More tests for graph validation.

- detect cycle (CycleTest)
- detect bad execution order (mutateExecutionOrderTest)
- detect lifetime inconsistent with whether operand is written (mutateOperandLifeTimeTest)
- detect lifetime inconsistent with Model inputIndexes/outputIndexes (mutateOperandInputOutputTest)
- detect incorrect number of consumers (mutateOperandNumberOfConsumersTest)
- detect operand written multiple times (mutateOperandAddWriterTest)
- detect operand never written (mutateOperationRemoveWriteTest)

Bug: 66478689
Test: VtsHalNeuralnetworksV1_*TargetTest

Change-Id: Id4ba19660bbd31a16f8a675f7b6437f4d779e8da
diff --git a/neuralnetworks/1.2/vts/functional/Utils.cpp b/neuralnetworks/1.2/vts/functional/Utils.cpp
new file mode 100644
index 0000000..cc654f2
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/Utils.cpp
@@ -0,0 +1,85 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.2/types.h>
+
+#include <functional>
+#include <numeric>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+
+uint32_t sizeOfData(V1_2::OperandType type) {
+    switch (type) {
+        case V1_2::OperandType::FLOAT32:
+        case V1_2::OperandType::INT32:
+        case V1_2::OperandType::UINT32:
+        case V1_2::OperandType::TENSOR_FLOAT32:
+        case V1_2::OperandType::TENSOR_INT32:
+            return 4;
+        case V1_2::OperandType::TENSOR_QUANT16_SYMM:
+        case V1_2::OperandType::TENSOR_FLOAT16:
+        case V1_2::OperandType::FLOAT16:
+        case V1_2::OperandType::TENSOR_QUANT16_ASYMM:
+            return 2;
+        case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
+        case V1_2::OperandType::BOOL:
+        case V1_2::OperandType::TENSOR_BOOL8:
+        case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+        case V1_2::OperandType::TENSOR_QUANT8_SYMM:
+            return 1;
+        default:
+            CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
+            return 0;
+    }
+}
+
+static bool isTensor(V1_2::OperandType type) {
+    switch (type) {
+        case V1_2::OperandType::FLOAT32:
+        case V1_2::OperandType::INT32:
+        case V1_2::OperandType::UINT32:
+        case V1_2::OperandType::FLOAT16:
+        case V1_2::OperandType::BOOL:
+            return false;
+        case V1_2::OperandType::TENSOR_FLOAT32:
+        case V1_2::OperandType::TENSOR_INT32:
+        case V1_2::OperandType::TENSOR_QUANT16_SYMM:
+        case V1_2::OperandType::TENSOR_FLOAT16:
+        case V1_2::OperandType::TENSOR_QUANT16_ASYMM:
+        case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
+        case V1_2::OperandType::TENSOR_BOOL8:
+        case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+        case V1_2::OperandType::TENSOR_QUANT8_SYMM:
+            return true;
+        default:
+            CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
+            return false;
+    }
+}
+
+uint32_t sizeOfData(const V1_2::Operand& operand) {
+    const uint32_t dataSize = sizeOfData(operand.type);
+    if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0;
+    return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize,
+                           std::multiplies<>{});
+}
+
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android