Implement VTS tests for NNAPI AIDL interface

The tests are copied from HIDL 1.0-3 VTS tests and updated to use AIDL.

Bug: 172922059
Test: VtsHalNeuralnetworksTargetTest
Change-Id: Ife08409e9b46420685a1ccb0b3256286c973dbf5
diff --git a/neuralnetworks/aidl/vts/functional/Utils.cpp b/neuralnetworks/aidl/vts/functional/Utils.cpp
new file mode 100644
index 0000000..14a496a
--- /dev/null
+++ b/neuralnetworks/aidl/vts/functional/Utils.cpp
@@ -0,0 +1,252 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Utils.h"
+
+#include <aidl/android/hardware/neuralnetworks/IPreparedModelParcel.h>
+#include <aidl/android/hardware/neuralnetworks/Operand.h>
+#include <aidl/android/hardware/neuralnetworks/OperandType.h>
+#include <android-base/logging.h>
+#include <android/binder_status.h>
+#include <android/hardware_buffer.h>
+
+#include <iostream>
+#include <limits>
+#include <numeric>
+
+#include <MemoryUtils.h>
+#include <nnapi/SharedMemory.h>
+#include <nnapi/hal/aidl/Conversions.h>
+#include <nnapi/hal/aidl/Utils.h>
+
+namespace aidl::android::hardware::neuralnetworks {
+
+using test_helper::TestBuffer;
+using test_helper::TestModel;
+
+uint32_t sizeOfData(OperandType type) {
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+        case OperandType::TENSOR_FLOAT32:
+        case OperandType::TENSOR_INT32:
+            return 4;
+        case OperandType::TENSOR_QUANT16_SYMM:
+        case OperandType::TENSOR_FLOAT16:
+        case OperandType::FLOAT16:
+        case OperandType::TENSOR_QUANT16_ASYMM:
+            return 2;
+        case OperandType::TENSOR_QUANT8_ASYMM:
+        case OperandType::BOOL:
+        case OperandType::TENSOR_BOOL8:
+        case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+        case OperandType::TENSOR_QUANT8_SYMM:
+        case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
+            return 1;
+        case OperandType::SUBGRAPH:
+            return 0;
+        default:
+            CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
+            return 0;
+    }
+}
+
+static bool isTensor(OperandType type) {
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+        case OperandType::FLOAT16:
+        case OperandType::BOOL:
+        case OperandType::SUBGRAPH:
+            return false;
+        case OperandType::TENSOR_FLOAT32:
+        case OperandType::TENSOR_INT32:
+        case OperandType::TENSOR_QUANT16_SYMM:
+        case OperandType::TENSOR_FLOAT16:
+        case OperandType::TENSOR_QUANT16_ASYMM:
+        case OperandType::TENSOR_QUANT8_ASYMM:
+        case OperandType::TENSOR_BOOL8:
+        case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+        case OperandType::TENSOR_QUANT8_SYMM:
+        case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
+            return true;
+        default:
+            CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
+            return false;
+    }
+}
+
+uint32_t sizeOfData(const Operand& operand) {
+    const uint32_t dataSize = sizeOfData(operand.type);
+    if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0;
+    return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize,
+                           std::multiplies<>{});
+}
+
+std::unique_ptr<TestAshmem> TestAshmem::create(uint32_t size) {
+    auto ashmem = std::make_unique<TestAshmem>(size);
+    return ashmem->mIsValid ? std::move(ashmem) : nullptr;
+}
+
+void TestAshmem::initialize(uint32_t size) {
+    mIsValid = false;
+    ASSERT_GT(size, 0);
+    const auto sharedMemory = nn::createSharedMemory(size).value();
+    mMappedMemory = nn::map(sharedMemory).value();
+    mPtr = static_cast<uint8_t*>(std::get<void*>(mMappedMemory.pointer));
+    CHECK_NE(mPtr, nullptr);
+    mAidlMemory = utils::convert(sharedMemory).value();
+    mIsValid = true;
+}
+
+std::unique_ptr<TestBlobAHWB> TestBlobAHWB::create(uint32_t size) {
+    auto ahwb = std::make_unique<TestBlobAHWB>(size);
+    return ahwb->mIsValid ? std::move(ahwb) : nullptr;
+}
+
+void TestBlobAHWB::initialize(uint32_t size) {
+    mIsValid = false;
+    ASSERT_GT(size, 0);
+    const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
+    const AHardwareBuffer_Desc desc = {
+            .width = size,
+            .height = 1,
+            .layers = 1,
+            .format = AHARDWAREBUFFER_FORMAT_BLOB,
+            .usage = usage,
+            .stride = size,
+    };
+
+    ASSERT_EQ(AHardwareBuffer_allocate(&desc, &mAhwb), 0);
+    ASSERT_NE(mAhwb, nullptr);
+
+    const auto sharedMemory = nn::createSharedMemoryFromAHWB(*mAhwb).value();
+    mMapping = nn::map(sharedMemory).value();
+    mPtr = static_cast<uint8_t*>(std::get<void*>(mMapping.pointer));
+    CHECK_NE(mPtr, nullptr);
+    mAidlMemory = utils::convert(sharedMemory).value();
+
+    mIsValid = true;
+}
+
+TestBlobAHWB::~TestBlobAHWB() {
+    if (mAhwb) {
+        AHardwareBuffer_unlock(mAhwb, nullptr);
+        AHardwareBuffer_release(mAhwb);
+    }
+}
+
+std::string gtestCompliantName(std::string name) {
+    // gtest test names must only contain alphanumeric characters
+    std::replace_if(
+            name.begin(), name.end(), [](char c) { return !std::isalnum(c); }, '_');
+    return name;
+}
+
+::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
+    return os << toString(errorStatus);
+}
+
+Request ExecutionContext::createRequest(const TestModel& testModel, MemoryType memoryType) {
+    CHECK(memoryType == MemoryType::ASHMEM || memoryType == MemoryType::BLOB_AHWB);
+
+    // Model inputs.
+    std::vector<RequestArgument> inputs(testModel.main.inputIndexes.size());
+    size_t inputSize = 0;
+    for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
+        const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
+        if (op.data.size() == 0) {
+            // Omitted input.
+            inputs[i] = {.hasNoValue = true};
+        } else {
+            DataLocation loc = {.poolIndex = kInputPoolIndex,
+                                .offset = static_cast<int64_t>(inputSize),
+                                .length = static_cast<int64_t>(op.data.size())};
+            inputSize += op.data.alignedSize();
+            inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
+        }
+    }
+
+    // Model outputs.
+    std::vector<RequestArgument> outputs(testModel.main.outputIndexes.size());
+    size_t outputSize = 0;
+    for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
+        const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]];
+
+        // In the case of zero-sized output, we should at least provide a one-byte buffer.
+        // This is because zero-sized tensors are only supported internally to the driver, or
+        // reported in output shapes. It is illegal for the client to pre-specify a zero-sized
+        // tensor as model output. Otherwise, we will have two semantic conflicts:
+        // - "Zero dimension" conflicts with "unspecified dimension".
+        // - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
+        size_t bufferSize = std::max<size_t>(op.data.size(), 1);
+
+        DataLocation loc = {.poolIndex = kOutputPoolIndex,
+                            .offset = static_cast<int64_t>(outputSize),
+                            .length = static_cast<int64_t>(bufferSize)};
+        outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize();
+        outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
+    }
+
+    // Allocate memory pools.
+    if (memoryType == MemoryType::ASHMEM) {
+        mInputMemory = TestAshmem::create(inputSize);
+        mOutputMemory = TestAshmem::create(outputSize);
+    } else {
+        mInputMemory = TestBlobAHWB::create(inputSize);
+        mOutputMemory = TestBlobAHWB::create(outputSize);
+    }
+    CHECK_NE(mInputMemory, nullptr);
+    CHECK_NE(mOutputMemory, nullptr);
+
+    auto copiedInputMemory = utils::clone(*mInputMemory->getAidlMemory());
+    CHECK(copiedInputMemory.has_value()) << copiedInputMemory.error().message;
+    auto copiedOutputMemory = utils::clone(*mOutputMemory->getAidlMemory());
+    CHECK(copiedOutputMemory.has_value()) << copiedOutputMemory.error().message;
+
+    std::vector<RequestMemoryPool> pools;
+    pools.push_back(RequestMemoryPool::make<RequestMemoryPool::Tag::pool>(
+            std::move(copiedInputMemory).value()));
+    pools.push_back(RequestMemoryPool::make<RequestMemoryPool::Tag::pool>(
+            std::move(copiedOutputMemory).value()));
+
+    // Copy input data to the memory pool.
+    uint8_t* inputPtr = mInputMemory->getPointer();
+    for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
+        const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
+        if (op.data.size() > 0) {
+            const uint8_t* begin = op.data.get<uint8_t>();
+            const uint8_t* end = begin + op.data.size();
+            std::copy(begin, end, inputPtr + inputs[i].location.offset);
+        }
+    }
+
+    return {.inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)};
+}
+
+std::vector<TestBuffer> ExecutionContext::getOutputBuffers(const Request& request) const {
+    // Copy out output results.
+    uint8_t* outputPtr = mOutputMemory->getPointer();
+    std::vector<TestBuffer> outputBuffers;
+    for (const auto& output : request.outputs) {
+        outputBuffers.emplace_back(output.location.length, outputPtr + output.location.offset);
+    }
+    return outputBuffers;
+}
+
+}  // namespace aidl::android::hardware::neuralnetworks