Merge "power/stats: Rename PowerStats HAL"
diff --git a/Android.bp b/Android.bp
index 9e1df13..00ba1e2 100644
--- a/Android.bp
+++ b/Android.bp
@@ -15,7 +15,6 @@
 cc_defaults {
     name: "VtsHalTargetTestDefaults",
     defaults: [
-        "vts_target_tests_defaults",
         "hidl_defaults",
     ],
 
diff --git a/audio/policy/1.0/vts/functional/Android.bp b/audio/policy/1.0/vts/functional/Android.bp
index a5ddee5..7b7cf0d 100644
--- a/audio/policy/1.0/vts/functional/Android.bp
+++ b/audio/policy/1.0/vts/functional/Android.bp
@@ -1,6 +1,5 @@
 cc_test {
     name: "VtsHalAudioPolicyV1_0TargetTest",
-    defaults: ["vts_target_tests_defaults"],
     srcs: [
         "ValidateEngineConfiguration.cpp",
     ],
diff --git a/automotive/evs/1.1/vts/functional/VtsHalEvsV1_1TargetTest.cpp b/automotive/evs/1.1/vts/functional/VtsHalEvsV1_1TargetTest.cpp
index 638ecd5..8de9304 100644
--- a/automotive/evs/1.1/vts/functional/VtsHalEvsV1_1TargetTest.cpp
+++ b/automotive/evs/1.1/vts/functional/VtsHalEvsV1_1TargetTest.cpp
@@ -72,6 +72,8 @@
 using ::android::hardware::automotive::evs::V1_0::DisplayDesc;
 using ::android::hardware::automotive::evs::V1_0::DisplayState;
 using ::android::hardware::graphics::common::V1_0::PixelFormat;
+using ::android::frameworks::automotive::display::V1_0::HwDisplayConfig;
+using ::android::frameworks::automotive::display::V1_0::HwDisplayState;
 using IEvsCamera_1_0 = ::android::hardware::automotive::evs::V1_0::IEvsCamera;
 using IEvsCamera_1_1 = ::android::hardware::automotive::evs::V1_1::IEvsCamera;
 using IEvsDisplay_1_0 = ::android::hardware::automotive::evs::V1_0::IEvsDisplay;
@@ -605,7 +607,10 @@
     LOG(INFO) << "Display " << targetDisplayId << " is alreay in use.";
 
     // Get the display descriptor
-    pDisplay->getDisplayInfo_1_1([](const auto& config, const auto& state) {
+    pDisplay->getDisplayInfo_1_1([](const HwDisplayConfig& config, const HwDisplayState& state) {
+        ASSERT_GT(config.size(), 0);
+        ASSERT_GT(state.size(), 0);
+
         android::DisplayConfig* pConfig = (android::DisplayConfig*)config.data();
         const auto width = pConfig->resolution.getWidth();
         const auto height = pConfig->resolution.getHeight();
diff --git a/compatibility_matrices/compatibility_matrix.current.xml b/compatibility_matrices/compatibility_matrix.current.xml
index 375d9c7..4ac1973 100644
--- a/compatibility_matrices/compatibility_matrix.current.xml
+++ b/compatibility_matrices/compatibility_matrix.current.xml
@@ -547,7 +547,7 @@
     </hal>
     <hal format="hidl" optional="true">
         <name>android.hardware.wifi</name>
-        <version>1.0-5</version>
+        <version>1.3-5</version>
         <interface>
             <name>IWifi</name>
             <instance>default</instance>
@@ -563,7 +563,7 @@
     </hal>
     <hal format="hidl" optional="true">
         <name>android.hardware.wifi.supplicant</name>
-        <version>1.0-4</version>
+        <version>1.2-4</version>
         <interface>
             <name>ISupplicant</name>
             <instance>default</instance>
diff --git a/compatibility_matrices/exclude/fcm_exclude.cpp b/compatibility_matrices/exclude/fcm_exclude.cpp
index 20b7281..8ec37a1 100644
--- a/compatibility_matrices/exclude/fcm_exclude.cpp
+++ b/compatibility_matrices/exclude/fcm_exclude.cpp
@@ -59,6 +59,7 @@
             // Fastboot HAL is only used by recovery. Recovery is owned by OEM. Framework
             // does not depend on this HAL, hence it is not declared in any manifests or matrices.
             "android.hardware.fastboot@1.0",
+            "android.hardware.fastboot@1.1",
     };
 
     auto package_has_prefix = [&](const std::string& prefix) {
diff --git a/fastboot/1.1/Android.bp b/fastboot/1.1/Android.bp
new file mode 100644
index 0000000..46306cf
--- /dev/null
+++ b/fastboot/1.1/Android.bp
@@ -0,0 +1,14 @@
+// This file is autogenerated by hidl-gen -Landroidbp.
+
+hidl_interface {
+    name: "android.hardware.fastboot@1.1",
+    root: "android.hardware",
+    srcs: [
+        "IFastboot.hal",
+    ],
+    interfaces: [
+        "android.hardware.fastboot@1.0",
+        "android.hidl.base@1.0",
+    ],
+    gen_java: true,
+}
diff --git a/fastboot/1.1/IFastboot.hal b/fastboot/1.1/IFastboot.hal
new file mode 100644
index 0000000..c8f1ad0
--- /dev/null
+++ b/fastboot/1.1/IFastboot.hal
@@ -0,0 +1,32 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package android.hardware.fastboot@1.1;
+import android.hardware.fastboot@1.0;
+
+/**
+ * IFastboot interface implements vendor specific fastboot commands.
+ */
+interface IFastboot extends @1.0::IFastboot {
+    /**
+     * Executes an OEM specific erase after fastboot erase userdata.
+     *
+     * @return result Returns the status SUCCESS if the operation is successful,
+     *     NOT_SUPPORTED for unsupported command.
+     *     INVALID_ARGUMENT for bad arguments,
+     *     FAILURE_UNKNOWN for unknown error in the oem specific command.
+     */
+    doOemSpecificErase() generates (Result result);
+};
diff --git a/fastboot/1.1/default/Android.bp b/fastboot/1.1/default/Android.bp
new file mode 100644
index 0000000..980586b
--- /dev/null
+++ b/fastboot/1.1/default/Android.bp
@@ -0,0 +1,31 @@
+//
+// Copyright (C) 2020 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+cc_library {
+    name: "android.hardware.fastboot@1.1-impl-mock",
+    recovery: true,
+    srcs: [
+        "Fastboot.cpp",
+    ],
+    relative_install_path: "hw",
+    shared_libs: [
+        "libbase",
+        "libhidlbase",
+        "libutils",
+        "libcutils",
+        "android.hardware.fastboot@1.0",
+        "android.hardware.fastboot@1.1",
+    ],
+}
diff --git a/fastboot/1.1/default/Fastboot.cpp b/fastboot/1.1/default/Fastboot.cpp
new file mode 100644
index 0000000..0b502e0
--- /dev/null
+++ b/fastboot/1.1/default/Fastboot.cpp
@@ -0,0 +1,66 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Fastboot.h"
+
+namespace android {
+namespace hardware {
+namespace fastboot {
+namespace V1_1 {
+namespace implementation {
+
+// Methods from ::android::hardware::fastboot::V1_1::IFastboot follow.
+Return<void> Fastboot::getPartitionType(const hidl_string& /* partitionName */,
+                                        getPartitionType_cb _hidl_cb) {
+    _hidl_cb(FileSystemType::RAW, {Status::SUCCESS, ""});
+    return Void();
+}
+
+Return<void> Fastboot::doOemCommand(const hidl_string& /* oemCmd */, doOemCommand_cb _hidl_cb) {
+    _hidl_cb({Status::FAILURE_UNKNOWN, "Command not supported in default implementation"});
+    return Void();
+}
+
+Return<void> Fastboot::getVariant(getVariant_cb _hidl_cb) {
+    _hidl_cb("NA", {Status::SUCCESS, ""});
+    return Void();
+}
+
+Return<void> Fastboot::getOffModeChargeState(getOffModeChargeState_cb _hidl_cb) {
+    _hidl_cb(false, {Status::SUCCESS, ""});
+    return Void();
+}
+
+Return<void> Fastboot::getBatteryVoltageFlashingThreshold(
+        getBatteryVoltageFlashingThreshold_cb _hidl_cb) {
+    _hidl_cb(0, {Status::SUCCESS, ""});
+    return Void();
+}
+
+Return<void> Fastboot::doOemSpecificErase(doOemSpecificErase_cb _hidl_cb) {
+    _hidl_cb({Status::NOT_SUPPORTED, "Command not supported in default implementation"});
+    return Void();
+}
+
+extern "C" IFastboot* HIDL_FETCH_IFastboot(const char* /* name */) {
+    return new Fastboot();
+}
+
+}  // namespace implementation
+}  // namespace V1_1
+}  // namespace fastboot
+}  // namespace hardware
+}  // namespace android
diff --git a/fastboot/1.1/default/Fastboot.h b/fastboot/1.1/default/Fastboot.h
new file mode 100644
index 0000000..09b39c2
--- /dev/null
+++ b/fastboot/1.1/default/Fastboot.h
@@ -0,0 +1,52 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#pragma once
+
+#include <android/hardware/fastboot/1.1/IFastboot.h>
+#include <hidl/Status.h>
+
+namespace android {
+namespace hardware {
+namespace fastboot {
+namespace V1_1 {
+namespace implementation {
+
+using ::android::hardware::hidl_string;
+using ::android::hardware::Return;
+using ::android::hardware::Void;
+using ::android::hardware::fastboot::V1_0::FileSystemType;
+using ::android::hardware::fastboot::V1_0::Status;
+using ::android::hardware::fastboot::V1_0::Result;
+
+struct Fastboot : public IFastboot {
+    // Methods from ::android::hardware::fastboot::V1_0::IFastboot follow.
+    Return<void> getPartitionType(const hidl_string& partitionName,
+                                  getPartitionType_cb _hidl_cb) override;
+    Return<void> doOemCommand(const hidl_string& oemCmd, doOemCommand_cb _hidl_cb) override;
+    Return<void> getVariant(getVariant_cb _hidl_cb) override;
+    Return<void> getOffModeChargeState(getOffModeChargeState_cb _hidl_cb) override;
+    Return<void> getBatteryVoltageFlashingThreshold(
+            getBatteryVoltageFlashingThreshold_cb _hidl_cb) override;
+    Return<void> doOemSpecificErase(doOemSpecificErase_cb _hidl_cb) override;
+};
+
+extern "C" IFastboot* HIDL_FETCH_IFastboot(const char* name);
+
+}  // namespace implementation
+}  // namespace V1_1
+}  // namespace fastboot
+}  // namespace hardware
+}  // namespace android
diff --git a/gnss/1.0/vts/functional/VtsHalGnssV1_0TargetTest.cpp b/gnss/1.0/vts/functional/VtsHalGnssV1_0TargetTest.cpp
index 97e7c27..237e8ec 100644
--- a/gnss/1.0/vts/functional/VtsHalGnssV1_0TargetTest.cpp
+++ b/gnss/1.0/vts/functional/VtsHalGnssV1_0TargetTest.cpp
@@ -39,6 +39,10 @@
 using android::hardware::gnss::V1_0::IGnssMeasurement;
 using android::sp;
 
+/*
+ * Since Utils.cpp depends on Gnss Hal 2.0, the tests for Gnss Hal 1.0 will use
+ * there own version of IsAutomotiveDevice() instead of the common version.
+ */
 static bool IsAutomotiveDevice() {
     char buffer[PROPERTY_VALUE_MAX] = {0};
     property_get("ro.hardware.type", buffer, "");
@@ -492,9 +496,9 @@
  * Verifies that modern hardware supports measurement capabilities.
  */
 TEST_P(GnssHalTest, MeasurementCapabilites) {
-  if (info_called_count_ > 0 && last_info_.yearOfHw >= 2016) {
-    EXPECT_TRUE(last_capabilities_ & IGnssCallback::Capabilities::MEASUREMENTS);
-  }
+    if (!IsAutomotiveDevice() && info_called_count_ > 0 && last_info_.yearOfHw >= 2016) {
+        EXPECT_TRUE(last_capabilities_ & IGnssCallback::Capabilities::MEASUREMENTS);
+    }
 }
 
 /*
@@ -529,4 +533,4 @@
   }
 
   return RUN_ALL_TESTS();
-}
\ No newline at end of file
+}
diff --git a/gnss/2.0/vts/functional/gnss_hal_test_cases.cpp b/gnss/2.0/vts/functional/gnss_hal_test_cases.cpp
index 51dcf0d..3e0058f 100644
--- a/gnss/2.0/vts/functional/gnss_hal_test_cases.cpp
+++ b/gnss/2.0/vts/functional/gnss_hal_test_cases.cpp
@@ -62,6 +62,15 @@
     auto gnssMeasurement_1_0 = gnss_hal_->getExtensionGnssMeasurement();
     ASSERT_TRUE(gnssMeasurement_2_0.isOk() && gnssMeasurement_1_1.isOk() &&
                 gnssMeasurement_1_0.isOk());
+
+    // CDD does not require Android Automotive OS devices to support
+    // GnssMeasurements.
+    if (Utils::isAutomotiveDevice()) {
+        ALOGI("Test GnssMeasurementExtension skipped. Android Automotive OS deice is not required "
+              "to support GNSS measurements.");
+        return;
+    }
+
     sp<IGnssMeasurement_2_0> iGnssMeas_2_0 = gnssMeasurement_2_0;
     sp<IGnssMeasurement_1_1> iGnssMeas_1_1 = gnssMeasurement_1_1;
     sp<IGnssMeasurement_1_0> iGnssMeas_1_0 = gnssMeasurement_1_0;
diff --git a/gnss/2.1/vts/functional/gnss_hal_test_cases.cpp b/gnss/2.1/vts/functional/gnss_hal_test_cases.cpp
index 16e634f..2902809 100644
--- a/gnss/2.1/vts/functional/gnss_hal_test_cases.cpp
+++ b/gnss/2.1/vts/functional/gnss_hal_test_cases.cpp
@@ -63,6 +63,15 @@
     auto gnssMeasurement_1_0 = gnss_hal_->getExtensionGnssMeasurement();
     ASSERT_TRUE(gnssMeasurement_2_1.isOk() && gnssMeasurement_2_0.isOk() &&
                 gnssMeasurement_1_1.isOk() && gnssMeasurement_1_0.isOk());
+
+    // CDD does not require Android Automotive OS devices to support
+    // GnssMeasurements.
+    if (Utils::isAutomotiveDevice()) {
+        ALOGI("Test GnssMeasurementExtension skipped. Android Automotive OS de  ice is not "
+              "required to support GNSS measurements.");
+        return;
+    }
+
     sp<IGnssMeasurement_2_1> iGnssMeas_2_1 = gnssMeasurement_2_1;
     sp<IGnssMeasurement_2_0> iGnssMeas_2_0 = gnssMeasurement_2_0;
     sp<IGnssMeasurement_1_1> iGnssMeas_1_1 = gnssMeasurement_1_1;
diff --git a/gnss/common/utils/vts/Utils.cpp b/gnss/common/utils/vts/Utils.cpp
index 9bf68e6..9c84e80 100644
--- a/gnss/common/utils/vts/Utils.cpp
+++ b/gnss/common/utils/vts/Utils.cpp
@@ -17,6 +17,8 @@
 #include <Utils.h>
 #include "gtest/gtest.h"
 
+#include <cutils/properties.h>
+
 namespace android {
 namespace hardware {
 namespace gnss {
@@ -194,6 +196,12 @@
     }
 }
 
+bool Utils::isAutomotiveDevice() {
+    char buffer[PROPERTY_VALUE_MAX] = {0};
+    property_get("ro.hardware.type", buffer, "");
+    return strncmp(buffer, "automotive", PROPERTY_VALUE_MAX) == 0;
+}
+
 }  // namespace common
 }  // namespace gnss
 }  // namespace hardware
diff --git a/gnss/common/utils/vts/include/Utils.h b/gnss/common/utils/vts/include/Utils.h
index 9c838b2..a4aad80 100644
--- a/gnss/common/utils/vts/include/Utils.h
+++ b/gnss/common/utils/vts/include/Utils.h
@@ -49,6 +49,8 @@
     static const MeasurementCorrections_1_1 getMockMeasurementCorrections_1_1();
 
     static GnssConstellationType_1_0 mapConstellationType(GnssConstellationType_2_0 constellation);
+
+    static bool isAutomotiveDevice();
 };
 
 }  // namespace common
diff --git a/neuralnetworks/1.0/utils/Android.bp b/neuralnetworks/1.0/utils/Android.bp
new file mode 100644
index 0000000..57a052f
--- /dev/null
+++ b/neuralnetworks/1.0/utils/Android.bp
@@ -0,0 +1,33 @@
+//
+// Copyright (C) 2020 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_library_static {
+    name: "neuralnetworks_utils_hal_1_0",
+    defaults: ["neuralnetworks_utils_defaults"],
+    srcs: ["src/*"],
+    local_include_dirs: ["include/nnapi/hal/1.0/"],
+    export_include_dirs: ["include"],
+    static_libs: [
+        "neuralnetworks_types",
+        "neuralnetworks_utils_hal_common",
+    ],
+    shared_libs: [
+        "android.hardware.neuralnetworks@1.0",
+    ],
+    export_static_lib_headers: [
+        "neuralnetworks_utils_hal_common",
+    ],
+}
diff --git a/neuralnetworks/1.0/utils/OWNERS b/neuralnetworks/1.0/utils/OWNERS
new file mode 100644
index 0000000..e4feee3
--- /dev/null
+++ b/neuralnetworks/1.0/utils/OWNERS
@@ -0,0 +1,11 @@
+# Neuralnetworks team
+butlermichael@google.com
+dgross@google.com
+galarragas@google.com
+jeanluc@google.com
+levp@google.com
+miaowang@google.com
+pszczepaniak@google.com
+slavash@google.com
+vddang@google.com
+xusongw@google.com
diff --git a/neuralnetworks/1.0/utils/include/nnapi/hal/1.0/Conversions.h b/neuralnetworks/1.0/utils/include/nnapi/hal/1.0/Conversions.h
new file mode 100644
index 0000000..8ad98cb
--- /dev/null
+++ b/neuralnetworks/1.0/utils/include/nnapi/hal/1.0/Conversions.h
@@ -0,0 +1,66 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_CONVERSIONS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_CONVERSIONS_H
+
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/CommonUtils.h>
+
+namespace android::nn {
+
+Result<OperandType> convert(const hal::V1_0::OperandType& operandType);
+Result<OperationType> convert(const hal::V1_0::OperationType& operationType);
+Result<Operand::LifeTime> convert(const hal::V1_0::OperandLifeTime& lifetime);
+Result<DeviceStatus> convert(const hal::V1_0::DeviceStatus& deviceStatus);
+Result<Capabilities::PerformanceInfo> convert(const hal::V1_0::PerformanceInfo& performanceInfo);
+Result<Capabilities> convert(const hal::V1_0::Capabilities& capabilities);
+Result<DataLocation> convert(const hal::V1_0::DataLocation& location);
+Result<Operand> convert(const hal::V1_0::Operand& operand);
+Result<Operation> convert(const hal::V1_0::Operation& operation);
+Result<Model::OperandValues> convert(const hardware::hidl_vec<uint8_t>& operandValues);
+Result<Memory> convert(const hardware::hidl_memory& memory);
+Result<Model> convert(const hal::V1_0::Model& model);
+Result<Request::Argument> convert(const hal::V1_0::RequestArgument& requestArgument);
+Result<Request> convert(const hal::V1_0::Request& request);
+Result<ErrorStatus> convert(const hal::V1_0::ErrorStatus& status);
+
+}  // namespace android::nn
+
+namespace android::hardware::neuralnetworks::V1_0::utils {
+
+nn::Result<OperandType> convert(const nn::OperandType& operandType);
+nn::Result<OperationType> convert(const nn::OperationType& operationType);
+nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& lifetime);
+nn::Result<DeviceStatus> convert(const nn::DeviceStatus& deviceStatus);
+nn::Result<PerformanceInfo> convert(const nn::Capabilities::PerformanceInfo& performanceInfo);
+nn::Result<Capabilities> convert(const nn::Capabilities& capabilities);
+nn::Result<DataLocation> convert(const nn::DataLocation& location);
+nn::Result<Operand> convert(const nn::Operand& operand);
+nn::Result<Operation> convert(const nn::Operation& operation);
+nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues);
+nn::Result<hidl_memory> convert(const nn::Memory& memory);
+nn::Result<Model> convert(const nn::Model& model);
+nn::Result<RequestArgument> convert(const nn::Request::Argument& requestArgument);
+nn::Result<hidl_memory> convert(const nn::Request::MemoryPool& memoryPool);
+nn::Result<Request> convert(const nn::Request& request);
+nn::Result<ErrorStatus> convert(const nn::ErrorStatus& status);
+
+}  // namespace android::hardware::neuralnetworks::V1_0::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_CONVERSIONS_H
diff --git a/neuralnetworks/1.0/utils/include/nnapi/hal/1.0/Utils.h b/neuralnetworks/1.0/utils/include/nnapi/hal/1.0/Utils.h
new file mode 100644
index 0000000..ec8da06
--- /dev/null
+++ b/neuralnetworks/1.0/utils/include/nnapi/hal/1.0/Utils.h
@@ -0,0 +1,63 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_UTILS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_UTILS_H
+
+#include "nnapi/hal/1.0/Conversions.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/Validation.h>
+
+namespace android::hardware::neuralnetworks::V1_0::utils {
+
+constexpr auto kVersion = nn::Version::ANDROID_OC_MR1;
+
+template <typename Type>
+nn::Result<void> validate(const Type& halObject) {
+    const auto canonical = NN_TRY(nn::convert(halObject));
+    const auto version = NN_TRY(nn::validate(canonical));
+    if (version > utils::kVersion) {
+        return NN_ERROR() << "";
+    }
+    return {};
+}
+
+template <typename Type>
+bool valid(const Type& halObject) {
+    const auto result = utils::validate(halObject);
+    if (!result.has_value()) {
+        LOG(ERROR) << result.error();
+    }
+    return result.has_value();
+}
+
+template <typename Type>
+decltype(nn::convert(std::declval<Type>())) validatedConvertToCanonical(const Type& halObject) {
+    auto canonical = NN_TRY(nn::convert(halObject));
+    const auto version = NN_TRY(nn::validate(canonical));
+    if (version > utils::kVersion) {
+        return NN_ERROR() << "";
+    }
+    return canonical;
+}
+
+}  // namespace android::hardware::neuralnetworks::V1_0::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_UTILS_H
diff --git a/neuralnetworks/1.0/utils/src/Assertions.cpp b/neuralnetworks/1.0/utils/src/Assertions.cpp
new file mode 100644
index 0000000..0f00951
--- /dev/null
+++ b/neuralnetworks/1.0/utils/src/Assertions.cpp
@@ -0,0 +1,122 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Types.h>
+#include <type_traits>
+
+namespace {
+
+#define COMPARE_ENUMS_TYPES(lhsType, rhsType)                                                   \
+    static_assert(                                                                              \
+            std::is_same_v<                                                                     \
+                    std::underlying_type_t<::android::hardware::neuralnetworks::V1_0::lhsType>, \
+                    std::underlying_type_t<::android::nn::rhsType>>,                            \
+            "::android::hardware::neuralnetworks::V1_0::" #lhsType                              \
+            " does not have the same underlying type as ::android::nn::" #rhsType)
+
+COMPARE_ENUMS_TYPES(OperandType, OperandType);
+COMPARE_ENUMS_TYPES(OperationType, OperationType);
+COMPARE_ENUMS_TYPES(ErrorStatus, ErrorStatus);
+COMPARE_ENUMS_TYPES(OperandLifeTime, Operand::LifeTime);
+
+#undef COMPARE_ENUMS_TYPES
+
+#define COMPARE_ENUMS_FULL(lhsSymbol, rhsSymbol, lhsType, rhsType)                               \
+    static_assert(                                                                               \
+            static_cast<                                                                         \
+                    std::underlying_type_t<::android::hardware::neuralnetworks::V1_0::lhsType>>( \
+                    ::android::hardware::neuralnetworks::V1_0::lhsType::lhsSymbol) ==            \
+                    static_cast<std::underlying_type_t<::android::nn::rhsType>>(                 \
+                            ::android::nn::rhsType::rhsSymbol),                                  \
+            "::android::hardware::neuralnetworks::V1_0::" #lhsType "::" #lhsSymbol               \
+            " does not match ::android::nn::" #rhsType "::" #rhsSymbol)
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, OperandType, OperandType)
+
+COMPARE_ENUMS(FLOAT32);
+COMPARE_ENUMS(INT32);
+COMPARE_ENUMS(UINT32);
+COMPARE_ENUMS(TENSOR_FLOAT32);
+COMPARE_ENUMS(TENSOR_INT32);
+COMPARE_ENUMS(TENSOR_QUANT8_ASYMM);
+COMPARE_ENUMS(OEM);
+COMPARE_ENUMS(TENSOR_OEM_BYTE);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, OperationType, OperationType)
+
+COMPARE_ENUMS(ADD);
+COMPARE_ENUMS(AVERAGE_POOL_2D);
+COMPARE_ENUMS(CONCATENATION);
+COMPARE_ENUMS(CONV_2D);
+COMPARE_ENUMS(DEPTHWISE_CONV_2D);
+COMPARE_ENUMS(DEPTH_TO_SPACE);
+COMPARE_ENUMS(DEQUANTIZE);
+COMPARE_ENUMS(EMBEDDING_LOOKUP);
+COMPARE_ENUMS(FLOOR);
+COMPARE_ENUMS(FULLY_CONNECTED);
+COMPARE_ENUMS(HASHTABLE_LOOKUP);
+COMPARE_ENUMS(L2_NORMALIZATION);
+COMPARE_ENUMS(L2_POOL_2D);
+COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
+COMPARE_ENUMS(LOGISTIC);
+COMPARE_ENUMS(LSH_PROJECTION);
+COMPARE_ENUMS(LSTM);
+COMPARE_ENUMS(MAX_POOL_2D);
+COMPARE_ENUMS(MUL);
+COMPARE_ENUMS(RELU);
+COMPARE_ENUMS(RELU1);
+COMPARE_ENUMS(RELU6);
+COMPARE_ENUMS(RESHAPE);
+COMPARE_ENUMS(RESIZE_BILINEAR);
+COMPARE_ENUMS(RNN);
+COMPARE_ENUMS(SOFTMAX);
+COMPARE_ENUMS(SPACE_TO_DEPTH);
+COMPARE_ENUMS(SVDF);
+COMPARE_ENUMS(TANH);
+COMPARE_ENUMS(OEM_OPERATION);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, ErrorStatus, ErrorStatus)
+
+COMPARE_ENUMS(NONE);
+COMPARE_ENUMS(DEVICE_UNAVAILABLE);
+COMPARE_ENUMS(GENERAL_FAILURE);
+COMPARE_ENUMS(OUTPUT_INSUFFICIENT_SIZE);
+COMPARE_ENUMS(INVALID_ARGUMENT);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(lhsSymbol, rhsSymbol) \
+    COMPARE_ENUMS_FULL(lhsSymbol, rhsSymbol, OperandLifeTime, Operand::LifeTime)
+
+COMPARE_ENUMS(TEMPORARY_VARIABLE, TEMPORARY_VARIABLE);
+COMPARE_ENUMS(MODEL_INPUT, SUBGRAPH_INPUT);
+COMPARE_ENUMS(MODEL_OUTPUT, SUBGRAPH_OUTPUT);
+COMPARE_ENUMS(CONSTANT_COPY, CONSTANT_COPY);
+COMPARE_ENUMS(CONSTANT_REFERENCE, CONSTANT_REFERENCE);
+COMPARE_ENUMS(NO_VALUE, NO_VALUE);
+
+#undef COMPARE_ENUMS
+
+#undef COMPARE_ENUMS_FULL
+
+}  // anonymous namespace
diff --git a/neuralnetworks/1.0/utils/src/Conversions.cpp b/neuralnetworks/1.0/utils/src/Conversions.cpp
new file mode 100644
index 0000000..4a58f3b
--- /dev/null
+++ b/neuralnetworks/1.0/utils/src/Conversions.cpp
@@ -0,0 +1,361 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Conversions.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Result.h>
+#include <nnapi/SharedMemory.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/CommonUtils.h>
+
+#include <algorithm>
+#include <functional>
+#include <iterator>
+#include <memory>
+#include <type_traits>
+#include <utility>
+#include <variant>
+
+namespace {
+
+template <typename Type>
+constexpr std::underlying_type_t<Type> underlyingType(Type value) {
+    return static_cast<std::underlying_type_t<Type>>(value);
+}
+
+}  // namespace
+
+namespace android::nn {
+namespace {
+
+using hardware::hidl_memory;
+using hardware::hidl_vec;
+
+template <typename Input>
+using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+Result<std::vector<ConvertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
+    std::vector<ConvertOutput<Type>> canonical;
+    canonical.reserve(arguments.size());
+    for (const auto& argument : arguments) {
+        canonical.push_back(NN_TRY(nn::convert(argument)));
+    }
+    return canonical;
+}
+
+}  // anonymous namespace
+
+Result<OperandType> convert(const hal::V1_0::OperandType& operandType) {
+    return static_cast<OperandType>(operandType);
+}
+
+Result<OperationType> convert(const hal::V1_0::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+Result<Operand::LifeTime> convert(const hal::V1_0::OperandLifeTime& lifetime) {
+    return static_cast<Operand::LifeTime>(lifetime);
+}
+
+Result<DeviceStatus> convert(const hal::V1_0::DeviceStatus& deviceStatus) {
+    return static_cast<DeviceStatus>(deviceStatus);
+}
+
+Result<Capabilities::PerformanceInfo> convert(const hal::V1_0::PerformanceInfo& performanceInfo) {
+    return Capabilities::PerformanceInfo{
+            .execTime = performanceInfo.execTime,
+            .powerUsage = performanceInfo.powerUsage,
+    };
+}
+
+Result<Capabilities> convert(const hal::V1_0::Capabilities& capabilities) {
+    const auto quantized8Performance = NN_TRY(convert(capabilities.quantized8Performance));
+    const auto float32Performance = NN_TRY(convert(capabilities.float32Performance));
+
+    auto table = hal::utils::makeQuantized8PerformanceConsistentWithP(float32Performance,
+                                                                      quantized8Performance);
+
+    return Capabilities{
+            .relaxedFloat32toFloat16PerformanceScalar = float32Performance,
+            .relaxedFloat32toFloat16PerformanceTensor = float32Performance,
+            .operandPerformance = std::move(table),
+    };
+}
+
+Result<DataLocation> convert(const hal::V1_0::DataLocation& location) {
+    return DataLocation{
+            .poolIndex = location.poolIndex,
+            .offset = location.offset,
+            .length = location.length,
+    };
+}
+
+Result<Operand> convert(const hal::V1_0::Operand& operand) {
+    return Operand{
+            .type = NN_TRY(convert(operand.type)),
+            .dimensions = operand.dimensions,
+            .scale = operand.scale,
+            .zeroPoint = operand.zeroPoint,
+            .lifetime = NN_TRY(convert(operand.lifetime)),
+            .location = NN_TRY(convert(operand.location)),
+    };
+}
+
+Result<Operation> convert(const hal::V1_0::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+Result<Model::OperandValues> convert(const hidl_vec<uint8_t>& operandValues) {
+    return Model::OperandValues(operandValues.data(), operandValues.size());
+}
+
+Result<Memory> convert(const hidl_memory& memory) {
+    return createSharedMemoryFromHidlMemory(memory);
+}
+
+Result<Model> convert(const hal::V1_0::Model& model) {
+    auto operations = NN_TRY(convert(model.operations));
+
+    // Verify number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(model.operands.size(), operations);
+    CHECK(model.operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < model.operands.size(); ++i) {
+        if (model.operands[i].numberOfConsumers != numberOfConsumers[i]) {
+            return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
+                              << numberOfConsumers[i] << " but found "
+                              << model.operands[i].numberOfConsumers;
+        }
+    }
+
+    auto main = Model::Subgraph{
+            .operands = NN_TRY(convert(model.operands)),
+            .operations = std::move(operations),
+            .inputIndexes = model.inputIndexes,
+            .outputIndexes = model.outputIndexes,
+    };
+
+    return Model{
+            .main = std::move(main),
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+    };
+}
+
+Result<Request::Argument> convert(const hal::V1_0::RequestArgument& argument) {
+    const auto lifetime = argument.hasNoValue ? Request::Argument::LifeTime::NO_VALUE
+                                              : Request::Argument::LifeTime::POOL;
+    return Request::Argument{
+            .lifetime = lifetime,
+            .location = NN_TRY(convert(argument.location)),
+            .dimensions = argument.dimensions,
+    };
+}
+
+Result<Request> convert(const hal::V1_0::Request& request) {
+    auto memories = NN_TRY(convert(request.pools));
+    std::vector<Request::MemoryPool> pools;
+    pools.reserve(memories.size());
+    std::move(memories.begin(), memories.end(), std::back_inserter(pools));
+
+    return Request{
+            .inputs = NN_TRY(convert(request.inputs)),
+            .outputs = NN_TRY(convert(request.outputs)),
+            .pools = std::move(pools),
+    };
+}
+
+Result<ErrorStatus> convert(const hal::V1_0::ErrorStatus& status) {
+    switch (status) {
+        case hal::V1_0::ErrorStatus::NONE:
+        case hal::V1_0::ErrorStatus::DEVICE_UNAVAILABLE:
+        case hal::V1_0::ErrorStatus::GENERAL_FAILURE:
+        case hal::V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
+        case hal::V1_0::ErrorStatus::INVALID_ARGUMENT:
+            return static_cast<ErrorStatus>(status);
+    }
+    return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
+}
+
+}  // namespace android::nn
+
+namespace android::hardware::neuralnetworks::V1_0::utils {
+namespace {
+
+template <typename Input>
+using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+nn::Result<hidl_vec<ConvertOutput<Type>>> convert(const std::vector<Type>& arguments) {
+    hidl_vec<ConvertOutput<Type>> halObject(arguments.size());
+    for (size_t i = 0; i < arguments.size(); ++i) {
+        halObject[i] = NN_TRY(utils::convert(arguments[i]));
+    }
+    return halObject;
+}
+
+}  // anonymous namespace
+
+nn::Result<OperandType> convert(const nn::OperandType& operandType) {
+    return static_cast<OperandType>(operandType);
+}
+
+nn::Result<OperationType> convert(const nn::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& lifetime) {
+    if (lifetime == nn::Operand::LifeTime::POINTER) {
+        return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
+    }
+    return static_cast<OperandLifeTime>(lifetime);
+}
+
+nn::Result<DeviceStatus> convert(const nn::DeviceStatus& deviceStatus) {
+    return static_cast<DeviceStatus>(deviceStatus);
+}
+
+nn::Result<PerformanceInfo> convert(const nn::Capabilities::PerformanceInfo& performanceInfo) {
+    return PerformanceInfo{
+            .execTime = performanceInfo.execTime,
+            .powerUsage = performanceInfo.powerUsage,
+    };
+}
+
+nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
+    return Capabilities{
+            .float32Performance = NN_TRY(convert(
+                    capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_FLOAT32))),
+            .quantized8Performance = NN_TRY(convert(
+                    capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_QUANT8_ASYMM))),
+    };
+}
+
+nn::Result<DataLocation> convert(const nn::DataLocation& location) {
+    return DataLocation{
+            .poolIndex = location.poolIndex,
+            .offset = location.offset,
+            .length = location.length,
+    };
+}
+
+nn::Result<Operand> convert(const nn::Operand& operand) {
+    return Operand{
+            .type = NN_TRY(convert(operand.type)),
+            .dimensions = operand.dimensions,
+            .numberOfConsumers = 0,
+            .scale = operand.scale,
+            .zeroPoint = operand.zeroPoint,
+            .lifetime = NN_TRY(convert(operand.lifetime)),
+            .location = NN_TRY(convert(operand.location)),
+    };
+}
+
+nn::Result<Operation> convert(const nn::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
+    return hidl_vec<uint8_t>(operandValues.data(), operandValues.data() + operandValues.size());
+}
+
+nn::Result<hidl_memory> convert(const nn::Memory& memory) {
+    const auto hidlMemory = hidl_memory(memory.name, memory.handle->handle(), memory.size);
+    // Copy memory to force the native_handle_t to be copied.
+    auto copiedMemory = hidlMemory;
+    return copiedMemory;
+}
+
+nn::Result<Model> convert(const nn::Model& model) {
+    if (!hal::utils::hasNoPointerData(model)) {
+        return NN_ERROR() << "Mdoel cannot be converted because it contains pointer-based memory";
+    }
+
+    auto operands = NN_TRY(convert(model.main.operands));
+
+    // Update number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(operands.size(), model.main.operations);
+    CHECK(operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < operands.size(); ++i) {
+        operands[i].numberOfConsumers = numberOfConsumers[i];
+    }
+
+    return Model{
+            .operands = std::move(operands),
+            .operations = NN_TRY(convert(model.main.operations)),
+            .inputIndexes = model.main.inputIndexes,
+            .outputIndexes = model.main.outputIndexes,
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+    };
+}
+
+nn::Result<RequestArgument> convert(const nn::Request::Argument& requestArgument) {
+    if (requestArgument.lifetime == nn::Request::Argument::LifeTime::POINTER) {
+        return NN_ERROR() << "Request cannot be converted because it contains pointer-based memory";
+    }
+    const bool hasNoValue = requestArgument.lifetime == nn::Request::Argument::LifeTime::NO_VALUE;
+    return RequestArgument{
+            .hasNoValue = hasNoValue,
+            .location = NN_TRY(convert(requestArgument.location)),
+            .dimensions = requestArgument.dimensions,
+    };
+}
+
+nn::Result<hidl_memory> convert(const nn::Request::MemoryPool& memoryPool) {
+    return convert(std::get<nn::Memory>(memoryPool));
+}
+
+nn::Result<Request> convert(const nn::Request& request) {
+    if (!hal::utils::hasNoPointerData(request)) {
+        return NN_ERROR() << "Request cannot be converted because it contains pointer-based memory";
+    }
+
+    return Request{
+            .inputs = NN_TRY(convert(request.inputs)),
+            .outputs = NN_TRY(convert(request.outputs)),
+            .pools = NN_TRY(convert(request.pools)),
+    };
+}
+
+nn::Result<ErrorStatus> convert(const nn::ErrorStatus& status) {
+    switch (status) {
+        case nn::ErrorStatus::NONE:
+        case nn::ErrorStatus::DEVICE_UNAVAILABLE:
+        case nn::ErrorStatus::GENERAL_FAILURE:
+        case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
+        case nn::ErrorStatus::INVALID_ARGUMENT:
+            return static_cast<ErrorStatus>(status);
+        default:
+            return ErrorStatus::GENERAL_FAILURE;
+    }
+}
+
+}  // namespace android::hardware::neuralnetworks::V1_0::utils
diff --git a/neuralnetworks/1.1/utils/Android.bp b/neuralnetworks/1.1/utils/Android.bp
new file mode 100644
index 0000000..85a32c5
--- /dev/null
+++ b/neuralnetworks/1.1/utils/Android.bp
@@ -0,0 +1,35 @@
+//
+// Copyright (C) 2020 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_library_static {
+    name: "neuralnetworks_utils_hal_1_1",
+    defaults: ["neuralnetworks_utils_defaults"],
+    srcs: ["src/*"],
+    local_include_dirs: ["include/nnapi/hal/1.1/"],
+    export_include_dirs: ["include"],
+    static_libs: [
+        "neuralnetworks_types",
+        "neuralnetworks_utils_hal_common",
+        "neuralnetworks_utils_hal_1_0",
+    ],
+    shared_libs: [
+        "android.hardware.neuralnetworks@1.0",
+        "android.hardware.neuralnetworks@1.1",
+    ],
+    export_static_lib_headers: [
+        "neuralnetworks_utils_hal_common",
+    ],
+}
diff --git a/neuralnetworks/1.1/utils/OWNERS b/neuralnetworks/1.1/utils/OWNERS
new file mode 100644
index 0000000..e4feee3
--- /dev/null
+++ b/neuralnetworks/1.1/utils/OWNERS
@@ -0,0 +1,11 @@
+# Neuralnetworks team
+butlermichael@google.com
+dgross@google.com
+galarragas@google.com
+jeanluc@google.com
+levp@google.com
+miaowang@google.com
+pszczepaniak@google.com
+slavash@google.com
+vddang@google.com
+xusongw@google.com
diff --git a/neuralnetworks/1.1/utils/include/nnapi/hal/1.1/Conversions.h b/neuralnetworks/1.1/utils/include/nnapi/hal/1.1/Conversions.h
new file mode 100644
index 0000000..d0c5397
--- /dev/null
+++ b/neuralnetworks/1.1/utils/include/nnapi/hal/1.1/Conversions.h
@@ -0,0 +1,45 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_CONVERSIONS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_CONVERSIONS_H
+
+#include <android/hardware/neuralnetworks/1.1/types.h>
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/CommonUtils.h>
+
+namespace android::nn {
+
+Result<OperationType> convert(const hal::V1_1::OperationType& operationType);
+Result<Capabilities> convert(const hal::V1_1::Capabilities& capabilities);
+Result<Operation> convert(const hal::V1_1::Operation& operation);
+Result<Model> convert(const hal::V1_1::Model& model);
+Result<ExecutionPreference> convert(const hal::V1_1::ExecutionPreference& executionPreference);
+
+}  // namespace android::nn
+
+namespace android::hardware::neuralnetworks::V1_1::utils {
+
+nn::Result<OperationType> convert(const nn::OperationType& operationType);
+nn::Result<Capabilities> convert(const nn::Capabilities& capabilities);
+nn::Result<Operation> convert(const nn::Operation& operation);
+nn::Result<Model> convert(const nn::Model& model);
+nn::Result<ExecutionPreference> convert(const nn::ExecutionPreference& executionPreference);
+
+}  // namespace android::hardware::neuralnetworks::V1_1::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_CONVERSIONS_H
diff --git a/neuralnetworks/1.1/utils/include/nnapi/hal/1.1/Utils.h b/neuralnetworks/1.1/utils/include/nnapi/hal/1.1/Utils.h
new file mode 100644
index 0000000..6f9aa60
--- /dev/null
+++ b/neuralnetworks/1.1/utils/include/nnapi/hal/1.1/Utils.h
@@ -0,0 +1,65 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_UTILS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_UTILS_H
+
+#include "nnapi/hal/1.1/Conversions.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.1/types.h>
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/Validation.h>
+#include <nnapi/hal/1.0/Conversions.h>
+
+namespace android::hardware::neuralnetworks::V1_1::utils {
+
+constexpr auto kDefaultExecutionPreference = ExecutionPreference::FAST_SINGLE_ANSWER;
+constexpr auto kVersion = nn::Version::ANDROID_P;
+
+template <typename Type>
+nn::Result<void> validate(const Type& halObject) {
+    const auto canonical = NN_TRY(nn::convert(halObject));
+    const auto version = NN_TRY(nn::validate(canonical));
+    if (version > utils::kVersion) {
+        return NN_ERROR() << "";
+    }
+    return {};
+}
+
+template <typename Type>
+bool valid(const Type& halObject) {
+    const auto result = utils::validate(halObject);
+    if (!result.has_value()) {
+        LOG(ERROR) << result.error();
+    }
+    return result.has_value();
+}
+
+template <typename Type>
+decltype(nn::convert(std::declval<Type>())) validatedConvertToCanonical(const Type& halObject) {
+    auto canonical = NN_TRY(nn::convert(halObject));
+    const auto version = NN_TRY(nn::validate(canonical));
+    if (version > utils::kVersion) {
+        return NN_ERROR() << "";
+    }
+    return canonical;
+}
+
+}  // namespace android::hardware::neuralnetworks::V1_1::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_UTILS_H
diff --git a/neuralnetworks/1.1/utils/src/Assertions.cpp b/neuralnetworks/1.1/utils/src/Assertions.cpp
new file mode 100644
index 0000000..ba4a388
--- /dev/null
+++ b/neuralnetworks/1.1/utils/src/Assertions.cpp
@@ -0,0 +1,100 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <android/hardware/neuralnetworks/1.1/types.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Types.h>
+#include <type_traits>
+
+namespace {
+
+#define COMPARE_ENUMS_TYPES(type)                                                                  \
+    static_assert(std::is_same_v<                                                                  \
+                          std::underlying_type_t<::android::hardware::neuralnetworks::V1_1::type>, \
+                          std::underlying_type_t<::android::nn::type>>,                            \
+                  "::android::hardware::neuralnetworks::V1_1::" #type                              \
+                  " does not have the same underlying type as ::android::nn::" #type)
+
+COMPARE_ENUMS_TYPES(OperationType);
+COMPARE_ENUMS_TYPES(ExecutionPreference);
+
+#undef COMPARE_ENUMS_TYPES
+
+#define COMPARE_ENUMS_FULL(symbol, type)                                                          \
+    static_assert(                                                                                \
+            static_cast<std::underlying_type_t<::android::hardware::neuralnetworks::V1_1::type>>( \
+                    ::android::hardware::neuralnetworks::V1_1::type::symbol) ==                   \
+                    static_cast<std::underlying_type_t<::android::nn::type>>(                     \
+                            ::android::nn::type::symbol),                                         \
+            "::android::hardware::neuralnetworks::V1_1::" #type "::" #symbol                      \
+            " does not match ::android::nn::" #type "::" #symbol)
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperationType)
+
+COMPARE_ENUMS(ADD);
+COMPARE_ENUMS(AVERAGE_POOL_2D);
+COMPARE_ENUMS(CONCATENATION);
+COMPARE_ENUMS(CONV_2D);
+COMPARE_ENUMS(DEPTHWISE_CONV_2D);
+COMPARE_ENUMS(DEPTH_TO_SPACE);
+COMPARE_ENUMS(DEQUANTIZE);
+COMPARE_ENUMS(EMBEDDING_LOOKUP);
+COMPARE_ENUMS(FLOOR);
+COMPARE_ENUMS(FULLY_CONNECTED);
+COMPARE_ENUMS(HASHTABLE_LOOKUP);
+COMPARE_ENUMS(L2_NORMALIZATION);
+COMPARE_ENUMS(L2_POOL_2D);
+COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
+COMPARE_ENUMS(LOGISTIC);
+COMPARE_ENUMS(LSH_PROJECTION);
+COMPARE_ENUMS(LSTM);
+COMPARE_ENUMS(MAX_POOL_2D);
+COMPARE_ENUMS(MUL);
+COMPARE_ENUMS(RELU);
+COMPARE_ENUMS(RELU1);
+COMPARE_ENUMS(RELU6);
+COMPARE_ENUMS(RESHAPE);
+COMPARE_ENUMS(RESIZE_BILINEAR);
+COMPARE_ENUMS(RNN);
+COMPARE_ENUMS(SOFTMAX);
+COMPARE_ENUMS(SPACE_TO_DEPTH);
+COMPARE_ENUMS(SVDF);
+COMPARE_ENUMS(TANH);
+COMPARE_ENUMS(BATCH_TO_SPACE_ND);
+COMPARE_ENUMS(DIV);
+COMPARE_ENUMS(MEAN);
+COMPARE_ENUMS(PAD);
+COMPARE_ENUMS(SPACE_TO_BATCH_ND);
+COMPARE_ENUMS(SQUEEZE);
+COMPARE_ENUMS(STRIDED_SLICE);
+COMPARE_ENUMS(SUB);
+COMPARE_ENUMS(TRANSPOSE);
+COMPARE_ENUMS(OEM_OPERATION);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, ExecutionPreference)
+
+COMPARE_ENUMS(LOW_POWER);
+COMPARE_ENUMS(FAST_SINGLE_ANSWER);
+COMPARE_ENUMS(SUSTAINED_SPEED);
+
+#undef COMPARE_ENUMS
+
+#undef COMPARE_ENUMS_FULL
+
+}  // anonymous namespace
diff --git a/neuralnetworks/1.1/utils/src/Conversions.cpp b/neuralnetworks/1.1/utils/src/Conversions.cpp
new file mode 100644
index 0000000..7fee16b
--- /dev/null
+++ b/neuralnetworks/1.1/utils/src/Conversions.cpp
@@ -0,0 +1,209 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Conversions.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <android/hardware/neuralnetworks/1.1/types.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Result.h>
+#include <nnapi/SharedMemory.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/1.0/Conversions.h>
+#include <nnapi/hal/CommonUtils.h>
+
+#include <algorithm>
+#include <functional>
+#include <iterator>
+#include <type_traits>
+#include <utility>
+
+namespace android::nn {
+namespace {
+
+using hardware::hidl_vec;
+
+template <typename Input>
+using convertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+Result<std::vector<convertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
+    std::vector<convertOutput<Type>> canonical;
+    canonical.reserve(arguments.size());
+    for (const auto& argument : arguments) {
+        canonical.push_back(NN_TRY(nn::convert(argument)));
+    }
+    return canonical;
+}
+
+}  // anonymous namespace
+
+Result<OperationType> convert(const hal::V1_1::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+Result<Capabilities> convert(const hal::V1_1::Capabilities& capabilities) {
+    const auto quantized8Performance = NN_TRY(convert(capabilities.quantized8Performance));
+    const auto float32Performance = NN_TRY(convert(capabilities.float32Performance));
+    const auto relaxedFloat32toFloat16Performance =
+            NN_TRY(convert(capabilities.relaxedFloat32toFloat16Performance));
+
+    auto table = hal::utils::makeQuantized8PerformanceConsistentWithP(float32Performance,
+                                                                      quantized8Performance);
+
+    return Capabilities{
+            .relaxedFloat32toFloat16PerformanceScalar = relaxedFloat32toFloat16Performance,
+            .relaxedFloat32toFloat16PerformanceTensor = relaxedFloat32toFloat16Performance,
+            .operandPerformance = std::move(table),
+    };
+}
+
+Result<Operation> convert(const hal::V1_1::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+Result<Model> convert(const hal::V1_1::Model& model) {
+    auto operations = NN_TRY(convert(model.operations));
+
+    // Verify number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(model.operands.size(), operations);
+    CHECK(model.operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < model.operands.size(); ++i) {
+        if (model.operands[i].numberOfConsumers != numberOfConsumers[i]) {
+            return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
+                              << numberOfConsumers[i] << " but found "
+                              << model.operands[i].numberOfConsumers;
+        }
+    }
+
+    auto main = Model::Subgraph{
+            .operands = NN_TRY(convert(model.operands)),
+            .operations = std::move(operations),
+            .inputIndexes = model.inputIndexes,
+            .outputIndexes = model.outputIndexes,
+    };
+
+    return Model{
+            .main = std::move(main),
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+    };
+}
+
+Result<ExecutionPreference> convert(const hal::V1_1::ExecutionPreference& executionPreference) {
+    return static_cast<ExecutionPreference>(executionPreference);
+}
+
+}  // namespace android::nn
+
+namespace android::hardware::neuralnetworks::V1_1::utils {
+namespace {
+
+using utils::convert;
+
+nn::Result<V1_0::PerformanceInfo> convert(
+        const nn::Capabilities::PerformanceInfo& performanceInfo) {
+    return V1_0::utils::convert(performanceInfo);
+}
+
+nn::Result<V1_0::Operand> convert(const nn::Operand& operand) {
+    return V1_0::utils::convert(operand);
+}
+
+nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
+    return V1_0::utils::convert(operandValues);
+}
+
+nn::Result<hidl_memory> convert(const nn::Memory& memory) {
+    return V1_0::utils::convert(memory);
+}
+
+template <typename Input>
+using convertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+nn::Result<hidl_vec<convertOutput<Type>>> convert(const std::vector<Type>& arguments) {
+    hidl_vec<convertOutput<Type>> halObject(arguments.size());
+    for (size_t i = 0; i < arguments.size(); ++i) {
+        halObject[i] = NN_TRY(convert(arguments[i]));
+    }
+    return halObject;
+}
+
+}  // anonymous namespace
+
+nn::Result<OperationType> convert(const nn::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
+    return Capabilities{
+            .float32Performance = NN_TRY(convert(
+                    capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_FLOAT32))),
+            .quantized8Performance = NN_TRY(convert(
+                    capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_QUANT8_ASYMM))),
+            .relaxedFloat32toFloat16Performance =
+                    NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
+    };
+}
+
+nn::Result<Operation> convert(const nn::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+nn::Result<Model> convert(const nn::Model& model) {
+    if (!hal::utils::hasNoPointerData(model)) {
+        return NN_ERROR() << "Mdoel cannot be converted because it contains pointer-based memory";
+    }
+
+    auto operands = NN_TRY(convert(model.main.operands));
+
+    // Update number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(operands.size(), model.main.operations);
+    CHECK(operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < operands.size(); ++i) {
+        operands[i].numberOfConsumers = numberOfConsumers[i];
+    }
+
+    return Model{
+            .operands = std::move(operands),
+            .operations = NN_TRY(convert(model.main.operations)),
+            .inputIndexes = model.main.inputIndexes,
+            .outputIndexes = model.main.outputIndexes,
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+    };
+}
+
+nn::Result<ExecutionPreference> convert(const nn::ExecutionPreference& executionPreference) {
+    return static_cast<ExecutionPreference>(executionPreference);
+}
+
+}  // namespace android::hardware::neuralnetworks::V1_1::utils
diff --git a/neuralnetworks/1.2/utils/Android.bp b/neuralnetworks/1.2/utils/Android.bp
new file mode 100644
index 0000000..a1dd3d0
--- /dev/null
+++ b/neuralnetworks/1.2/utils/Android.bp
@@ -0,0 +1,37 @@
+//
+// Copyright (C) 2020 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_library_static {
+    name: "neuralnetworks_utils_hal_1_2",
+    defaults: ["neuralnetworks_utils_defaults"],
+    srcs: ["src/*"],
+    local_include_dirs: ["include/nnapi/hal/1.2/"],
+    export_include_dirs: ["include"],
+    static_libs: [
+        "neuralnetworks_types",
+        "neuralnetworks_utils_hal_common",
+        "neuralnetworks_utils_hal_1_0",
+        "neuralnetworks_utils_hal_1_1",
+    ],
+    shared_libs: [
+        "android.hardware.neuralnetworks@1.0",
+        "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
+    ],
+    export_static_lib_headers: [
+        "neuralnetworks_utils_hal_common",
+    ],
+}
diff --git a/neuralnetworks/1.2/utils/OWNERS b/neuralnetworks/1.2/utils/OWNERS
new file mode 100644
index 0000000..e4feee3
--- /dev/null
+++ b/neuralnetworks/1.2/utils/OWNERS
@@ -0,0 +1,11 @@
+# Neuralnetworks team
+butlermichael@google.com
+dgross@google.com
+galarragas@google.com
+jeanluc@google.com
+levp@google.com
+miaowang@google.com
+pszczepaniak@google.com
+slavash@google.com
+vddang@google.com
+xusongw@google.com
diff --git a/neuralnetworks/1.2/utils/include/nnapi/hal/1.2/Conversions.h b/neuralnetworks/1.2/utils/include/nnapi/hal/1.2/Conversions.h
new file mode 100644
index 0000000..81bf792
--- /dev/null
+++ b/neuralnetworks/1.2/utils/include/nnapi/hal/1.2/Conversions.h
@@ -0,0 +1,86 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_CONVERSIONS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_CONVERSIONS_H
+
+#include <android/hardware/neuralnetworks/1.2/types.h>
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/CommonUtils.h>
+
+namespace android::nn {
+
+Result<OperandType> convert(const hal::V1_2::OperandType& operandType);
+Result<OperationType> convert(const hal::V1_2::OperationType& operationType);
+Result<DeviceType> convert(const hal::V1_2::DeviceType& deviceType);
+Result<Capabilities> convert(const hal::V1_2::Capabilities& capabilities);
+Result<Capabilities::OperandPerformance> convert(
+        const hal::V1_2::Capabilities::OperandPerformance& operandPerformance);
+Result<Operation> convert(const hal::V1_2::Operation& operation);
+Result<Operand::SymmPerChannelQuantParams> convert(
+        const hal::V1_2::SymmPerChannelQuantParams& symmPerChannelQuantParams);
+Result<Operand> convert(const hal::V1_2::Operand& operand);
+Result<Operand::ExtraParams> convert(const hal::V1_2::Operand::ExtraParams& extraParams);
+Result<Model> convert(const hal::V1_2::Model& model);
+Result<Model::ExtensionNameAndPrefix> convert(
+        const hal::V1_2::Model::ExtensionNameAndPrefix& extensionNameAndPrefix);
+Result<OutputShape> convert(const hal::V1_2::OutputShape& outputShape);
+Result<MeasureTiming> convert(const hal::V1_2::MeasureTiming& measureTiming);
+Result<Timing> convert(const hal::V1_2::Timing& timing);
+Result<Extension> convert(const hal::V1_2::Extension& extension);
+Result<Extension::OperandTypeInformation> convert(
+        const hal::V1_2::Extension::OperandTypeInformation& operandTypeInformation);
+Result<NativeHandle> convert(const hardware::hidl_handle& handle);
+
+Result<std::vector<Extension>> convert(const hardware::hidl_vec<hal::V1_2::Extension>& extensions);
+Result<std::vector<NativeHandle>> convert(const hardware::hidl_vec<hardware::hidl_handle>& handles);
+Result<std::vector<OutputShape>> convert(
+        const hardware::hidl_vec<hal::V1_2::OutputShape>& outputShapes);
+
+}  // namespace android::nn
+
+namespace android::hardware::neuralnetworks::V1_2::utils {
+
+nn::Result<OperandType> convert(const nn::OperandType& operandType);
+nn::Result<OperationType> convert(const nn::OperationType& operationType);
+nn::Result<DeviceType> convert(const nn::DeviceType& deviceType);
+nn::Result<Capabilities> convert(const nn::Capabilities& capabilities);
+nn::Result<Capabilities::OperandPerformance> convert(
+        const nn::Capabilities::OperandPerformance& operandPerformance);
+nn::Result<Operation> convert(const nn::Operation& operation);
+nn::Result<SymmPerChannelQuantParams> convert(
+        const nn::Operand::SymmPerChannelQuantParams& symmPerChannelQuantParams);
+nn::Result<Operand> convert(const nn::Operand& operand);
+nn::Result<Operand::ExtraParams> convert(const nn::Operand::ExtraParams& extraParams);
+nn::Result<Model> convert(const nn::Model& model);
+nn::Result<Model::ExtensionNameAndPrefix> convert(
+        const nn::Model::ExtensionNameAndPrefix& extensionNameAndPrefix);
+nn::Result<OutputShape> convert(const nn::OutputShape& outputShape);
+nn::Result<MeasureTiming> convert(const nn::MeasureTiming& measureTiming);
+nn::Result<Timing> convert(const nn::Timing& timing);
+nn::Result<Extension> convert(const nn::Extension& extension);
+nn::Result<Extension::OperandTypeInformation> convert(
+        const nn::Extension::OperandTypeInformation& operandTypeInformation);
+nn::Result<hidl_handle> convert(const nn::NativeHandle& handle);
+
+nn::Result<hidl_vec<Extension>> convert(const std::vector<nn::Extension>& extensions);
+nn::Result<hidl_vec<hidl_handle>> convert(const std::vector<nn::NativeHandle>& handles);
+nn::Result<hidl_vec<OutputShape>> convert(const std::vector<nn::OutputShape>& outputShapes);
+
+}  // namespace android::hardware::neuralnetworks::V1_2::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_CONVERSIONS_H
diff --git a/neuralnetworks/1.2/utils/include/nnapi/hal/1.2/Utils.h b/neuralnetworks/1.2/utils/include/nnapi/hal/1.2/Utils.h
new file mode 100644
index 0000000..b1c2f1a
--- /dev/null
+++ b/neuralnetworks/1.2/utils/include/nnapi/hal/1.2/Utils.h
@@ -0,0 +1,70 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_H
+
+#include "nnapi/hal/1.2/Conversions.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.2/types.h>
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/Validation.h>
+#include <nnapi/hal/1.0/Conversions.h>
+#include <nnapi/hal/1.1/Conversions.h>
+
+#include <limits>
+
+namespace android::hardware::neuralnetworks::V1_2::utils {
+
+constexpr auto kDefaultMesaureTiming = MeasureTiming::NO;
+constexpr auto kNoTiming = Timing{.timeOnDevice = std::numeric_limits<uint64_t>::max(),
+                                  .timeInDriver = std::numeric_limits<uint64_t>::max()};
+constexpr auto kVersion = nn::Version::ANDROID_Q;
+
+template <typename Type>
+nn::Result<void> validate(const Type& halObject) {
+    const auto canonical = NN_TRY(nn::convert(halObject));
+    const auto version = NN_TRY(nn::validate(canonical));
+    if (version > utils::kVersion) {
+        return NN_ERROR() << "";
+    }
+    return {};
+}
+
+template <typename Type>
+bool valid(const Type& halObject) {
+    const auto result = utils::validate(halObject);
+    if (!result.has_value()) {
+        LOG(ERROR) << result.error();
+    }
+    return result.has_value();
+}
+
+template <typename Type>
+decltype(nn::convert(std::declval<Type>())) validatedConvertToCanonical(const Type& halObject) {
+    auto canonical = NN_TRY(nn::convert(halObject));
+    const auto version = NN_TRY(nn::validate(canonical));
+    if (version > utils::kVersion) {
+        return NN_ERROR() << "";
+    }
+    return canonical;
+}
+
+}  // namespace android::hardware::neuralnetworks::V1_2::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_H
diff --git a/neuralnetworks/1.2/utils/src/Assertions.cpp b/neuralnetworks/1.2/utils/src/Assertions.cpp
new file mode 100644
index 0000000..9d9716a
--- /dev/null
+++ b/neuralnetworks/1.2/utils/src/Assertions.cpp
@@ -0,0 +1,188 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <android/hardware/neuralnetworks/1.2/types.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Types.h>
+#include <type_traits>
+
+namespace {
+
+#define COMPARE_ENUMS_TYPES(type)                                                                  \
+    static_assert(std::is_same_v<                                                                  \
+                          std::underlying_type_t<::android::hardware::neuralnetworks::V1_2::type>, \
+                          std::underlying_type_t<::android::nn::type>>,                            \
+                  "::android::hardware::neuralnetworks::V1_2::" #type                              \
+                  " does not have the same underlying type as ::android::nn::" #type)
+
+COMPARE_ENUMS_TYPES(OperandType);
+COMPARE_ENUMS_TYPES(OperationType);
+COMPARE_ENUMS_TYPES(DeviceType);
+COMPARE_ENUMS_TYPES(MeasureTiming);
+
+#undef COMPARE_ENUMS_TYPES
+
+#define COMPARE_ENUMS_FULL(symbol, type)                                                          \
+    static_assert(                                                                                \
+            static_cast<std::underlying_type_t<::android::hardware::neuralnetworks::V1_2::type>>( \
+                    ::android::hardware::neuralnetworks::V1_2::type::symbol) ==                   \
+                    static_cast<std::underlying_type_t<::android::nn::type>>(                     \
+                            ::android::nn::type::symbol),                                         \
+            "::android::hardware::neuralnetworks::V1_2::" #type "::" #symbol                      \
+            " does not match ::android::nn::" #type "::" #symbol)
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperandType)
+
+COMPARE_ENUMS(FLOAT32);
+COMPARE_ENUMS(INT32);
+COMPARE_ENUMS(UINT32);
+COMPARE_ENUMS(TENSOR_FLOAT32);
+COMPARE_ENUMS(TENSOR_INT32);
+COMPARE_ENUMS(TENSOR_QUANT8_ASYMM);
+COMPARE_ENUMS(BOOL);
+COMPARE_ENUMS(TENSOR_QUANT16_SYMM);
+COMPARE_ENUMS(TENSOR_FLOAT16);
+COMPARE_ENUMS(TENSOR_BOOL8);
+COMPARE_ENUMS(FLOAT16);
+COMPARE_ENUMS(TENSOR_QUANT8_SYMM_PER_CHANNEL);
+COMPARE_ENUMS(TENSOR_QUANT16_ASYMM);
+COMPARE_ENUMS(TENSOR_QUANT8_SYMM);
+COMPARE_ENUMS(OEM);
+COMPARE_ENUMS(TENSOR_OEM_BYTE);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperationType)
+
+COMPARE_ENUMS(ADD);
+COMPARE_ENUMS(AVERAGE_POOL_2D);
+COMPARE_ENUMS(CONCATENATION);
+COMPARE_ENUMS(CONV_2D);
+COMPARE_ENUMS(DEPTHWISE_CONV_2D);
+COMPARE_ENUMS(DEPTH_TO_SPACE);
+COMPARE_ENUMS(DEQUANTIZE);
+COMPARE_ENUMS(EMBEDDING_LOOKUP);
+COMPARE_ENUMS(FLOOR);
+COMPARE_ENUMS(FULLY_CONNECTED);
+COMPARE_ENUMS(HASHTABLE_LOOKUP);
+COMPARE_ENUMS(L2_NORMALIZATION);
+COMPARE_ENUMS(L2_POOL_2D);
+COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
+COMPARE_ENUMS(LOGISTIC);
+COMPARE_ENUMS(LSH_PROJECTION);
+COMPARE_ENUMS(LSTM);
+COMPARE_ENUMS(MAX_POOL_2D);
+COMPARE_ENUMS(MUL);
+COMPARE_ENUMS(RELU);
+COMPARE_ENUMS(RELU1);
+COMPARE_ENUMS(RELU6);
+COMPARE_ENUMS(RESHAPE);
+COMPARE_ENUMS(RESIZE_BILINEAR);
+COMPARE_ENUMS(RNN);
+COMPARE_ENUMS(SOFTMAX);
+COMPARE_ENUMS(SPACE_TO_DEPTH);
+COMPARE_ENUMS(SVDF);
+COMPARE_ENUMS(TANH);
+COMPARE_ENUMS(BATCH_TO_SPACE_ND);
+COMPARE_ENUMS(DIV);
+COMPARE_ENUMS(MEAN);
+COMPARE_ENUMS(PAD);
+COMPARE_ENUMS(SPACE_TO_BATCH_ND);
+COMPARE_ENUMS(SQUEEZE);
+COMPARE_ENUMS(STRIDED_SLICE);
+COMPARE_ENUMS(SUB);
+COMPARE_ENUMS(TRANSPOSE);
+COMPARE_ENUMS(ABS);
+COMPARE_ENUMS(ARGMAX);
+COMPARE_ENUMS(ARGMIN);
+COMPARE_ENUMS(AXIS_ALIGNED_BBOX_TRANSFORM);
+COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_LSTM);
+COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_RNN);
+COMPARE_ENUMS(BOX_WITH_NMS_LIMIT);
+COMPARE_ENUMS(CAST);
+COMPARE_ENUMS(CHANNEL_SHUFFLE);
+COMPARE_ENUMS(DETECTION_POSTPROCESSING);
+COMPARE_ENUMS(EQUAL);
+COMPARE_ENUMS(EXP);
+COMPARE_ENUMS(EXPAND_DIMS);
+COMPARE_ENUMS(GATHER);
+COMPARE_ENUMS(GENERATE_PROPOSALS);
+COMPARE_ENUMS(GREATER);
+COMPARE_ENUMS(GREATER_EQUAL);
+COMPARE_ENUMS(GROUPED_CONV_2D);
+COMPARE_ENUMS(HEATMAP_MAX_KEYPOINT);
+COMPARE_ENUMS(INSTANCE_NORMALIZATION);
+COMPARE_ENUMS(LESS);
+COMPARE_ENUMS(LESS_EQUAL);
+COMPARE_ENUMS(LOG);
+COMPARE_ENUMS(LOGICAL_AND);
+COMPARE_ENUMS(LOGICAL_NOT);
+COMPARE_ENUMS(LOGICAL_OR);
+COMPARE_ENUMS(LOG_SOFTMAX);
+COMPARE_ENUMS(MAXIMUM);
+COMPARE_ENUMS(MINIMUM);
+COMPARE_ENUMS(NEG);
+COMPARE_ENUMS(NOT_EQUAL);
+COMPARE_ENUMS(PAD_V2);
+COMPARE_ENUMS(POW);
+COMPARE_ENUMS(PRELU);
+COMPARE_ENUMS(QUANTIZE);
+COMPARE_ENUMS(QUANTIZED_16BIT_LSTM);
+COMPARE_ENUMS(RANDOM_MULTINOMIAL);
+COMPARE_ENUMS(REDUCE_ALL);
+COMPARE_ENUMS(REDUCE_ANY);
+COMPARE_ENUMS(REDUCE_MAX);
+COMPARE_ENUMS(REDUCE_MIN);
+COMPARE_ENUMS(REDUCE_PROD);
+COMPARE_ENUMS(REDUCE_SUM);
+COMPARE_ENUMS(ROI_ALIGN);
+COMPARE_ENUMS(ROI_POOLING);
+COMPARE_ENUMS(RSQRT);
+COMPARE_ENUMS(SELECT);
+COMPARE_ENUMS(SIN);
+COMPARE_ENUMS(SLICE);
+COMPARE_ENUMS(SPLIT);
+COMPARE_ENUMS(SQRT);
+COMPARE_ENUMS(TILE);
+COMPARE_ENUMS(TOPK_V2);
+COMPARE_ENUMS(TRANSPOSE_CONV_2D);
+COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_LSTM);
+COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_RNN);
+COMPARE_ENUMS(RESIZE_NEAREST_NEIGHBOR);
+COMPARE_ENUMS(OEM_OPERATION);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, DeviceType)
+
+COMPARE_ENUMS(OTHER);
+COMPARE_ENUMS(CPU);
+COMPARE_ENUMS(GPU);
+COMPARE_ENUMS(ACCELERATOR);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, MeasureTiming)
+
+COMPARE_ENUMS(NO);
+COMPARE_ENUMS(YES);
+
+#undef COMPARE_ENUMS
+
+#undef COMPARE_ENUMS_FULL
+
+}  // anonymous namespace
diff --git a/neuralnetworks/1.2/utils/src/Conversions.cpp b/neuralnetworks/1.2/utils/src/Conversions.cpp
new file mode 100644
index 0000000..fed314b
--- /dev/null
+++ b/neuralnetworks/1.2/utils/src/Conversions.cpp
@@ -0,0 +1,502 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Conversions.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.2/types.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Result.h>
+#include <nnapi/SharedMemory.h>
+#include <nnapi/TypeUtils.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/1.0/Conversions.h>
+#include <nnapi/hal/CommonUtils.h>
+
+#include <algorithm>
+#include <functional>
+#include <iterator>
+#include <memory>
+#include <type_traits>
+#include <utility>
+
+namespace {
+
+template <typename Type>
+constexpr std::underlying_type_t<Type> underlyingType(Type value) {
+    return static_cast<std::underlying_type_t<Type>>(value);
+}
+
+}  // namespace
+
+namespace android::nn {
+namespace {
+
+constexpr bool validOperandType(OperandType operandType) {
+    switch (operandType) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+        case OperandType::TENSOR_FLOAT32:
+        case OperandType::TENSOR_INT32:
+        case OperandType::TENSOR_QUANT8_ASYMM:
+        case OperandType::BOOL:
+        case OperandType::TENSOR_QUANT16_SYMM:
+        case OperandType::TENSOR_FLOAT16:
+        case OperandType::TENSOR_BOOL8:
+        case OperandType::FLOAT16:
+        case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+        case OperandType::TENSOR_QUANT16_ASYMM:
+        case OperandType::TENSOR_QUANT8_SYMM:
+        case OperandType::OEM:
+        case OperandType::TENSOR_OEM_BYTE:
+            return true;
+        default:
+            break;
+    }
+    return isExtension(operandType);
+}
+
+using hardware::hidl_handle;
+using hardware::hidl_vec;
+
+template <typename Input>
+using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+Result<std::vector<ConvertOutput<Type>>> convertVec(const hidl_vec<Type>& arguments) {
+    std::vector<ConvertOutput<Type>> canonical;
+    canonical.reserve(arguments.size());
+    for (const auto& argument : arguments) {
+        canonical.push_back(NN_TRY(nn::convert(argument)));
+    }
+    return canonical;
+}
+
+template <typename Type>
+Result<std::vector<ConvertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
+    return convertVec(arguments);
+}
+
+}  // anonymous namespace
+
+Result<OperandType> convert(const hal::V1_2::OperandType& operandType) {
+    return static_cast<OperandType>(operandType);
+}
+
+Result<OperationType> convert(const hal::V1_2::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+Result<DeviceType> convert(const hal::V1_2::DeviceType& deviceType) {
+    return static_cast<DeviceType>(deviceType);
+}
+
+Result<Capabilities> convert(const hal::V1_2::Capabilities& capabilities) {
+    const bool validOperandTypes = std::all_of(
+            capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
+            [](const hal::V1_2::Capabilities::OperandPerformance& operandPerformance) {
+                const auto maybeType = convert(operandPerformance.type);
+                return !maybeType.has_value() ? false : validOperandType(maybeType.value());
+            });
+    if (!validOperandTypes) {
+        return NN_ERROR()
+               << "Invalid OperandType when converting OperandPerformance in Capabilities";
+    }
+
+    const auto relaxedFloat32toFloat16PerformanceScalar =
+            NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar));
+    const auto relaxedFloat32toFloat16PerformanceTensor =
+            NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor));
+    auto operandPerformance = NN_TRY(convert(capabilities.operandPerformance));
+
+    auto table =
+            NN_TRY(Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)));
+
+    return Capabilities{
+            .relaxedFloat32toFloat16PerformanceScalar = relaxedFloat32toFloat16PerformanceScalar,
+            .relaxedFloat32toFloat16PerformanceTensor = relaxedFloat32toFloat16PerformanceTensor,
+            .operandPerformance = std::move(table),
+    };
+}
+
+Result<Capabilities::OperandPerformance> convert(
+        const hal::V1_2::Capabilities::OperandPerformance& operandPerformance) {
+    return Capabilities::OperandPerformance{
+            .type = NN_TRY(convert(operandPerformance.type)),
+            .info = NN_TRY(convert(operandPerformance.info)),
+    };
+}
+
+Result<Operation> convert(const hal::V1_2::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+Result<Operand::SymmPerChannelQuantParams> convert(
+        const hal::V1_2::SymmPerChannelQuantParams& symmPerChannelQuantParams) {
+    return Operand::SymmPerChannelQuantParams{
+            .scales = symmPerChannelQuantParams.scales,
+            .channelDim = symmPerChannelQuantParams.channelDim,
+    };
+}
+
+Result<Operand> convert(const hal::V1_2::Operand& operand) {
+    return Operand{
+            .type = NN_TRY(convert(operand.type)),
+            .dimensions = operand.dimensions,
+            .scale = operand.scale,
+            .zeroPoint = operand.zeroPoint,
+            .lifetime = NN_TRY(convert(operand.lifetime)),
+            .location = NN_TRY(convert(operand.location)),
+            .extraParams = NN_TRY(convert(operand.extraParams)),
+    };
+}
+
+Result<Operand::ExtraParams> convert(const hal::V1_2::Operand::ExtraParams& extraParams) {
+    using Discriminator = hal::V1_2::Operand::ExtraParams::hidl_discriminator;
+    switch (extraParams.getDiscriminator()) {
+        case Discriminator::none:
+            return Operand::NoParams{};
+        case Discriminator::channelQuant:
+            return convert(extraParams.channelQuant());
+        case Discriminator::extension:
+            return extraParams.extension();
+    }
+    return NN_ERROR() << "Unrecognized Operand::ExtraParams discriminator: "
+                      << underlyingType(extraParams.getDiscriminator());
+}
+
+Result<Model> convert(const hal::V1_2::Model& model) {
+    auto operations = NN_TRY(convert(model.operations));
+
+    // Verify number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(model.operands.size(), operations);
+    CHECK(model.operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < model.operands.size(); ++i) {
+        if (model.operands[i].numberOfConsumers != numberOfConsumers[i]) {
+            return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
+                              << numberOfConsumers[i] << " but found "
+                              << model.operands[i].numberOfConsumers;
+        }
+    }
+
+    auto main = Model::Subgraph{
+            .operands = NN_TRY(convert(model.operands)),
+            .operations = std::move(operations),
+            .inputIndexes = model.inputIndexes,
+            .outputIndexes = model.outputIndexes,
+    };
+
+    return Model{
+            .main = std::move(main),
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+            .extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
+    };
+}
+
+Result<Model::ExtensionNameAndPrefix> convert(
+        const hal::V1_2::Model::ExtensionNameAndPrefix& extensionNameAndPrefix) {
+    return Model::ExtensionNameAndPrefix{
+            .name = extensionNameAndPrefix.name,
+            .prefix = extensionNameAndPrefix.prefix,
+    };
+}
+
+Result<OutputShape> convert(const hal::V1_2::OutputShape& outputShape) {
+    return OutputShape{
+            .dimensions = outputShape.dimensions,
+            .isSufficient = outputShape.isSufficient,
+    };
+}
+
+Result<MeasureTiming> convert(const hal::V1_2::MeasureTiming& measureTiming) {
+    return static_cast<MeasureTiming>(measureTiming);
+}
+
+Result<Timing> convert(const hal::V1_2::Timing& timing) {
+    return Timing{.timeOnDevice = timing.timeOnDevice, .timeInDriver = timing.timeInDriver};
+}
+
+Result<Extension> convert(const hal::V1_2::Extension& extension) {
+    return Extension{
+            .name = extension.name,
+            .operandTypes = NN_TRY(convert(extension.operandTypes)),
+    };
+}
+
+Result<Extension::OperandTypeInformation> convert(
+        const hal::V1_2::Extension::OperandTypeInformation& operandTypeInformation) {
+    return Extension::OperandTypeInformation{
+            .type = operandTypeInformation.type,
+            .isTensor = operandTypeInformation.isTensor,
+            .byteSize = operandTypeInformation.byteSize,
+    };
+}
+
+Result<NativeHandle> convert(const hidl_handle& handle) {
+    auto* cloned = native_handle_clone(handle.getNativeHandle());
+    return ::android::NativeHandle::create(cloned, /*ownsHandle=*/true);
+}
+
+Result<std::vector<Extension>> convert(const hidl_vec<hal::V1_2::Extension>& extensions) {
+    return convertVec(extensions);
+}
+
+Result<std::vector<NativeHandle>> convert(const hidl_vec<hidl_handle>& handles) {
+    return convertVec(handles);
+}
+
+Result<std::vector<OutputShape>> convert(const hidl_vec<hal::V1_2::OutputShape>& outputShapes) {
+    return convertVec(outputShapes);
+}
+
+}  // namespace android::nn
+
+namespace android::hardware::neuralnetworks::V1_2::utils {
+namespace {
+
+using utils::convert;
+
+nn::Result<V1_0::OperandLifeTime> convert(const nn::Operand::LifeTime& lifetime) {
+    return V1_0::utils::convert(lifetime);
+}
+
+nn::Result<V1_0::PerformanceInfo> convert(
+        const nn::Capabilities::PerformanceInfo& performanceInfo) {
+    return V1_0::utils::convert(performanceInfo);
+}
+
+nn::Result<V1_0::DataLocation> convert(const nn::DataLocation& location) {
+    return V1_0::utils::convert(location);
+}
+
+nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
+    return V1_0::utils::convert(operandValues);
+}
+
+nn::Result<hidl_memory> convert(const nn::Memory& memory) {
+    return V1_0::utils::convert(memory);
+}
+
+template <typename Input>
+using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+nn::Result<hidl_vec<ConvertOutput<Type>>> convertVec(const std::vector<Type>& arguments) {
+    hidl_vec<ConvertOutput<Type>> halObject(arguments.size());
+    for (size_t i = 0; i < arguments.size(); ++i) {
+        halObject[i] = NN_TRY(convert(arguments[i]));
+    }
+    return halObject;
+}
+
+template <typename Type>
+nn::Result<hidl_vec<ConvertOutput<Type>>> convert(const std::vector<Type>& arguments) {
+    return convertVec(arguments);
+}
+
+nn::Result<Operand::ExtraParams> makeExtraParams(nn::Operand::NoParams /*noParams*/) {
+    return Operand::ExtraParams{};
+}
+
+nn::Result<Operand::ExtraParams> makeExtraParams(
+        const nn::Operand::SymmPerChannelQuantParams& channelQuant) {
+    Operand::ExtraParams ret;
+    ret.channelQuant(NN_TRY(convert(channelQuant)));
+    return ret;
+}
+
+nn::Result<Operand::ExtraParams> makeExtraParams(const nn::Operand::ExtensionParams& extension) {
+    Operand::ExtraParams ret;
+    ret.extension(extension);
+    return ret;
+}
+
+}  // anonymous namespace
+
+nn::Result<OperandType> convert(const nn::OperandType& operandType) {
+    return static_cast<OperandType>(operandType);
+}
+
+nn::Result<OperationType> convert(const nn::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+nn::Result<DeviceType> convert(const nn::DeviceType& deviceType) {
+    switch (deviceType) {
+        case nn::DeviceType::UNKNOWN:
+            return NN_ERROR() << "Invalid DeviceType UNKNOWN";
+        case nn::DeviceType::OTHER:
+        case nn::DeviceType::CPU:
+        case nn::DeviceType::GPU:
+        case nn::DeviceType::ACCELERATOR:
+            return static_cast<DeviceType>(deviceType);
+    }
+    return NN_ERROR() << "Invalid DeviceType " << underlyingType(deviceType);
+}
+
+nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
+    std::vector<nn::Capabilities::OperandPerformance> operandPerformance;
+    operandPerformance.reserve(capabilities.operandPerformance.asVector().size());
+    std::copy_if(capabilities.operandPerformance.asVector().begin(),
+                 capabilities.operandPerformance.asVector().end(),
+                 std::back_inserter(operandPerformance),
+                 [](const nn::Capabilities::OperandPerformance& operandPerformance) {
+                     return nn::validOperandType(operandPerformance.type);
+                 });
+
+    return Capabilities{
+            .relaxedFloat32toFloat16PerformanceScalar =
+                    NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
+            .relaxedFloat32toFloat16PerformanceTensor =
+                    NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
+            .operandPerformance = NN_TRY(convert(operandPerformance)),
+    };
+}
+
+nn::Result<Capabilities::OperandPerformance> convert(
+        const nn::Capabilities::OperandPerformance& operandPerformance) {
+    return Capabilities::OperandPerformance{
+            .type = NN_TRY(convert(operandPerformance.type)),
+            .info = NN_TRY(convert(operandPerformance.info)),
+    };
+}
+
+nn::Result<Operation> convert(const nn::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+nn::Result<SymmPerChannelQuantParams> convert(
+        const nn::Operand::SymmPerChannelQuantParams& symmPerChannelQuantParams) {
+    return SymmPerChannelQuantParams{
+            .scales = symmPerChannelQuantParams.scales,
+            .channelDim = symmPerChannelQuantParams.channelDim,
+    };
+}
+
+nn::Result<Operand> convert(const nn::Operand& operand) {
+    return Operand{
+            .type = NN_TRY(convert(operand.type)),
+            .dimensions = operand.dimensions,
+            .numberOfConsumers = 0,
+            .scale = operand.scale,
+            .zeroPoint = operand.zeroPoint,
+            .lifetime = NN_TRY(convert(operand.lifetime)),
+            .location = NN_TRY(convert(operand.location)),
+            .extraParams = NN_TRY(convert(operand.extraParams)),
+    };
+}
+
+nn::Result<Operand::ExtraParams> convert(const nn::Operand::ExtraParams& extraParams) {
+    return std::visit([](const auto& x) { return makeExtraParams(x); }, extraParams);
+}
+
+nn::Result<Model> convert(const nn::Model& model) {
+    if (!hal::utils::hasNoPointerData(model)) {
+        return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
+    }
+
+    auto operands = NN_TRY(convert(model.main.operands));
+
+    // Update number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(operands.size(), model.main.operations);
+    CHECK(operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < operands.size(); ++i) {
+        operands[i].numberOfConsumers = numberOfConsumers[i];
+    }
+
+    return Model{
+            .operands = std::move(operands),
+            .operations = NN_TRY(convert(model.main.operations)),
+            .inputIndexes = model.main.inputIndexes,
+            .outputIndexes = model.main.outputIndexes,
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+            .extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
+    };
+}
+
+nn::Result<Model::ExtensionNameAndPrefix> convert(
+        const nn::Model::ExtensionNameAndPrefix& extensionNameAndPrefix) {
+    return Model::ExtensionNameAndPrefix{
+            .name = extensionNameAndPrefix.name,
+            .prefix = extensionNameAndPrefix.prefix,
+    };
+}
+
+nn::Result<OutputShape> convert(const nn::OutputShape& outputShape) {
+    return OutputShape{.dimensions = outputShape.dimensions,
+                       .isSufficient = outputShape.isSufficient};
+}
+
+nn::Result<MeasureTiming> convert(const nn::MeasureTiming& measureTiming) {
+    return static_cast<MeasureTiming>(measureTiming);
+}
+
+nn::Result<Timing> convert(const nn::Timing& timing) {
+    return Timing{.timeOnDevice = timing.timeOnDevice, .timeInDriver = timing.timeInDriver};
+}
+
+nn::Result<Extension> convert(const nn::Extension& extension) {
+    return Extension{
+            .name = extension.name,
+            .operandTypes = NN_TRY(convert(extension.operandTypes)),
+    };
+}
+
+nn::Result<Extension::OperandTypeInformation> convert(
+        const nn::Extension::OperandTypeInformation& operandTypeInformation) {
+    return Extension::OperandTypeInformation{
+            .type = operandTypeInformation.type,
+            .isTensor = operandTypeInformation.isTensor,
+            .byteSize = operandTypeInformation.byteSize,
+    };
+}
+
+nn::Result<hidl_handle> convert(const nn::NativeHandle& handle) {
+    const auto hidlHandle = hidl_handle(handle->handle());
+    // Copy memory to force the native_handle_t to be copied.
+    auto copiedHandle = hidlHandle;
+    return copiedHandle;
+}
+
+nn::Result<hidl_vec<Extension>> convert(const std::vector<nn::Extension>& extensions) {
+    return convertVec(extensions);
+}
+
+nn::Result<hidl_vec<hidl_handle>> convert(const std::vector<nn::NativeHandle>& handles) {
+    return convertVec(handles);
+}
+
+nn::Result<hidl_vec<OutputShape>> convert(const std::vector<nn::OutputShape>& outputShapes) {
+    return convertVec(outputShapes);
+}
+
+}  // namespace android::hardware::neuralnetworks::V1_2::utils
diff --git a/neuralnetworks/1.3/utils/Android.bp b/neuralnetworks/1.3/utils/Android.bp
new file mode 100644
index 0000000..279b250
--- /dev/null
+++ b/neuralnetworks/1.3/utils/Android.bp
@@ -0,0 +1,39 @@
+//
+// Copyright (C) 2020 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_library_static {
+    name: "neuralnetworks_utils_hal_1_3",
+    defaults: ["neuralnetworks_utils_defaults"],
+    srcs: ["src/*"],
+    local_include_dirs: ["include/nnapi/hal/1.3/"],
+    export_include_dirs: ["include"],
+    static_libs: [
+        "neuralnetworks_types",
+        "neuralnetworks_utils_hal_common",
+        "neuralnetworks_utils_hal_1_0",
+        "neuralnetworks_utils_hal_1_1",
+        "neuralnetworks_utils_hal_1_2",
+    ],
+    shared_libs: [
+        "android.hardware.neuralnetworks@1.0",
+        "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
+        "android.hardware.neuralnetworks@1.3",
+    ],
+    export_static_lib_headers: [
+        "neuralnetworks_utils_hal_common",
+    ],
+}
diff --git a/neuralnetworks/1.3/utils/OWNERS b/neuralnetworks/1.3/utils/OWNERS
new file mode 100644
index 0000000..e4feee3
--- /dev/null
+++ b/neuralnetworks/1.3/utils/OWNERS
@@ -0,0 +1,11 @@
+# Neuralnetworks team
+butlermichael@google.com
+dgross@google.com
+galarragas@google.com
+jeanluc@google.com
+levp@google.com
+miaowang@google.com
+pszczepaniak@google.com
+slavash@google.com
+vddang@google.com
+xusongw@google.com
diff --git a/neuralnetworks/1.3/utils/include/nnapi/hal/1.3/Conversions.h b/neuralnetworks/1.3/utils/include/nnapi/hal/1.3/Conversions.h
new file mode 100644
index 0000000..43987a9
--- /dev/null
+++ b/neuralnetworks/1.3/utils/include/nnapi/hal/1.3/Conversions.h
@@ -0,0 +1,79 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_CONVERSIONS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_CONVERSIONS_H
+
+#include <android/hardware/neuralnetworks/1.3/IPreparedModel.h>
+#include <android/hardware/neuralnetworks/1.3/types.h>
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/CommonUtils.h>
+
+namespace android::nn {
+
+Result<OperandType> convert(const hal::V1_3::OperandType& operandType);
+Result<OperationType> convert(const hal::V1_3::OperationType& operationType);
+Result<Priority> convert(const hal::V1_3::Priority& priority);
+Result<Capabilities> convert(const hal::V1_3::Capabilities& capabilities);
+Result<Capabilities::OperandPerformance> convert(
+        const hal::V1_3::Capabilities::OperandPerformance& operandPerformance);
+Result<Operation> convert(const hal::V1_3::Operation& operation);
+Result<Operand::LifeTime> convert(const hal::V1_3::OperandLifeTime& operandLifeTime);
+Result<Operand> convert(const hal::V1_3::Operand& operand);
+Result<Model> convert(const hal::V1_3::Model& model);
+Result<Model::Subgraph> convert(const hal::V1_3::Subgraph& subgraph);
+Result<BufferDesc> convert(const hal::V1_3::BufferDesc& bufferDesc);
+Result<BufferRole> convert(const hal::V1_3::BufferRole& bufferRole);
+Result<Request> convert(const hal::V1_3::Request& request);
+Result<Request::MemoryPool> convert(const hal::V1_3::Request::MemoryPool& memoryPool);
+Result<OptionalTimePoint> convert(const hal::V1_3::OptionalTimePoint& optionalTimePoint);
+Result<OptionalTimeoutDuration> convert(
+        const hal::V1_3::OptionalTimeoutDuration& optionalTimeoutDuration);
+Result<ErrorStatus> convert(const hal::V1_3::ErrorStatus& errorStatus);
+
+Result<std::vector<BufferRole>> convert(
+        const hardware::hidl_vec<hal::V1_3::BufferRole>& bufferRoles);
+
+}  // namespace android::nn
+
+namespace android::hardware::neuralnetworks::V1_3::utils {
+
+nn::Result<OperandType> convert(const nn::OperandType& operandType);
+nn::Result<OperationType> convert(const nn::OperationType& operationType);
+nn::Result<Priority> convert(const nn::Priority& priority);
+nn::Result<Capabilities> convert(const nn::Capabilities& capabilities);
+nn::Result<Capabilities::OperandPerformance> convert(
+        const nn::Capabilities::OperandPerformance& operandPerformance);
+nn::Result<Operation> convert(const nn::Operation& operation);
+nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& operandLifeTime);
+nn::Result<Operand> convert(const nn::Operand& operand);
+nn::Result<Model> convert(const nn::Model& model);
+nn::Result<Subgraph> convert(const nn::Model::Subgraph& subgraph);
+nn::Result<BufferDesc> convert(const nn::BufferDesc& bufferDesc);
+nn::Result<BufferRole> convert(const nn::BufferRole& bufferRole);
+nn::Result<Request> convert(const nn::Request& request);
+nn::Result<Request::MemoryPool> convert(const nn::Request::MemoryPool& memoryPool);
+nn::Result<OptionalTimePoint> convert(const nn::OptionalTimePoint& optionalTimePoint);
+nn::Result<OptionalTimeoutDuration> convert(
+        const nn::OptionalTimeoutDuration& optionalTimeoutDuration);
+nn::Result<ErrorStatus> convert(const nn::ErrorStatus& errorStatus);
+
+nn::Result<hidl_vec<BufferRole>> convert(const std::vector<nn::BufferRole>& bufferRoles);
+
+}  // namespace android::hardware::neuralnetworks::V1_3::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_CONVERSIONS_H
diff --git a/neuralnetworks/1.3/utils/include/nnapi/hal/1.3/Utils.h b/neuralnetworks/1.3/utils/include/nnapi/hal/1.3/Utils.h
new file mode 100644
index 0000000..f8c975d
--- /dev/null
+++ b/neuralnetworks/1.3/utils/include/nnapi/hal/1.3/Utils.h
@@ -0,0 +1,67 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_UTILS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_UTILS_H
+
+#include "nnapi/hal/1.3/Conversions.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.3/types.h>
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/Validation.h>
+#include <nnapi/hal/1.0/Conversions.h>
+#include <nnapi/hal/1.1/Conversions.h>
+#include <nnapi/hal/1.2/Conversions.h>
+
+namespace android::hardware::neuralnetworks::V1_3::utils {
+
+constexpr auto kDefaultPriority = Priority::MEDIUM;
+constexpr auto kVersion = nn::Version::ANDROID_R;
+
+template <typename Type>
+nn::Result<void> validate(const Type& halObject) {
+    const auto canonical = NN_TRY(nn::convert(halObject));
+    const auto version = NN_TRY(nn::validate(canonical));
+    if (version > utils::kVersion) {
+        return NN_ERROR() << "";
+    }
+    return {};
+}
+
+template <typename Type>
+bool valid(const Type& halObject) {
+    const auto result = utils::validate(halObject);
+    if (!result.has_value()) {
+        LOG(ERROR) << result.error();
+    }
+    return result.has_value();
+}
+
+template <typename Type>
+decltype(nn::convert(std::declval<Type>())) validatedConvertToCanonical(const Type& halObject) {
+    auto canonical = NN_TRY(nn::convert(halObject));
+    const auto version = NN_TRY(nn::validate(canonical));
+    if (version > utils::kVersion) {
+        return NN_ERROR() << "";
+    }
+    return canonical;
+}
+
+}  // namespace android::hardware::neuralnetworks::V1_3::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_UTILS_H
diff --git a/neuralnetworks/1.3/utils/src/Assertions.cpp b/neuralnetworks/1.3/utils/src/Assertions.cpp
new file mode 100644
index 0000000..96d647a
--- /dev/null
+++ b/neuralnetworks/1.3/utils/src/Assertions.cpp
@@ -0,0 +1,218 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <android/hardware/neuralnetworks/1.3/types.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Types.h>
+#include <type_traits>
+
+namespace {
+
+#define COMPARE_ENUMS_TYPES(lhsType, rhsType)                                                   \
+    static_assert(                                                                              \
+            std::is_same_v<                                                                     \
+                    std::underlying_type_t<::android::hardware::neuralnetworks::V1_3::lhsType>, \
+                    std::underlying_type_t<::android::nn::rhsType>>,                            \
+            "::android::hardware::neuralnetworks::V1_3::" #lhsType                              \
+            " does not have the same underlying type as ::android::nn::" #rhsType)
+
+COMPARE_ENUMS_TYPES(OperandType, OperandType);
+COMPARE_ENUMS_TYPES(OperationType, OperationType);
+COMPARE_ENUMS_TYPES(Priority, Priority);
+COMPARE_ENUMS_TYPES(OperandLifeTime, Operand::LifeTime);
+COMPARE_ENUMS_TYPES(ErrorStatus, ErrorStatus);
+
+#undef COMPARE_ENUMS_TYPES
+
+#define COMPARE_ENUMS_FULL(symbol, lhsType, rhsType)                                             \
+    static_assert(                                                                               \
+            static_cast<                                                                         \
+                    std::underlying_type_t<::android::hardware::neuralnetworks::V1_3::lhsType>>( \
+                    ::android::hardware::neuralnetworks::V1_3::lhsType::symbol) ==               \
+                    static_cast<std::underlying_type_t<::android::nn::rhsType>>(                 \
+                            ::android::nn::rhsType::symbol),                                     \
+            "::android::hardware::neuralnetworks::V1_3::" #lhsType "::" #symbol                  \
+            " does not match ::android::nn::" #rhsType "::" #symbol)
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperandType, OperandType)
+
+COMPARE_ENUMS(FLOAT32);
+COMPARE_ENUMS(INT32);
+COMPARE_ENUMS(UINT32);
+COMPARE_ENUMS(TENSOR_FLOAT32);
+COMPARE_ENUMS(TENSOR_INT32);
+COMPARE_ENUMS(TENSOR_QUANT8_ASYMM);
+COMPARE_ENUMS(BOOL);
+COMPARE_ENUMS(TENSOR_QUANT16_SYMM);
+COMPARE_ENUMS(TENSOR_FLOAT16);
+COMPARE_ENUMS(TENSOR_BOOL8);
+COMPARE_ENUMS(FLOAT16);
+COMPARE_ENUMS(TENSOR_QUANT8_SYMM_PER_CHANNEL);
+COMPARE_ENUMS(TENSOR_QUANT16_ASYMM);
+COMPARE_ENUMS(TENSOR_QUANT8_SYMM);
+COMPARE_ENUMS(TENSOR_QUANT8_ASYMM_SIGNED);
+COMPARE_ENUMS(SUBGRAPH);
+COMPARE_ENUMS(OEM);
+COMPARE_ENUMS(TENSOR_OEM_BYTE);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperationType, OperationType)
+
+COMPARE_ENUMS(ADD);
+COMPARE_ENUMS(AVERAGE_POOL_2D);
+COMPARE_ENUMS(CONCATENATION);
+COMPARE_ENUMS(CONV_2D);
+COMPARE_ENUMS(DEPTHWISE_CONV_2D);
+COMPARE_ENUMS(DEPTH_TO_SPACE);
+COMPARE_ENUMS(DEQUANTIZE);
+COMPARE_ENUMS(EMBEDDING_LOOKUP);
+COMPARE_ENUMS(FLOOR);
+COMPARE_ENUMS(FULLY_CONNECTED);
+COMPARE_ENUMS(HASHTABLE_LOOKUP);
+COMPARE_ENUMS(L2_NORMALIZATION);
+COMPARE_ENUMS(L2_POOL_2D);
+COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
+COMPARE_ENUMS(LOGISTIC);
+COMPARE_ENUMS(LSH_PROJECTION);
+COMPARE_ENUMS(LSTM);
+COMPARE_ENUMS(MAX_POOL_2D);
+COMPARE_ENUMS(MUL);
+COMPARE_ENUMS(RELU);
+COMPARE_ENUMS(RELU1);
+COMPARE_ENUMS(RELU6);
+COMPARE_ENUMS(RESHAPE);
+COMPARE_ENUMS(RESIZE_BILINEAR);
+COMPARE_ENUMS(RNN);
+COMPARE_ENUMS(SOFTMAX);
+COMPARE_ENUMS(SPACE_TO_DEPTH);
+COMPARE_ENUMS(SVDF);
+COMPARE_ENUMS(TANH);
+COMPARE_ENUMS(BATCH_TO_SPACE_ND);
+COMPARE_ENUMS(DIV);
+COMPARE_ENUMS(MEAN);
+COMPARE_ENUMS(PAD);
+COMPARE_ENUMS(SPACE_TO_BATCH_ND);
+COMPARE_ENUMS(SQUEEZE);
+COMPARE_ENUMS(STRIDED_SLICE);
+COMPARE_ENUMS(SUB);
+COMPARE_ENUMS(TRANSPOSE);
+COMPARE_ENUMS(ABS);
+COMPARE_ENUMS(ARGMAX);
+COMPARE_ENUMS(ARGMIN);
+COMPARE_ENUMS(AXIS_ALIGNED_BBOX_TRANSFORM);
+COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_LSTM);
+COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_RNN);
+COMPARE_ENUMS(BOX_WITH_NMS_LIMIT);
+COMPARE_ENUMS(CAST);
+COMPARE_ENUMS(CHANNEL_SHUFFLE);
+COMPARE_ENUMS(DETECTION_POSTPROCESSING);
+COMPARE_ENUMS(EQUAL);
+COMPARE_ENUMS(EXP);
+COMPARE_ENUMS(EXPAND_DIMS);
+COMPARE_ENUMS(GATHER);
+COMPARE_ENUMS(GENERATE_PROPOSALS);
+COMPARE_ENUMS(GREATER);
+COMPARE_ENUMS(GREATER_EQUAL);
+COMPARE_ENUMS(GROUPED_CONV_2D);
+COMPARE_ENUMS(HEATMAP_MAX_KEYPOINT);
+COMPARE_ENUMS(INSTANCE_NORMALIZATION);
+COMPARE_ENUMS(LESS);
+COMPARE_ENUMS(LESS_EQUAL);
+COMPARE_ENUMS(LOG);
+COMPARE_ENUMS(LOGICAL_AND);
+COMPARE_ENUMS(LOGICAL_NOT);
+COMPARE_ENUMS(LOGICAL_OR);
+COMPARE_ENUMS(LOG_SOFTMAX);
+COMPARE_ENUMS(MAXIMUM);
+COMPARE_ENUMS(MINIMUM);
+COMPARE_ENUMS(NEG);
+COMPARE_ENUMS(NOT_EQUAL);
+COMPARE_ENUMS(PAD_V2);
+COMPARE_ENUMS(POW);
+COMPARE_ENUMS(PRELU);
+COMPARE_ENUMS(QUANTIZE);
+COMPARE_ENUMS(QUANTIZED_16BIT_LSTM);
+COMPARE_ENUMS(RANDOM_MULTINOMIAL);
+COMPARE_ENUMS(REDUCE_ALL);
+COMPARE_ENUMS(REDUCE_ANY);
+COMPARE_ENUMS(REDUCE_MAX);
+COMPARE_ENUMS(REDUCE_MIN);
+COMPARE_ENUMS(REDUCE_PROD);
+COMPARE_ENUMS(REDUCE_SUM);
+COMPARE_ENUMS(ROI_ALIGN);
+COMPARE_ENUMS(ROI_POOLING);
+COMPARE_ENUMS(RSQRT);
+COMPARE_ENUMS(SELECT);
+COMPARE_ENUMS(SIN);
+COMPARE_ENUMS(SLICE);
+COMPARE_ENUMS(SPLIT);
+COMPARE_ENUMS(SQRT);
+COMPARE_ENUMS(TILE);
+COMPARE_ENUMS(TOPK_V2);
+COMPARE_ENUMS(TRANSPOSE_CONV_2D);
+COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_LSTM);
+COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_RNN);
+COMPARE_ENUMS(RESIZE_NEAREST_NEIGHBOR);
+COMPARE_ENUMS(QUANTIZED_LSTM);
+COMPARE_ENUMS(IF);
+COMPARE_ENUMS(WHILE);
+COMPARE_ENUMS(ELU);
+COMPARE_ENUMS(HARD_SWISH);
+COMPARE_ENUMS(FILL);
+COMPARE_ENUMS(RANK);
+COMPARE_ENUMS(OEM_OPERATION);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, Priority, Priority)
+
+COMPARE_ENUMS(LOW);
+COMPARE_ENUMS(MEDIUM);
+COMPARE_ENUMS(HIGH);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperandLifeTime, Operand::LifeTime)
+
+COMPARE_ENUMS(TEMPORARY_VARIABLE);
+COMPARE_ENUMS(SUBGRAPH_INPUT);
+COMPARE_ENUMS(SUBGRAPH_OUTPUT);
+COMPARE_ENUMS(CONSTANT_COPY);
+COMPARE_ENUMS(CONSTANT_REFERENCE);
+COMPARE_ENUMS(NO_VALUE);
+COMPARE_ENUMS(SUBGRAPH);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, ErrorStatus, ErrorStatus)
+
+COMPARE_ENUMS(NONE);
+COMPARE_ENUMS(DEVICE_UNAVAILABLE);
+COMPARE_ENUMS(GENERAL_FAILURE);
+COMPARE_ENUMS(OUTPUT_INSUFFICIENT_SIZE);
+COMPARE_ENUMS(INVALID_ARGUMENT);
+COMPARE_ENUMS(MISSED_DEADLINE_TRANSIENT);
+COMPARE_ENUMS(MISSED_DEADLINE_PERSISTENT);
+COMPARE_ENUMS(RESOURCE_EXHAUSTED_TRANSIENT);
+COMPARE_ENUMS(RESOURCE_EXHAUSTED_PERSISTENT);
+
+#undef COMPARE_ENUMS
+
+#undef COMPARE_ENUMS_FULL
+
+}  // anonymous namespace
diff --git a/neuralnetworks/1.3/utils/src/Conversions.cpp b/neuralnetworks/1.3/utils/src/Conversions.cpp
new file mode 100644
index 0000000..4c54e3b
--- /dev/null
+++ b/neuralnetworks/1.3/utils/src/Conversions.cpp
@@ -0,0 +1,552 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Conversions.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.3/types.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Result.h>
+#include <nnapi/SharedMemory.h>
+#include <nnapi/TypeUtils.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/1.0/Conversions.h>
+#include <nnapi/hal/1.2/Conversions.h>
+#include <nnapi/hal/CommonUtils.h>
+
+#include <algorithm>
+#include <chrono>
+#include <functional>
+#include <iterator>
+#include <limits>
+#include <type_traits>
+#include <utility>
+
+namespace {
+
+template <typename Type>
+constexpr std::underlying_type_t<Type> underlyingType(Type value) {
+    return static_cast<std::underlying_type_t<Type>>(value);
+}
+
+}  // namespace
+
+namespace android::nn {
+namespace {
+
+constexpr auto validOperandType(nn::OperandType operandType) {
+    switch (operandType) {
+        case nn::OperandType::FLOAT32:
+        case nn::OperandType::INT32:
+        case nn::OperandType::UINT32:
+        case nn::OperandType::TENSOR_FLOAT32:
+        case nn::OperandType::TENSOR_INT32:
+        case nn::OperandType::TENSOR_QUANT8_ASYMM:
+        case nn::OperandType::BOOL:
+        case nn::OperandType::TENSOR_QUANT16_SYMM:
+        case nn::OperandType::TENSOR_FLOAT16:
+        case nn::OperandType::TENSOR_BOOL8:
+        case nn::OperandType::FLOAT16:
+        case nn::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+        case nn::OperandType::TENSOR_QUANT16_ASYMM:
+        case nn::OperandType::TENSOR_QUANT8_SYMM:
+        case nn::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
+        case nn::OperandType::SUBGRAPH:
+        case nn::OperandType::OEM:
+        case nn::OperandType::TENSOR_OEM_BYTE:
+            return true;
+    }
+    return nn::isExtension(operandType);
+}
+
+using hardware::hidl_vec;
+
+template <typename Input>
+using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+Result<std::vector<ConvertOutput<Type>>> convertVec(const hidl_vec<Type>& arguments) {
+    std::vector<ConvertOutput<Type>> canonical;
+    canonical.reserve(arguments.size());
+    for (const auto& argument : arguments) {
+        canonical.push_back(NN_TRY(nn::convert(argument)));
+    }
+    return canonical;
+}
+
+template <typename Type>
+Result<std::vector<ConvertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
+    return convertVec(arguments);
+}
+
+}  // anonymous namespace
+
+Result<OperandType> convert(const hal::V1_3::OperandType& operandType) {
+    return static_cast<OperandType>(operandType);
+}
+
+Result<OperationType> convert(const hal::V1_3::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+Result<Priority> convert(const hal::V1_3::Priority& priority) {
+    return static_cast<Priority>(priority);
+}
+
+Result<Capabilities> convert(const hal::V1_3::Capabilities& capabilities) {
+    const bool validOperandTypes = std::all_of(
+            capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
+            [](const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
+                const auto maybeType = convert(operandPerformance.type);
+                return !maybeType.has_value() ? false : validOperandType(maybeType.value());
+            });
+    if (!validOperandTypes) {
+        return NN_ERROR()
+               << "Invalid OperandType when converting OperandPerformance in Capabilities";
+    }
+
+    auto operandPerformance = NN_TRY(convert(capabilities.operandPerformance));
+    auto table =
+            NN_TRY(Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)));
+
+    return Capabilities{
+            .relaxedFloat32toFloat16PerformanceScalar =
+                    NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
+            .relaxedFloat32toFloat16PerformanceTensor =
+                    NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
+            .operandPerformance = std::move(table),
+            .ifPerformance = NN_TRY(convert(capabilities.ifPerformance)),
+            .whilePerformance = NN_TRY(convert(capabilities.whilePerformance)),
+    };
+}
+
+Result<Capabilities::OperandPerformance> convert(
+        const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
+    return Capabilities::OperandPerformance{
+            .type = NN_TRY(convert(operandPerformance.type)),
+            .info = NN_TRY(convert(operandPerformance.info)),
+    };
+}
+
+Result<Operation> convert(const hal::V1_3::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+Result<Operand::LifeTime> convert(const hal::V1_3::OperandLifeTime& operandLifeTime) {
+    return static_cast<Operand::LifeTime>(operandLifeTime);
+}
+
+Result<Operand> convert(const hal::V1_3::Operand& operand) {
+    return Operand{
+            .type = NN_TRY(convert(operand.type)),
+            .dimensions = operand.dimensions,
+            .scale = operand.scale,
+            .zeroPoint = operand.zeroPoint,
+            .lifetime = NN_TRY(convert(operand.lifetime)),
+            .location = NN_TRY(convert(operand.location)),
+            .extraParams = NN_TRY(convert(operand.extraParams)),
+    };
+}
+
+Result<Model> convert(const hal::V1_3::Model& model) {
+    return Model{
+            .main = NN_TRY(convert(model.main)),
+            .referenced = NN_TRY(convert(model.referenced)),
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+            .extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
+    };
+}
+
+Result<Model::Subgraph> convert(const hal::V1_3::Subgraph& subgraph) {
+    auto operations = NN_TRY(convert(subgraph.operations));
+
+    // Verify number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(subgraph.operands.size(), operations);
+    CHECK(subgraph.operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < subgraph.operands.size(); ++i) {
+        if (subgraph.operands[i].numberOfConsumers != numberOfConsumers[i]) {
+            return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
+                              << numberOfConsumers[i] << " but found "
+                              << subgraph.operands[i].numberOfConsumers;
+        }
+    }
+
+    return Model::Subgraph{
+            .operands = NN_TRY(convert(subgraph.operands)),
+            .operations = std::move(operations),
+            .inputIndexes = subgraph.inputIndexes,
+            .outputIndexes = subgraph.outputIndexes,
+    };
+}
+
+Result<BufferDesc> convert(const hal::V1_3::BufferDesc& bufferDesc) {
+    return BufferDesc{.dimensions = bufferDesc.dimensions};
+}
+
+Result<BufferRole> convert(const hal::V1_3::BufferRole& bufferRole) {
+    return BufferRole{
+            .modelIndex = bufferRole.modelIndex,
+            .ioIndex = bufferRole.ioIndex,
+            .frequency = bufferRole.frequency,
+    };
+}
+
+Result<Request> convert(const hal::V1_3::Request& request) {
+    return Request{
+            .inputs = NN_TRY(convert(request.inputs)),
+            .outputs = NN_TRY(convert(request.outputs)),
+            .pools = NN_TRY(convert(request.pools)),
+    };
+}
+
+Result<Request::MemoryPool> convert(const hal::V1_3::Request::MemoryPool& memoryPool) {
+    using Discriminator = hal::V1_3::Request::MemoryPool::hidl_discriminator;
+    switch (memoryPool.getDiscriminator()) {
+        case Discriminator::hidlMemory:
+            return createSharedMemoryFromHidlMemory(memoryPool.hidlMemory());
+        case Discriminator::token:
+            return static_cast<Request::MemoryDomainToken>(memoryPool.token());
+    }
+    return NN_ERROR() << "Invalid Request::MemoryPool discriminator "
+                      << underlyingType(memoryPool.getDiscriminator());
+}
+
+Result<OptionalTimePoint> convert(const hal::V1_3::OptionalTimePoint& optionalTimePoint) {
+    constexpr auto kTimePointMaxCount = TimePoint::max().time_since_epoch().count();
+    const auto makeTimePoint = [](uint64_t count) -> Result<OptionalTimePoint> {
+        if (count > kTimePointMaxCount) {
+            return NN_ERROR()
+                   << "Unable to convert OptionalTimePoint because the count exceeds the max";
+        }
+        const auto nanoseconds = std::chrono::nanoseconds{count};
+        return TimePoint{nanoseconds};
+    };
+
+    using Discriminator = hal::V1_3::OptionalTimePoint::hidl_discriminator;
+    switch (optionalTimePoint.getDiscriminator()) {
+        case Discriminator::none:
+            return std::nullopt;
+        case Discriminator::nanosecondsSinceEpoch:
+            return makeTimePoint(optionalTimePoint.nanosecondsSinceEpoch());
+    }
+    return NN_ERROR() << "Invalid OptionalTimePoint discriminator "
+                      << underlyingType(optionalTimePoint.getDiscriminator());
+}
+
+Result<OptionalTimeoutDuration> convert(
+        const hal::V1_3::OptionalTimeoutDuration& optionalTimeoutDuration) {
+    constexpr auto kTimeoutDurationMaxCount = TimeoutDuration::max().count();
+    const auto makeTimeoutDuration = [](uint64_t count) -> Result<OptionalTimeoutDuration> {
+        if (count > kTimeoutDurationMaxCount) {
+            return NN_ERROR()
+                   << "Unable to convert OptionalTimeoutDuration because the count exceeds the max";
+        }
+        return TimeoutDuration{count};
+    };
+
+    using Discriminator = hal::V1_3::OptionalTimeoutDuration::hidl_discriminator;
+    switch (optionalTimeoutDuration.getDiscriminator()) {
+        case Discriminator::none:
+            return std::nullopt;
+        case Discriminator::nanoseconds:
+            return makeTimeoutDuration(optionalTimeoutDuration.nanoseconds());
+    }
+    return NN_ERROR() << "Invalid OptionalTimeoutDuration discriminator "
+                      << underlyingType(optionalTimeoutDuration.getDiscriminator());
+}
+
+Result<ErrorStatus> convert(const hal::V1_3::ErrorStatus& status) {
+    switch (status) {
+        case hal::V1_3::ErrorStatus::NONE:
+        case hal::V1_3::ErrorStatus::DEVICE_UNAVAILABLE:
+        case hal::V1_3::ErrorStatus::GENERAL_FAILURE:
+        case hal::V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
+        case hal::V1_3::ErrorStatus::INVALID_ARGUMENT:
+        case hal::V1_3::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
+        case hal::V1_3::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
+        case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
+        case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
+            return static_cast<ErrorStatus>(status);
+    }
+    return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
+}
+
+Result<std::vector<BufferRole>> convert(
+        const hardware::hidl_vec<hal::V1_3::BufferRole>& bufferRoles) {
+    return convertVec(bufferRoles);
+}
+
+}  // namespace android::nn
+
+namespace android::hardware::neuralnetworks::V1_3::utils {
+namespace {
+
+using utils::convert;
+
+nn::Result<V1_0::PerformanceInfo> convert(
+        const nn::Capabilities::PerformanceInfo& performanceInfo) {
+    return V1_0::utils::convert(performanceInfo);
+}
+
+nn::Result<V1_0::DataLocation> convert(const nn::DataLocation& dataLocation) {
+    return V1_0::utils::convert(dataLocation);
+}
+
+nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
+    return V1_0::utils::convert(operandValues);
+}
+
+nn::Result<hidl_memory> convert(const nn::Memory& memory) {
+    return V1_0::utils::convert(memory);
+}
+
+nn::Result<V1_0::RequestArgument> convert(const nn::Request::Argument& argument) {
+    return V1_0::utils::convert(argument);
+}
+
+nn::Result<V1_2::Operand::ExtraParams> convert(const nn::Operand::ExtraParams& extraParams) {
+    return V1_2::utils::convert(extraParams);
+}
+
+nn::Result<V1_2::Model::ExtensionNameAndPrefix> convert(
+        const nn::Model::ExtensionNameAndPrefix& extensionNameAndPrefix) {
+    return V1_2::utils::convert(extensionNameAndPrefix);
+}
+
+template <typename Input>
+using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
+
+template <typename Type>
+nn::Result<hidl_vec<ConvertOutput<Type>>> convertVec(const std::vector<Type>& arguments) {
+    hidl_vec<ConvertOutput<Type>> halObject(arguments.size());
+    for (size_t i = 0; i < arguments.size(); ++i) {
+        halObject[i] = NN_TRY(convert(arguments[i]));
+    }
+    return halObject;
+}
+
+template <typename Type>
+nn::Result<hidl_vec<ConvertOutput<Type>>> convert(const std::vector<Type>& arguments) {
+    return convertVec(arguments);
+}
+
+nn::Result<Request::MemoryPool> makeMemoryPool(const nn::Memory& memory) {
+    Request::MemoryPool ret;
+    ret.hidlMemory(NN_TRY(convert(memory)));
+    return ret;
+}
+
+nn::Result<Request::MemoryPool> makeMemoryPool(const nn::Request::MemoryDomainToken& token) {
+    Request::MemoryPool ret;
+    ret.token(underlyingType(token));
+    return ret;
+}
+
+nn::Result<Request::MemoryPool> makeMemoryPool(
+        const std::shared_ptr<const nn::IBuffer>& /*buffer*/) {
+    return NN_ERROR() << "Unable to make memory pool from IBuffer";
+}
+
+}  // anonymous namespace
+
+nn::Result<OperandType> convert(const nn::OperandType& operandType) {
+    return static_cast<OperandType>(operandType);
+}
+
+nn::Result<OperationType> convert(const nn::OperationType& operationType) {
+    return static_cast<OperationType>(operationType);
+}
+
+nn::Result<Priority> convert(const nn::Priority& priority) {
+    return static_cast<Priority>(priority);
+}
+
+nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
+    std::vector<nn::Capabilities::OperandPerformance> operandPerformance;
+    operandPerformance.reserve(capabilities.operandPerformance.asVector().size());
+    std::copy_if(capabilities.operandPerformance.asVector().begin(),
+                 capabilities.operandPerformance.asVector().end(),
+                 std::back_inserter(operandPerformance),
+                 [](const nn::Capabilities::OperandPerformance& operandPerformance) {
+                     return nn::validOperandType(operandPerformance.type);
+                 });
+
+    return Capabilities{
+            .relaxedFloat32toFloat16PerformanceScalar =
+                    NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
+            .relaxedFloat32toFloat16PerformanceTensor =
+                    NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
+            .operandPerformance = NN_TRY(convert(operandPerformance)),
+            .ifPerformance = NN_TRY(convert(capabilities.ifPerformance)),
+            .whilePerformance = NN_TRY(convert(capabilities.whilePerformance)),
+    };
+}
+
+nn::Result<Capabilities::OperandPerformance> convert(
+        const nn::Capabilities::OperandPerformance& operandPerformance) {
+    return Capabilities::OperandPerformance{
+            .type = NN_TRY(convert(operandPerformance.type)),
+            .info = NN_TRY(convert(operandPerformance.info)),
+    };
+}
+
+nn::Result<Operation> convert(const nn::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(convert(operation.type)),
+            .inputs = operation.inputs,
+            .outputs = operation.outputs,
+    };
+}
+
+nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& operandLifeTime) {
+    if (operandLifeTime == nn::Operand::LifeTime::POINTER) {
+        return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
+    }
+    return static_cast<OperandLifeTime>(operandLifeTime);
+}
+
+nn::Result<Operand> convert(const nn::Operand& operand) {
+    return Operand{
+            .type = NN_TRY(convert(operand.type)),
+            .dimensions = operand.dimensions,
+            .numberOfConsumers = 0,
+            .scale = operand.scale,
+            .zeroPoint = operand.zeroPoint,
+            .lifetime = NN_TRY(convert(operand.lifetime)),
+            .location = NN_TRY(convert(operand.location)),
+            .extraParams = NN_TRY(convert(operand.extraParams)),
+    };
+}
+
+nn::Result<Model> convert(const nn::Model& model) {
+    if (!hal::utils::hasNoPointerData(model)) {
+        return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
+    }
+
+    return Model{
+            .main = NN_TRY(convert(model.main)),
+            .referenced = NN_TRY(convert(model.referenced)),
+            .operandValues = NN_TRY(convert(model.operandValues)),
+            .pools = NN_TRY(convert(model.pools)),
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+            .extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
+    };
+}
+
+nn::Result<Subgraph> convert(const nn::Model::Subgraph& subgraph) {
+    auto operands = NN_TRY(convert(subgraph.operands));
+
+    // Update number of consumers.
+    const auto numberOfConsumers =
+            hal::utils::countNumberOfConsumers(operands.size(), subgraph.operations);
+    CHECK(operands.size() == numberOfConsumers.size());
+    for (size_t i = 0; i < operands.size(); ++i) {
+        operands[i].numberOfConsumers = numberOfConsumers[i];
+    }
+
+    return Subgraph{
+            .operands = std::move(operands),
+            .operations = NN_TRY(convert(subgraph.operations)),
+            .inputIndexes = subgraph.inputIndexes,
+            .outputIndexes = subgraph.outputIndexes,
+    };
+}
+
+nn::Result<BufferDesc> convert(const nn::BufferDesc& bufferDesc) {
+    return BufferDesc{.dimensions = bufferDesc.dimensions};
+}
+
+nn::Result<BufferRole> convert(const nn::BufferRole& bufferRole) {
+    return BufferRole{
+            .modelIndex = bufferRole.modelIndex,
+            .ioIndex = bufferRole.ioIndex,
+            .frequency = bufferRole.frequency,
+    };
+}
+
+nn::Result<Request> convert(const nn::Request& request) {
+    if (!hal::utils::hasNoPointerData(request)) {
+        return NN_ERROR() << "Request cannot be converted because it contains pointer-based memory";
+    }
+
+    return Request{
+            .inputs = NN_TRY(convert(request.inputs)),
+            .outputs = NN_TRY(convert(request.outputs)),
+            .pools = NN_TRY(convert(request.pools)),
+    };
+}
+
+nn::Result<Request::MemoryPool> convert(const nn::Request::MemoryPool& memoryPool) {
+    return std::visit([](const auto& o) { return makeMemoryPool(o); }, memoryPool);
+}
+
+nn::Result<OptionalTimePoint> convert(const nn::OptionalTimePoint& optionalTimePoint) {
+    OptionalTimePoint ret;
+    if (optionalTimePoint.has_value()) {
+        const auto count = optionalTimePoint.value().time_since_epoch().count();
+        if (count < 0) {
+            return NN_ERROR() << "Unable to convert OptionalTimePoint because time since epoch "
+                                 "count is negative";
+        }
+        ret.nanosecondsSinceEpoch(count);
+    }
+    return ret;
+}
+
+nn::Result<OptionalTimeoutDuration> convert(
+        const nn::OptionalTimeoutDuration& optionalTimeoutDuration) {
+    OptionalTimeoutDuration ret;
+    if (optionalTimeoutDuration.has_value()) {
+        const auto count = optionalTimeoutDuration.value().count();
+        if (count < 0) {
+            return NN_ERROR()
+                   << "Unable to convert OptionalTimeoutDuration because count is negative";
+        }
+        ret.nanoseconds(count);
+    }
+    return ret;
+}
+
+nn::Result<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
+    switch (errorStatus) {
+        case nn::ErrorStatus::NONE:
+        case nn::ErrorStatus::DEVICE_UNAVAILABLE:
+        case nn::ErrorStatus::GENERAL_FAILURE:
+        case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
+        case nn::ErrorStatus::INVALID_ARGUMENT:
+        case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
+        case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
+        case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
+        case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
+            return static_cast<ErrorStatus>(errorStatus);
+        default:
+            return ErrorStatus::GENERAL_FAILURE;
+    }
+}
+
+nn::Result<hidl_vec<BufferRole>> convert(const std::vector<nn::BufferRole>& bufferRoles) {
+    return convertVec(bufferRoles);
+}
+
+}  // namespace android::hardware::neuralnetworks::V1_3::utils
diff --git a/neuralnetworks/utils/OWNERS b/neuralnetworks/utils/OWNERS
new file mode 100644
index 0000000..e4feee3
--- /dev/null
+++ b/neuralnetworks/utils/OWNERS
@@ -0,0 +1,11 @@
+# Neuralnetworks team
+butlermichael@google.com
+dgross@google.com
+galarragas@google.com
+jeanluc@google.com
+levp@google.com
+miaowang@google.com
+pszczepaniak@google.com
+slavash@google.com
+vddang@google.com
+xusongw@google.com
diff --git a/neuralnetworks/utils/common/Android.bp b/neuralnetworks/utils/common/Android.bp
new file mode 100644
index 0000000..b61dc97
--- /dev/null
+++ b/neuralnetworks/utils/common/Android.bp
@@ -0,0 +1,29 @@
+//
+// Copyright (C) 2020 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_library_static {
+    name: "neuralnetworks_utils_hal_common",
+    defaults: ["neuralnetworks_utils_defaults"],
+    srcs: ["src/*"],
+    local_include_dirs: ["include/nnapi/hal"],
+    export_include_dirs: ["include"],
+    static_libs: [
+        "neuralnetworks_types",
+    ],
+    shared_libs: [
+        "libhidlbase",
+    ],
+}
diff --git a/neuralnetworks/utils/common/include/nnapi/hal/CommonUtils.h b/neuralnetworks/utils/common/include/nnapi/hal/CommonUtils.h
new file mode 100644
index 0000000..8c01368
--- /dev/null
+++ b/neuralnetworks/utils/common/include/nnapi/hal/CommonUtils.h
@@ -0,0 +1,59 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_COMMON_UTILS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_COMMON_UTILS_H
+
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <vector>
+
+// Shorthand
+namespace android::hardware::neuralnetworks {
+namespace hal = ::android::hardware::neuralnetworks;
+}  // namespace android::hardware::neuralnetworks
+
+// Shorthand
+namespace android::nn {
+namespace hal = ::android::hardware::neuralnetworks;
+}
+
+namespace android::hardware::neuralnetworks::utils {
+
+nn::Capabilities::OperandPerformanceTable makeQuantized8PerformanceConsistentWithP(
+        const nn::Capabilities::PerformanceInfo& float32Performance,
+        const nn::Capabilities::PerformanceInfo& quantized8Performance);
+
+// Indicates if the object contains no pointer-based data that could be relocated to shared memory.
+bool hasNoPointerData(const nn::Model& model);
+bool hasNoPointerData(const nn::Request& request);
+
+// Relocate pointer-based data to shared memory.
+nn::Result<nn::Model> flushDataFromPointerToShared(const nn::Model& model);
+nn::Result<nn::Request> flushDataFromPointerToShared(const nn::Request& request);
+
+// Undoes `flushDataFromPointerToShared` on a Request object. More specifically,
+// `unflushDataFromSharedToPointer` copies the output shared memory data from the transformed
+// Request object back to the output pointer-based memory in the original Request object.
+nn::Result<void> unflushDataFromSharedToPointer(const nn::Request& request,
+                                                const nn::Request& requestInShared);
+
+std::vector<uint32_t> countNumberOfConsumers(size_t numberOfOperands,
+                                             const std::vector<nn::Operation>& operations);
+
+}  // namespace android::hardware::neuralnetworks::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_COMMON_UTILS_H
diff --git a/neuralnetworks/utils/common/src/CommonUtils.cpp b/neuralnetworks/utils/common/src/CommonUtils.cpp
new file mode 100644
index 0000000..667189b
--- /dev/null
+++ b/neuralnetworks/utils/common/src/CommonUtils.cpp
@@ -0,0 +1,224 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "CommonUtils.h"
+
+#include <android-base/logging.h>
+#include <nnapi/Result.h>
+#include <nnapi/SharedMemory.h>
+#include <nnapi/TypeUtils.h>
+#include <nnapi/Types.h>
+#include <nnapi/Validation.h>
+
+#include <algorithm>
+#include <any>
+#include <optional>
+#include <variant>
+#include <vector>
+
+namespace android::hardware::neuralnetworks::utils {
+namespace {
+
+bool hasNoPointerData(const nn::Operand& operand);
+bool hasNoPointerData(const nn::Model::Subgraph& subgraph);
+bool hasNoPointerData(const nn::Request::Argument& argument);
+
+template <typename Type>
+bool hasNoPointerData(const std::vector<Type>& objects) {
+    return std::all_of(objects.begin(), objects.end(),
+                       [](const auto& object) { return hasNoPointerData(object); });
+}
+
+bool hasNoPointerData(const nn::DataLocation& location) {
+    return std::visit([](auto ptr) { return ptr == nullptr; }, location.pointer);
+}
+
+bool hasNoPointerData(const nn::Operand& operand) {
+    return hasNoPointerData(operand.location);
+}
+
+bool hasNoPointerData(const nn::Model::Subgraph& subgraph) {
+    return hasNoPointerData(subgraph.operands);
+}
+
+bool hasNoPointerData(const nn::Request::Argument& argument) {
+    return hasNoPointerData(argument.location);
+}
+
+void copyPointersToSharedMemory(nn::Operand* operand, nn::ConstantMemoryBuilder* memoryBuilder) {
+    CHECK(operand != nullptr);
+    CHECK(memoryBuilder != nullptr);
+
+    if (operand->lifetime != nn::Operand::LifeTime::POINTER) {
+        return;
+    }
+
+    const void* data = std::visit([](auto ptr) { return static_cast<const void*>(ptr); },
+                                  operand->location.pointer);
+    CHECK(data != nullptr);
+    operand->lifetime = nn::Operand::LifeTime::CONSTANT_REFERENCE;
+    operand->location = memoryBuilder->append(data, operand->location.length);
+}
+
+void copyPointersToSharedMemory(nn::Model::Subgraph* subgraph,
+                                nn::ConstantMemoryBuilder* memoryBuilder) {
+    CHECK(subgraph != nullptr);
+    std::for_each(subgraph->operands.begin(), subgraph->operands.end(),
+                  [memoryBuilder](auto& operand) {
+                      copyPointersToSharedMemory(&operand, memoryBuilder);
+                  });
+}
+
+}  // anonymous namespace
+
+nn::Capabilities::OperandPerformanceTable makeQuantized8PerformanceConsistentWithP(
+        const nn::Capabilities::PerformanceInfo& float32Performance,
+        const nn::Capabilities::PerformanceInfo& quantized8Performance) {
+    // In Android P, most data types are treated as having the same performance as
+    // TENSOR_QUANT8_ASYMM. This collection must be in sorted order.
+    std::vector<nn::Capabilities::OperandPerformance> operandPerformances = {
+            {.type = nn::OperandType::FLOAT32, .info = float32Performance},
+            {.type = nn::OperandType::INT32, .info = quantized8Performance},
+            {.type = nn::OperandType::UINT32, .info = quantized8Performance},
+            {.type = nn::OperandType::TENSOR_FLOAT32, .info = float32Performance},
+            {.type = nn::OperandType::TENSOR_INT32, .info = quantized8Performance},
+            {.type = nn::OperandType::TENSOR_QUANT8_ASYMM, .info = quantized8Performance},
+            {.type = nn::OperandType::OEM, .info = quantized8Performance},
+            {.type = nn::OperandType::TENSOR_OEM_BYTE, .info = quantized8Performance},
+    };
+    return nn::Capabilities::OperandPerformanceTable::create(std::move(operandPerformances))
+            .value();
+}
+
+bool hasNoPointerData(const nn::Model& model) {
+    return hasNoPointerData(model.main) && hasNoPointerData(model.referenced);
+}
+
+bool hasNoPointerData(const nn::Request& request) {
+    return hasNoPointerData(request.inputs) && hasNoPointerData(request.outputs);
+}
+
+nn::Result<nn::Model> flushDataFromPointerToShared(const nn::Model& model) {
+    auto modelInShared = model;
+
+    nn::ConstantMemoryBuilder memoryBuilder(modelInShared.pools.size());
+    copyPointersToSharedMemory(&modelInShared.main, &memoryBuilder);
+    std::for_each(modelInShared.referenced.begin(), modelInShared.referenced.end(),
+                  [&memoryBuilder](auto& subgraph) {
+                      copyPointersToSharedMemory(&subgraph, &memoryBuilder);
+                  });
+
+    if (!memoryBuilder.empty()) {
+        auto memory = NN_TRY(memoryBuilder.finish());
+        modelInShared.pools.push_back(std::move(memory));
+    }
+
+    return modelInShared;
+}
+
+nn::Result<nn::Request> flushDataFromPointerToShared(const nn::Request& request) {
+    auto requestInShared = request;
+
+    // Change input pointers to shared memory.
+    nn::ConstantMemoryBuilder inputBuilder(requestInShared.pools.size());
+    for (auto& input : requestInShared.inputs) {
+        const auto& location = input.location;
+        if (input.lifetime != nn::Request::Argument::LifeTime::POINTER) {
+            continue;
+        }
+
+        input.lifetime = nn::Request::Argument::LifeTime::POOL;
+        const void* data = std::visit([](auto ptr) { return static_cast<const void*>(ptr); },
+                                      location.pointer);
+        CHECK(data != nullptr);
+        input.location = inputBuilder.append(data, location.length);
+    }
+
+    // Allocate input memory.
+    if (!inputBuilder.empty()) {
+        auto memory = NN_TRY(inputBuilder.finish());
+        requestInShared.pools.push_back(std::move(memory));
+    }
+
+    // Change output pointers to shared memory.
+    nn::MutableMemoryBuilder outputBuilder(requestInShared.pools.size());
+    for (auto& output : requestInShared.outputs) {
+        const auto& location = output.location;
+        if (output.lifetime != nn::Request::Argument::LifeTime::POINTER) {
+            continue;
+        }
+
+        output.lifetime = nn::Request::Argument::LifeTime::POOL;
+        output.location = outputBuilder.append(location.length);
+    }
+
+    // Allocate output memory.
+    if (!outputBuilder.empty()) {
+        auto memory = NN_TRY(outputBuilder.finish());
+        requestInShared.pools.push_back(std::move(memory));
+    }
+
+    return requestInShared;
+}
+
+nn::Result<void> unflushDataFromSharedToPointer(const nn::Request& request,
+                                                const nn::Request& requestInShared) {
+    if (requestInShared.pools.empty() ||
+        !std::holds_alternative<nn::Memory>(requestInShared.pools.back())) {
+        return {};
+    }
+
+    // Map the memory.
+    const auto& outputMemory = std::get<nn::Memory>(requestInShared.pools.back());
+    const auto [pointer, size, context] = NN_TRY(map(outputMemory));
+    const uint8_t* constantPointer =
+            std::visit([](const auto& o) { return static_cast<const uint8_t*>(o); }, pointer);
+
+    // Flush each output pointer.
+    CHECK_EQ(request.outputs.size(), requestInShared.outputs.size());
+    for (size_t i = 0; i < request.outputs.size(); ++i) {
+        const auto& location = request.outputs[i].location;
+        const auto& locationInShared = requestInShared.outputs[i].location;
+        if (!std::holds_alternative<void*>(location.pointer)) {
+            continue;
+        }
+
+        // Get output pointer and size.
+        void* data = std::get<void*>(location.pointer);
+        CHECK(data != nullptr);
+        const size_t length = location.length;
+
+        // Get output pool location.
+        CHECK(requestInShared.outputs[i].lifetime == nn::Request::Argument::LifeTime::POOL);
+        const size_t index = locationInShared.poolIndex;
+        const size_t offset = locationInShared.offset;
+        const size_t outputPoolIndex = requestInShared.pools.size() - 1;
+        CHECK(locationInShared.length == length);
+        CHECK(index == outputPoolIndex);
+
+        // Flush memory.
+        std::memcpy(data, constantPointer + offset, length);
+    }
+
+    return {};
+}
+
+std::vector<uint32_t> countNumberOfConsumers(size_t numberOfOperands,
+                                             const std::vector<nn::Operation>& operations) {
+    return nn::countNumberOfConsumers(numberOfOperands, operations);
+}
+
+}  // namespace android::hardware::neuralnetworks::utils