| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "ExecutionBurstServer" |
| |
| #include "ExecutionBurstServer.h" |
| |
| #include <android-base/logging.h> |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <limits> |
| #include <map> |
| #include <memory> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #include "ExecutionBurstUtils.h" |
| #include "HalInterfaces.h" |
| #include "Tracing.h" |
| |
| namespace android::nn { |
| namespace { |
| |
| // DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be |
| // used as an IBurstExecutorWithCache. Specifically, the cache simply stores the |
| // hidl_memory object, and the execution forwards calls to the provided |
| // IPreparedModel's "executeSynchronously" method. With this class, hidl_memory |
| // must be mapped and unmapped for each execution. |
| class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache { |
| public: |
| DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel) |
| : mpPreparedModel(preparedModel) {} |
| |
| bool isCacheEntryPresent(int32_t slot) const override { |
| const auto it = mMemoryCache.find(slot); |
| return (it != mMemoryCache.end()) && it->second.valid(); |
| } |
| |
| void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) override { |
| mMemoryCache[slot] = memory; |
| } |
| |
| void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); } |
| |
| std::tuple<V1_0::ErrorStatus, hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing> execute( |
| const V1_0::Request& request, const std::vector<int32_t>& slots, |
| V1_2::MeasureTiming measure) override { |
| // convert slots to pools |
| hardware::hidl_vec<hardware::hidl_memory> pools(slots.size()); |
| std::transform(slots.begin(), slots.end(), pools.begin(), |
| [this](int32_t slot) { return mMemoryCache[slot]; }); |
| |
| // create full request |
| V1_0::Request fullRequest = request; |
| fullRequest.pools = std::move(pools); |
| |
| // setup execution |
| V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE; |
| hardware::hidl_vec<V1_2::OutputShape> returnedOutputShapes; |
| V1_2::Timing returnedTiming; |
| auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming]( |
| V1_0::ErrorStatus status, |
| const hardware::hidl_vec<V1_2::OutputShape>& outputShapes, |
| const V1_2::Timing& timing) { |
| returnedStatus = status; |
| returnedOutputShapes = outputShapes; |
| returnedTiming = timing; |
| }; |
| |
| // execute |
| const hardware::Return<void> ret = |
| mpPreparedModel->executeSynchronously(fullRequest, measure, cb); |
| if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) { |
| LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing"; |
| return {returnedStatus, std::move(returnedOutputShapes), kNoTiming}; |
| } |
| |
| return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming); |
| } |
| |
| private: |
| V1_2::IPreparedModel* const mpPreparedModel; |
| std::map<int32_t, hardware::hidl_memory> mMemoryCache; |
| }; |
| |
| } // anonymous namespace |
| |
| // ExecutionBurstServer methods |
| |
| sp<ExecutionBurstServer> ExecutionBurstServer::create( |
| const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel, |
| const MQDescriptorSync<FmqResultDatum>& resultChannel, |
| std::shared_ptr<IBurstExecutorWithCache> executorWithCache, |
| std::chrono::microseconds pollingTimeWindow) { |
| // check inputs |
| if (callback == nullptr || executorWithCache == nullptr) { |
| LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr"; |
| return nullptr; |
| } |
| |
| // create FMQ objects |
| std::unique_ptr<RequestChannelReceiver> requestChannelReceiver = |
| RequestChannelReceiver::create(requestChannel, pollingTimeWindow); |
| std::unique_ptr<ResultChannelSender> resultChannelSender = |
| ResultChannelSender::create(resultChannel); |
| |
| // check FMQ objects |
| if (!requestChannelReceiver || !resultChannelSender) { |
| LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue"; |
| return nullptr; |
| } |
| |
| // make and return context |
| return new ExecutionBurstServer(callback, std::move(requestChannelReceiver), |
| std::move(resultChannelSender), std::move(executorWithCache)); |
| } |
| |
| sp<ExecutionBurstServer> ExecutionBurstServer::create( |
| const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel, |
| const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel, |
| std::chrono::microseconds pollingTimeWindow) { |
| // check relevant input |
| if (preparedModel == nullptr) { |
| LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr"; |
| return nullptr; |
| } |
| |
| // adapt IPreparedModel to have caching |
| const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter = |
| std::make_shared<DefaultBurstExecutorWithCache>(preparedModel); |
| |
| // make and return context |
| return ExecutionBurstServer::create(callback, requestChannel, resultChannel, |
| preparedModelAdapter, pollingTimeWindow); |
| } |
| |
| ExecutionBurstServer::ExecutionBurstServer( |
| const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel, |
| std::unique_ptr<ResultChannelSender> resultChannel, |
| std::shared_ptr<IBurstExecutorWithCache> executorWithCache) |
| : mCallback(callback), |
| mRequestChannelReceiver(std::move(requestChannel)), |
| mResultChannelSender(std::move(resultChannel)), |
| mExecutorWithCache(std::move(executorWithCache)) { |
| // TODO: highly document the threading behavior of this class |
| mWorker = std::thread([this] { task(); }); |
| } |
| |
| ExecutionBurstServer::~ExecutionBurstServer() { |
| // set teardown flag |
| mTeardown = true; |
| mRequestChannelReceiver->invalidate(); |
| |
| // wait for task thread to end |
| mWorker.join(); |
| } |
| |
| hardware::Return<void> ExecutionBurstServer::freeMemory(int32_t slot) { |
| std::lock_guard<std::mutex> hold(mMutex); |
| mExecutorWithCache->removeCacheEntry(slot); |
| return hardware::Void(); |
| } |
| |
| void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) { |
| const auto slotIsKnown = [this](int32_t slot) { |
| return mExecutorWithCache->isCacheEntryPresent(slot); |
| }; |
| |
| // find unique unknown slots |
| std::vector<int32_t> unknownSlots = slots; |
| auto unknownSlotsEnd = unknownSlots.end(); |
| std::sort(unknownSlots.begin(), unknownSlotsEnd); |
| unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd); |
| unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown); |
| unknownSlots.erase(unknownSlotsEnd, unknownSlots.end()); |
| |
| // quick-exit if all slots are known |
| if (unknownSlots.empty()) { |
| return; |
| } |
| |
| V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE; |
| std::vector<hardware::hidl_memory> returnedMemories; |
| auto cb = [&errorStatus, &returnedMemories]( |
| V1_0::ErrorStatus status, |
| const hardware::hidl_vec<hardware::hidl_memory>& memories) { |
| errorStatus = status; |
| returnedMemories = memories; |
| }; |
| |
| const hardware::Return<void> ret = mCallback->getMemories(unknownSlots, cb); |
| |
| if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE || |
| returnedMemories.size() != unknownSlots.size()) { |
| LOG(ERROR) << "Error retrieving memories"; |
| return; |
| } |
| |
| // add memories to unknown slots |
| for (size_t i = 0; i < unknownSlots.size(); ++i) { |
| mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]); |
| } |
| } |
| |
| void ExecutionBurstServer::task() { |
| // loop until the burst object is being destroyed |
| while (!mTeardown) { |
| // receive request |
| auto arguments = mRequestChannelReceiver->getBlocking(); |
| |
| // if the request packet was not properly received, return a generic |
| // error and skip the execution |
| // |
| // if the burst is being torn down, skip the execution so the "task" |
| // function can end |
| if (!arguments) { |
| if (!mTeardown) { |
| mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming); |
| } |
| continue; |
| } |
| |
| // otherwise begin tracing execution |
| NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, |
| "ExecutionBurstServer getting memory, executing, and returning results"); |
| |
| // unpack the arguments; types are Request, std::vector<int32_t>, and |
| // MeasureTiming, respectively |
| const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments); |
| |
| // ensure executor with cache has required memory |
| std::lock_guard<std::mutex> hold(mMutex); |
| ensureCacheEntriesArePresentLocked(slotsOfPools); |
| |
| // perform computation; types are ErrorStatus, hidl_vec<OutputShape>, |
| // and Timing, respectively |
| const auto [errorStatus, outputShapes, returnedTiming] = |
| mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure); |
| |
| // return result |
| mResultChannelSender->send(errorStatus, outputShapes, returnedTiming); |
| } |
| } |
| |
| } // namespace android::nn |