expectedResult */);
+}
+
+TEST_P(SensorsAidlTest, FlushInactiveSensor) {
+    // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
+    std::vector<SensorInfo> sensors = getNonOneShotSensors();
+    if (sensors.size() == 0) {
+        sensors = getOneShotSensors();
+        if (sensors.size() == 0) {
+            return;
+        }
+    }
+
+    runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
+                       false /* expectedResult */);
+}
+
+TEST_P(SensorsAidlTest, Batch) {
+    if (getSensorsList().size() == 0) {
+        return;
+    }
+
+    activateAllSensors(false /* enable */);
+    for (const SensorInfo& sensor : getSensorsList()) {
+        SCOPED_TRACE(::testing::Message()
+                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
+                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
+                     << " name=" << sensor.name);
+
+        // Call batch on inactive sensor
+        // One shot sensors have minDelay set to -1 which is an invalid
+        // parameter. Use 0 instead to avoid errors.
+        int64_t samplingPeriodNs =
+                extractReportMode(sensor.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE
+                        ? 0
+                        : sensor.minDelayUs;
+        checkIsOk(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */));
+
+        // Activate the sensor
+        activate(sensor.sensorHandle, true /* enabled */);
+
+        // Call batch on an active sensor
+        checkIsOk(batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */));
+    }
+    activateAllSensors(false /* enable */);
+
+    // Call batch on an invalid sensor
+    SensorInfo sensor = getSensorsList().front();
+    sensor.sensorHandle = getInvalidSensorHandle();
+    ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */)
+                      .getExceptionCode(),
+              EX_ILLEGAL_ARGUMENT);
+}
+
+TEST_P(SensorsAidlTest, Activate) {
+    if (getSensorsList().size() == 0) {
+        return;
+    }
+
+    // Verify that sensor events are generated when activate is called
+    for (const SensorInfo& sensor : getSensorsList()) {
+        SCOPED_TRACE(::testing::Message()
+                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
+                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
+                     << " name=" << sensor.name);
+
+        checkIsOk(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */));
+        checkIsOk(activate(sensor.sensorHandle, true));
+
+        // Call activate on a sensor that is already activated
+        checkIsOk(activate(sensor.sensorHandle, true));
+
+        // Deactivate the sensor
+        checkIsOk(activate(sensor.sensorHandle, false));
+
+        // Call deactivate on a sensor that is already deactivated
+        checkIsOk(activate(sensor.sensorHandle, false));
+    }
+
+    // Attempt to activate an invalid sensor
+    int32_t invalidHandle = getInvalidSensorHandle();
+    ASSERT_EQ(activate(invalidHandle, true).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
+    ASSERT_EQ(activate(invalidHandle, false).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
+}
+
+TEST_P(SensorsAidlTest, NoStaleEvents) {
+    constexpr std::chrono::milliseconds kFiveHundredMs(500);
+    constexpr std::chrono::milliseconds kOneSecond(1000);
+
+    // Register the callback to receive sensor events
+    EventCallback callback;
+    getEnvironment()->registerCallback(&callback);
+
+    // This test is not valid for one-shot, on-change or special-report-mode sensors
+    const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
+    std::chrono::milliseconds maxMinDelay(0);
+    for (const SensorInfo& sensor : sensors) {
+        std::chrono::milliseconds minDelay = duration_cast<std::chrono::milliseconds>(
+                std::chrono::microseconds(sensor.minDelayUs));
+        maxMinDelay = std::chrono::milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
+    }
+
+    // Activate the sensors so that they start generating events
+    activateAllSensors(true);
+
+    // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
+    // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
+    // of time to guarantee that a sample has arrived.
+    callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
+    activateAllSensors(false);
+
+    // Save the last received event for each sensor
+    std::map<int32_t, int64_t> lastEventTimestampMap;
+    for (const SensorInfo& sensor : sensors) {
+        SCOPED_TRACE(::testing::Message()
+                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
+                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
+                     << " name=" << sensor.name);
+
+        if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
+            lastEventTimestampMap[sensor.sensorHandle] =
+                    callback.getEvents(sensor.sensorHandle).back().timestamp;
+        }
+    }
+
+    // Allow some time to pass, reset the callback, then reactivate the sensors
+    usleep(duration_cast<std::chrono::microseconds>(kOneSecond + (5 * maxMinDelay)).count());
+    callback.reset();
+    activateAllSensors(true);
+    callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
+    activateAllSensors(false);
+
+    getEnvironment()->unregisterCallback();
+
+    for (const SensorInfo& sensor : sensors) {
+        SCOPED_TRACE(::testing::Message()
+                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
+                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
+                     << " name=" << sensor.name);
+
+        // Skip sensors that did not previously report an event
+        if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
+            continue;
+        }
+
+        // Ensure that the first event received is not stale by ensuring that its timestamp is
+        // sufficiently different from the previous event
+        const Event newEvent = callback.getEvents(sensor.sensorHandle).front();
+        std::chrono::milliseconds delta =
+                duration_cast<std::chrono::milliseconds>(std::chrono::nanoseconds(
+                        newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
+        std::chrono::milliseconds sensorMinDelay = duration_cast<std::chrono::milliseconds>(
+                std::chrono::microseconds(sensor.minDelayUs));
+        ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
+    }
+}
+
+TEST_P(SensorsAidlTest, DirectChannelAshmem) {
+    // TODO(b/195593357): Implement this
+}
+
+TEST_P(SensorsAidlTest, DirectChannelGralloc) {
+    // TODO(b/195593357): Implement this
+}
+
+GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SensorsAidlTest);
+INSTANTIATE_TEST_SUITE_P(Sensors, SensorsAidlTest,
+                         testing::ValuesIn(android::getAidlHalInstanceNames(ISensors::descriptor)),
+                         android::PrintInstanceNameToString);
+
+int main(int argc, char** argv) {
+    ::testing::InitGoogleTest(&argc, argv);
+    ProcessState::self()->setThreadPoolMaxThreadCount(1);
+    ProcessState::self()->startThreadPool();
+    return RUN_ALL_TESTS();
+}