Add additional parameters for NN Burst -- HAL

Adds deadline and loopTimeoutDuration to nn::IBurst::execute.

This CL additionally adds a test case for
IPreparedModel::configureExecutionBurst and adds the suffix "_H" to
the header guards that were missing "_H".

Bug: 180492058
Bug: 177267324
Test: mma
Test: NeuralNetworksTest_static
Change-Id: Ic9ba2fb9b4dee4e40d99ae91bb9555a58d0508d2
Merged-In: Ic9ba2fb9b4dee4e40d99ae91bb9555a58d0508d2
(cherry picked from commit bbbdb0d5f118efa8159c3cc98304208fd7631609)
diff --git a/neuralnetworks/1.2/utils/src/ExecutionBurstController.cpp b/neuralnetworks/1.2/utils/src/ExecutionBurstController.cpp
index eedf591..7a17f25 100644
--- a/neuralnetworks/1.2/utils/src/ExecutionBurstController.cpp
+++ b/neuralnetworks/1.2/utils/src/ExecutionBurstController.cpp
@@ -276,7 +276,9 @@
 }
 
 nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
-ExecutionBurstController::execute(const nn::Request& request, nn::MeasureTiming measure) const {
+ExecutionBurstController::execute(const nn::Request& request, nn::MeasureTiming measure,
+                                  const nn::OptionalTimePoint& deadline,
+                                  const nn::OptionalDuration& loopTimeoutDuration) const {
     // This is the first point when we know an execution is occurring, so begin to collect
     // systraces. Note that the first point we can begin collecting systraces in
     // ExecutionBurstServer is when the RequestChannelReceiver realizes there is data in the FMQ, so
@@ -289,7 +291,7 @@
         version > nn::Version::ANDROID_Q) {
         // fallback to another execution path if the packet could not be sent
         if (kFallback) {
-            return kFallback(request, measure);
+            return kFallback(request, measure, deadline, loopTimeoutDuration);
         }
         return NN_ERROR() << "Request object has features not supported by IBurst::execute";
     }
@@ -323,7 +325,7 @@
     if (!sendStatus.ok()) {
         // fallback to another execution path if the packet could not be sent
         if (kFallback) {
-            return kFallback(request, measure);
+            return kFallback(request, measure, deadline, loopTimeoutDuration);
         }
         return NN_ERROR() << "Error sending FMQ packet: " << sendStatus.error();
     }
diff --git a/neuralnetworks/1.2/utils/src/ExecutionBurstServer.cpp b/neuralnetworks/1.2/utils/src/ExecutionBurstServer.cpp
index 50af881..c67159e 100644
--- a/neuralnetworks/1.2/utils/src/ExecutionBurstServer.cpp
+++ b/neuralnetworks/1.2/utils/src/ExecutionBurstServer.cpp
@@ -259,7 +259,7 @@
     nn::MeasureTiming canonicalMeasure = NN_TRY(makeExecutionFailure(nn::convert(measure)));
 
     const auto [outputShapes, timing] =
-            NN_TRY(mBurstExecutor->execute(canonicalRequest, canonicalMeasure));
+            NN_TRY(mBurstExecutor->execute(canonicalRequest, canonicalMeasure, {}, {}));
 
     return std::make_pair(NN_TRY(makeExecutionFailure(convert(outputShapes))),
                           NN_TRY(makeExecutionFailure(convert(timing))));
diff --git a/neuralnetworks/1.2/utils/src/PreparedModel.cpp b/neuralnetworks/1.2/utils/src/PreparedModel.cpp
index 71a4ea8..b209a44 100644
--- a/neuralnetworks/1.2/utils/src/PreparedModel.cpp
+++ b/neuralnetworks/1.2/utils/src/PreparedModel.cpp
@@ -122,10 +122,12 @@
 
 nn::GeneralResult<nn::SharedBurst> PreparedModel::configureExecutionBurst() const {
     auto self = shared_from_this();
-    auto fallback = [preparedModel = std::move(self)](const nn::Request& request,
-                                                      nn::MeasureTiming measure)
+    auto fallback = [preparedModel = std::move(self)](
+                            const nn::Request& request, nn::MeasureTiming measure,
+                            const nn::OptionalTimePoint& deadline,
+                            const nn::OptionalDuration& loopTimeoutDuration)
             -> nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> {
-        return preparedModel->execute(request, measure, {}, {});
+        return preparedModel->execute(request, measure, deadline, loopTimeoutDuration);
     };
     const auto pollingTimeWindow = getBurstControllerPollingTimeWindow();
     return ExecutionBurstController::create(kPreparedModel, std::move(fallback), pollingTimeWindow);