Create conversions to/from NNAPI canonical types

This CL creates the following primary sets of functions:
* V1_X::utils::convert(<canonical_type>) -- Converts a canonical type
  to the corresponding HAL version type.
* nn::convert(<V1_X_HAL_type>) -- Converts a HAL version type to the
  corresponding canonical type.
* neuralnetworks::utils::hasNoPointerData -- Indicates if the object
  contains no pointer-based data that could be relocated to shared
  memory.
* neuralnetworks::utils::flushDataFromPointerToShared -- Relocate
  pointer-based data to shared memory.
* neuralnetworks::utils::unflushDataFromSharedToPointer -- Undoes
  `flushDataFromPointerToShared` on a Request object. More
  specifically, `unflushDataFromSharedToPointer` copies the output
  shared memory data from the transformed Request object back to the
  output pointer-based memory in the original Request object.

It also introduces some other minor utility code, including
makeQuantized8PerformanceConsistentWithP, countNumberOfConsumers,
validate, valid, and validatedConvertToCanonical.

Bug: 160667419
Test: mma
Change-Id: I0732e658c1f4ed40cd122f1ca8581fb40b056757
diff --git a/neuralnetworks/1.1/utils/src/Conversions.cpp b/neuralnetworks/1.1/utils/src/Conversions.cpp
new file mode 100644
index 0000000..7fee16b
--- /dev/null
+++ b/neuralnetworks/1.1/utils/src/Conversions.cpp
@@ -0,0 +1,209 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Conversions.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <android/hardware/neuralnetworks/1.1/types.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Result.h>
+#include <nnapi/SharedMemory.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/1.0/Conversions.h>
+#include <nnapi/hal/CommonUtils.h>
+
+#include <algorithm>
+#include <functional>
+#include <iterator>
+#include <type_traits>
+#include <utility>
+
+namespace android::nn {
+namespace {
+
+using hardware::hidl_vec;
+
+template <typename Input>
+using convertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+Result<std::vector<convertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
+    std::vector<convertOutput<Type>> canonical;
+    canonical.reserve(arguments.size());
+    for (const auto& argument : arguments) {
+        canonical.push_back(NN_TRY(nn::convert(argument)));
+    }
+    return canonical;
+}
+
+}  // anonymous namespace
+
+Result<OperationType> convert(const hal::V1_1::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+Result<Capabilities> convert(const hal::V1_1::Capabilities& capabilities) {
+    const auto quantized8Performance = NN_TRY(convert(capabilities.quantized8Performance));
+    const auto float32Performance = NN_TRY(convert(capabilities.float32Performance));
+    const auto relaxedFloat32toFloat16Performance =
+            NN_TRY(convert(capabilities.relaxedFloat32toFloat16Performance));
+
+    auto table = hal::utils::makeQuantized8PerformanceConsistentWithP(float32Performance,
+                                                                      quantized8Performance);
+
+    return Capabilities{
+            .relaxedFloat32toFloat16PerformanceScalar = relaxedFloat32toFloat16Performance,
+            .relaxedFloat32toFloat16PerformanceTensor = relaxedFloat32toFloat16Performance,
+            .operandPerformance = std::move(table),
+    };
+}
+
+Result<Operation> convert(const hal::V1_1::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+Result<Model> convert(const hal::V1_1::Model& model) {
+    auto operations = NN_TRY(convert(model.operations));
+
+    // Verify number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(model.operands.size(), operations);
+    CHECK(model.operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < model.operands.size(); ++i) {
+        if (model.operands[i].numberOfConsumers != numberOfConsumers[i]) {
+            return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
+                              << numberOfConsumers[i] << " but found "
+                              << model.operands[i].numberOfConsumers;
+        }
+    }
+
+    auto main = Model::Subgraph{
+            .operands = NN_TRY(convert(model.operands)),
+            .operations = std::move(operations),
+            .inputIndexes = model.inputIndexes,
+            .outputIndexes = model.outputIndexes,
+    };
+
+    return Model{
+            .main = std::move(main),
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+    };
+}
+
+Result<ExecutionPreference> convert(const hal::V1_1::ExecutionPreference& executionPreference) {
+    return static_cast<ExecutionPreference>(executionPreference);
+}
+
+}  // namespace android::nn
+
+namespace android::hardware::neuralnetworks::V1_1::utils {
+namespace {
+
+using utils::convert;
+
+nn::Result<V1_0::PerformanceInfo> convert(
+        const nn::Capabilities::PerformanceInfo& performanceInfo) {
+    return V1_0::utils::convert(performanceInfo);
+}
+
+nn::Result<V1_0::Operand> convert(const nn::Operand& operand) {
+    return V1_0::utils::convert(operand);
+}
+
+nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
+    return V1_0::utils::convert(operandValues);
+}
+
+nn::Result<hidl_memory> convert(const nn::Memory& memory) {
+    return V1_0::utils::convert(memory);
+}
+
+template <typename Input>
+using convertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+nn::Result<hidl_vec<convertOutput<Type>>> convert(const std::vector<Type>& arguments) {
+    hidl_vec<convertOutput<Type>> halObject(arguments.size());
+    for (size_t i = 0; i < arguments.size(); ++i) {
+        halObject[i] = NN_TRY(convert(arguments[i]));
+    }
+    return halObject;
+}
+
+}  // anonymous namespace
+
+nn::Result<OperationType> convert(const nn::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
+    return Capabilities{
+            .float32Performance = NN_TRY(convert(
+                    capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_FLOAT32))),
+            .quantized8Performance = NN_TRY(convert(
+                    capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_QUANT8_ASYMM))),
+            .relaxedFloat32toFloat16Performance =
+                    NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
+    };
+}
+
+nn::Result<Operation> convert(const nn::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+nn::Result<Model> convert(const nn::Model& model) {
+    if (!hal::utils::hasNoPointerData(model)) {
+        return NN_ERROR() << "Mdoel cannot be converted because it contains pointer-based memory";
+    }
+
+    auto operands = NN_TRY(convert(model.main.operands));
+
+    // Update number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(operands.size(), model.main.operations);
+    CHECK(operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < operands.size(); ++i) {
+        operands[i].numberOfConsumers = numberOfConsumers[i];
+    }
+
+    return Model{
+            .operands = std::move(operands),
+            .operations = NN_TRY(convert(model.main.operations)),
+            .inputIndexes = model.main.inputIndexes,
+            .outputIndexes = model.main.outputIndexes,
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+    };
+}
+
+nn::Result<ExecutionPreference> convert(const nn::ExecutionPreference& executionPreference) {
+    return static_cast<ExecutionPreference>(executionPreference);
+}
+
+}  // namespace android::hardware::neuralnetworks::V1_1::utils