Copy VTS tests from v1.2 to v1.3
So that it's easier to see what actually has changed in VTS tests for
version 1.3
Bug: 139120468
Test: m
Change-Id: Ief294d21349ca6531595612a16fa3ae3382f83ac
diff --git a/neuralnetworks/1.3/vts/OWNERS b/neuralnetworks/1.3/vts/OWNERS
new file mode 100644
index 0000000..b5a8e1f
--- /dev/null
+++ b/neuralnetworks/1.3/vts/OWNERS
@@ -0,0 +1,16 @@
+# Neuralnetworks team
+butlermichael@google.com
+dgross@google.com
+jeanluc@google.com
+levp@google.com
+miaowang@google.com
+mikie@google.com
+mks@google.com
+pszczepaniak@google.com
+slavash@google.com
+vddang@google.com
+xusongw@google.com
+
+# VTS team
+yim@google.com
+yuexima@google.com
diff --git a/neuralnetworks/1.3/vts/functional/BasicTests.cpp b/neuralnetworks/1.3/vts/functional/BasicTests.cpp
new file mode 100644
index 0000000..8e82c53
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/BasicTests.cpp
@@ -0,0 +1,114 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+namespace android::hardware::neuralnetworks::V1_2::vts::functional {
+
+using V1_0::DeviceStatus;
+using V1_0::ErrorStatus;
+using V1_0::PerformanceInfo;
+
+// create device test
+TEST_P(NeuralnetworksHidlTest, CreateDevice) {}
+
+// status test
+TEST_P(NeuralnetworksHidlTest, StatusTest) {
+ Return<DeviceStatus> status = kDevice->getStatus();
+ ASSERT_TRUE(status.isOk());
+ EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
+}
+
+// initialization
+TEST_P(NeuralnetworksHidlTest, GetCapabilitiesTest) {
+ using OperandPerformance = Capabilities::OperandPerformance;
+ Return<void> ret = kDevice->getCapabilities_1_2([](ErrorStatus status,
+ const Capabilities& capabilities) {
+ EXPECT_EQ(ErrorStatus::NONE, status);
+
+ auto isPositive = [](const PerformanceInfo& perf) {
+ return perf.execTime > 0.0f && perf.powerUsage > 0.0f;
+ };
+
+ EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceScalar));
+ EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceTensor));
+ const auto& opPerf = capabilities.operandPerformance;
+ EXPECT_TRUE(std::all_of(
+ opPerf.begin(), opPerf.end(),
+ [isPositive](const OperandPerformance& a) { return isPositive(a.info); }));
+ EXPECT_TRUE(std::is_sorted(opPerf.begin(), opPerf.end(),
+ [](const OperandPerformance& a, const OperandPerformance& b) {
+ return a.type < b.type;
+ }));
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+
+// device version test
+TEST_P(NeuralnetworksHidlTest, GetDeviceVersionStringTest) {
+ Return<void> ret =
+ kDevice->getVersionString([](ErrorStatus status, const hidl_string& version) {
+ EXPECT_EQ(ErrorStatus::NONE, status);
+ EXPECT_LT(0, version.size());
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+
+// device type test
+TEST_P(NeuralnetworksHidlTest, GetDeviceTypeTest) {
+ Return<void> ret = kDevice->getType([](ErrorStatus status, DeviceType type) {
+ EXPECT_EQ(ErrorStatus::NONE, status);
+ EXPECT_TRUE(type == DeviceType::OTHER || type == DeviceType::CPU ||
+ type == DeviceType::GPU || type == DeviceType::ACCELERATOR);
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+
+// device supported extensions test
+TEST_P(NeuralnetworksHidlTest, GetDeviceSupportedExtensionsTest) {
+ Return<void> ret = kDevice->getSupportedExtensions(
+ [](ErrorStatus status, const hidl_vec<Extension>& extensions) {
+ EXPECT_EQ(ErrorStatus::NONE, status);
+ for (auto& extension : extensions) {
+ std::string extensionName = extension.name;
+ EXPECT_FALSE(extensionName.empty());
+ for (char c : extensionName) {
+ EXPECT_TRUE(('a' <= c && c <= 'z') || ('0' <= c && c <= '9') || c == '_' ||
+ c == '.')
+ << "Extension name contains an illegal character: " << c;
+ }
+ EXPECT_NE(extensionName.find('.'), std::string::npos)
+ << "Extension name must start with the reverse domain name of the "
+ "vendor";
+ }
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+
+// getNumberOfCacheFilesNeeded test
+TEST_P(NeuralnetworksHidlTest, getNumberOfCacheFilesNeeded) {
+ Return<void> ret = kDevice->getNumberOfCacheFilesNeeded(
+ [](ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache) {
+ EXPECT_EQ(ErrorStatus::NONE, status);
+ EXPECT_LE(numModelCache,
+ static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES));
+ EXPECT_LE(numDataCache, static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES));
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/Callbacks.cpp b/neuralnetworks/1.3/vts/functional/Callbacks.cpp
new file mode 100644
index 0000000..3972ad6
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/Callbacks.cpp
@@ -0,0 +1,143 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "Callbacks"
+
+#include "1.2/Callbacks.h"
+
+#include <android-base/logging.h>
+
+#include <limits>
+
+namespace android::hardware::neuralnetworks::V1_2::implementation {
+
+using V1_0::ErrorStatus;
+
+constexpr Timing kNoTiming = {.timeOnDevice = std::numeric_limits<uint64_t>::max(),
+ .timeInDriver = std::numeric_limits<uint64_t>::max()};
+
+// PreparedModelCallback methods begin here
+
+Return<void> PreparedModelCallback::notify(ErrorStatus errorStatus,
+ const sp<V1_0::IPreparedModel>& preparedModel) {
+ {
+ std::lock_guard<std::mutex> hold(mMutex);
+
+ // quick-return if object has already been notified
+ if (mNotified) {
+ return Void();
+ }
+
+ // store results and mark as notified
+ mErrorStatus = errorStatus;
+ mPreparedModel = preparedModel;
+ mNotified = true;
+ }
+
+ mCondition.notify_all();
+ return Void();
+}
+
+Return<void> PreparedModelCallback::notify_1_2(ErrorStatus errorStatus,
+ const sp<V1_2::IPreparedModel>& preparedModel) {
+ return notify(errorStatus, preparedModel);
+}
+
+void PreparedModelCallback::wait() const {
+ std::unique_lock<std::mutex> lock(mMutex);
+ mCondition.wait(lock, [this] { return mNotified; });
+}
+
+ErrorStatus PreparedModelCallback::getStatus() const {
+ wait();
+ return mErrorStatus;
+}
+
+sp<V1_0::IPreparedModel> PreparedModelCallback::getPreparedModel() const {
+ wait();
+ return mPreparedModel;
+}
+
+// ExecutionCallback methods begin here
+
+Return<void> ExecutionCallback::notify(ErrorStatus errorStatus) {
+ notifyInternal(errorStatus, {}, kNoTiming);
+ return Void();
+}
+
+Return<void> ExecutionCallback::notify_1_2(ErrorStatus errorStatus,
+ const hidl_vec<OutputShape>& outputShapes,
+ const Timing& timing) {
+ if (errorStatus == ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
+ // outputShapes must not be empty if OUTPUT_INSUFFICIENT_SIZE.
+ if (outputShapes.size() == 0) {
+ LOG(ERROR) << "Notified with empty output shape vector when OUTPUT_INSUFFICIENT_SIZE";
+ notifyInternal(ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
+ return Void();
+ }
+ } else if (errorStatus != ErrorStatus::NONE) {
+ // outputShapes must be empty if errorStatus is neither NONE nor OUTPUT_INSUFFICIENT_SIZE.
+ if (outputShapes.size() != 0) {
+ LOG(ERROR) << "Notified with non-empty output shape vector when error status is "
+ "neither NONE nor OUTPUT_INSUFFICIENT_SIZE";
+ notifyInternal(ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
+ return Void();
+ }
+ }
+ notifyInternal(errorStatus, outputShapes, timing);
+ return Void();
+}
+
+void ExecutionCallback::wait() const {
+ std::unique_lock<std::mutex> lock(mMutex);
+ mCondition.wait(lock, [this] { return mNotified; });
+}
+
+ErrorStatus ExecutionCallback::getStatus() const {
+ wait();
+ return mErrorStatus;
+}
+
+const std::vector<OutputShape>& ExecutionCallback::getOutputShapes() const {
+ wait();
+ return mOutputShapes;
+}
+
+Timing ExecutionCallback::getTiming() const {
+ wait();
+ return mTiming;
+}
+
+void ExecutionCallback::notifyInternal(ErrorStatus errorStatus,
+ const hidl_vec<OutputShape>& outputShapes,
+ const Timing& timing) {
+ {
+ std::lock_guard<std::mutex> hold(mMutex);
+
+ // quick-return if object has already been notified
+ if (mNotified) {
+ return;
+ }
+
+ mErrorStatus = errorStatus;
+ mOutputShapes = outputShapes;
+ mTiming = timing;
+ mNotified = true;
+ }
+ mCondition.notify_all();
+}
+
+} // namespace android::hardware::neuralnetworks::V1_2::implementation
diff --git a/neuralnetworks/1.3/vts/functional/CompilationCachingTests.cpp b/neuralnetworks/1.3/vts/functional/CompilationCachingTests.cpp
new file mode 100644
index 0000000..2130a76
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/CompilationCachingTests.cpp
@@ -0,0 +1,1374 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include <android-base/logging.h>
+#include <fcntl.h>
+#include <ftw.h>
+#include <gtest/gtest.h>
+#include <hidlmemory/mapping.h>
+#include <unistd.h>
+
+#include <cstdio>
+#include <cstdlib>
+#include <random>
+#include <thread>
+
+#include "1.2/Callbacks.h"
+#include "GeneratedTestHarness.h"
+#include "MemoryUtils.h"
+#include "TestHarness.h"
+#include "Utils.h"
+#include "VtsHalNeuralnetworks.h"
+
+// Forward declaration of the mobilenet generated test models in
+// frameworks/ml/nn/runtime/test/generated/.
+namespace generated_tests::mobilenet_224_gender_basic_fixed {
+const test_helper::TestModel& get_test_model();
+} // namespace generated_tests::mobilenet_224_gender_basic_fixed
+
+namespace generated_tests::mobilenet_quantized {
+const test_helper::TestModel& get_test_model();
+} // namespace generated_tests::mobilenet_quantized
+
+namespace android::hardware::neuralnetworks::V1_2::vts::functional {
+
+using namespace test_helper;
+using implementation::PreparedModelCallback;
+using V1_0::ErrorStatus;
+using V1_1::ExecutionPreference;
+
+namespace float32_model {
+
+constexpr auto get_test_model = generated_tests::mobilenet_224_gender_basic_fixed::get_test_model;
+
+} // namespace float32_model
+
+namespace quant8_model {
+
+constexpr auto get_test_model = generated_tests::mobilenet_quantized::get_test_model;
+
+} // namespace quant8_model
+
+namespace {
+
+enum class AccessMode { READ_WRITE, READ_ONLY, WRITE_ONLY };
+
+// Creates cache handles based on provided file groups.
+// The outer vector corresponds to handles and the inner vector is for fds held by each handle.
+void createCacheHandles(const std::vector<std::vector<std::string>>& fileGroups,
+ const std::vector<AccessMode>& mode, hidl_vec<hidl_handle>* handles) {
+ handles->resize(fileGroups.size());
+ for (uint32_t i = 0; i < fileGroups.size(); i++) {
+ std::vector<int> fds;
+ for (const auto& file : fileGroups[i]) {
+ int fd;
+ if (mode[i] == AccessMode::READ_ONLY) {
+ fd = open(file.c_str(), O_RDONLY);
+ } else if (mode[i] == AccessMode::WRITE_ONLY) {
+ fd = open(file.c_str(), O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
+ } else if (mode[i] == AccessMode::READ_WRITE) {
+ fd = open(file.c_str(), O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
+ } else {
+ FAIL();
+ }
+ ASSERT_GE(fd, 0);
+ fds.push_back(fd);
+ }
+ native_handle_t* cacheNativeHandle = native_handle_create(fds.size(), 0);
+ ASSERT_NE(cacheNativeHandle, nullptr);
+ std::copy(fds.begin(), fds.end(), &cacheNativeHandle->data[0]);
+ (*handles)[i].setTo(cacheNativeHandle, /*shouldOwn=*/true);
+ }
+}
+
+void createCacheHandles(const std::vector<std::vector<std::string>>& fileGroups, AccessMode mode,
+ hidl_vec<hidl_handle>* handles) {
+ createCacheHandles(fileGroups, std::vector<AccessMode>(fileGroups.size(), mode), handles);
+}
+
+// Create a chain of broadcast operations. The second operand is always constant tensor [1].
+// For simplicity, activation scalar is shared. The second operand is not shared
+// in the model to let driver maintain a non-trivial size of constant data and the corresponding
+// data locations in cache.
+//
+// --------- activation --------
+// ↓ ↓ ↓ ↓
+// E.g. input -> ADD -> ADD -> ADD -> ... -> ADD -> output
+// ↑ ↑ ↑ ↑
+// [1] [1] [1] [1]
+//
+// This function assumes the operation is either ADD or MUL.
+template <typename CppType, TestOperandType operandType>
+TestModel createLargeTestModelImpl(TestOperationType op, uint32_t len) {
+ EXPECT_TRUE(op == TestOperationType::ADD || op == TestOperationType::MUL);
+
+ // Model operations and operands.
+ std::vector<TestOperation> operations(len);
+ std::vector<TestOperand> operands(len * 2 + 2);
+
+ // The activation scalar, value = 0.
+ operands[0] = {
+ .type = TestOperandType::INT32,
+ .dimensions = {},
+ .numberOfConsumers = len,
+ .scale = 0.0f,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::CONSTANT_COPY,
+ .data = TestBuffer::createFromVector<int32_t>({0}),
+ };
+
+ // The buffer value of the constant second operand. The logical value is always 1.0f.
+ CppType bufferValue;
+ // The scale of the first and second operand.
+ float scale1, scale2;
+ if (operandType == TestOperandType::TENSOR_FLOAT32) {
+ bufferValue = 1.0f;
+ scale1 = 0.0f;
+ scale2 = 0.0f;
+ } else if (op == TestOperationType::ADD) {
+ bufferValue = 1;
+ scale1 = 1.0f;
+ scale2 = 1.0f;
+ } else {
+ // To satisfy the constraint on quant8 MUL: input0.scale * input1.scale < output.scale,
+ // set input1 to have scale = 0.5f and bufferValue = 2, i.e. 1.0f in floating point.
+ bufferValue = 2;
+ scale1 = 1.0f;
+ scale2 = 0.5f;
+ }
+
+ for (uint32_t i = 0; i < len; i++) {
+ const uint32_t firstInputIndex = i * 2 + 1;
+ const uint32_t secondInputIndex = firstInputIndex + 1;
+ const uint32_t outputIndex = secondInputIndex + 1;
+
+ // The first operation input.
+ operands[firstInputIndex] = {
+ .type = operandType,
+ .dimensions = {1},
+ .numberOfConsumers = 1,
+ .scale = scale1,
+ .zeroPoint = 0,
+ .lifetime = (i == 0 ? TestOperandLifeTime::MODEL_INPUT
+ : TestOperandLifeTime::TEMPORARY_VARIABLE),
+ .data = (i == 0 ? TestBuffer::createFromVector<CppType>({1}) : TestBuffer()),
+ };
+
+ // The second operation input, value = 1.
+ operands[secondInputIndex] = {
+ .type = operandType,
+ .dimensions = {1},
+ .numberOfConsumers = 1,
+ .scale = scale2,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::CONSTANT_COPY,
+ .data = TestBuffer::createFromVector<CppType>({bufferValue}),
+ };
+
+ // The operation. All operations share the same activation scalar.
+ // The output operand is created as an input in the next iteration of the loop, in the case
+ // of all but the last member of the chain; and after the loop as a model output, in the
+ // case of the last member of the chain.
+ operations[i] = {
+ .type = op,
+ .inputs = {firstInputIndex, secondInputIndex, /*activation scalar*/ 0},
+ .outputs = {outputIndex},
+ };
+ }
+
+ // For TestOperationType::ADD, output = 1 + 1 * len = len + 1
+ // For TestOperationType::MUL, output = 1 * 1 ^ len = 1
+ CppType outputResult = static_cast<CppType>(op == TestOperationType::ADD ? len + 1u : 1u);
+
+ // The model output.
+ operands.back() = {
+ .type = operandType,
+ .dimensions = {1},
+ .numberOfConsumers = 0,
+ .scale = scale1,
+ .zeroPoint = 0,
+ .lifetime = TestOperandLifeTime::MODEL_OUTPUT,
+ .data = TestBuffer::createFromVector<CppType>({outputResult}),
+ };
+
+ return {
+ .operands = std::move(operands),
+ .operations = std::move(operations),
+ .inputIndexes = {1},
+ .outputIndexes = {len * 2 + 1},
+ .isRelaxed = false,
+ };
+}
+
+} // namespace
+
+// Tag for the compilation caching tests.
+class CompilationCachingTestBase : public testing::Test {
+ protected:
+ CompilationCachingTestBase(sp<IDevice> device, OperandType type)
+ : kDevice(std::move(device)), kOperandType(type) {}
+
+ void SetUp() override {
+ testing::Test::SetUp();
+ ASSERT_NE(kDevice.get(), nullptr);
+
+ // Create cache directory. The cache directory and a temporary cache file is always created
+ // to test the behavior of prepareModelFromCache, even when caching is not supported.
+ char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX";
+ char* cacheDir = mkdtemp(cacheDirTemp);
+ ASSERT_NE(cacheDir, nullptr);
+ mCacheDir = cacheDir;
+ mCacheDir.push_back('/');
+
+ Return<void> ret = kDevice->getNumberOfCacheFilesNeeded(
+ [this](ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache) {
+ EXPECT_EQ(ErrorStatus::NONE, status);
+ mNumModelCache = numModelCache;
+ mNumDataCache = numDataCache;
+ });
+ EXPECT_TRUE(ret.isOk());
+ mIsCachingSupported = mNumModelCache > 0 || mNumDataCache > 0;
+
+ // Create empty cache files.
+ mTmpCache = mCacheDir + "tmp";
+ for (uint32_t i = 0; i < mNumModelCache; i++) {
+ mModelCache.push_back({mCacheDir + "model" + std::to_string(i)});
+ }
+ for (uint32_t i = 0; i < mNumDataCache; i++) {
+ mDataCache.push_back({mCacheDir + "data" + std::to_string(i)});
+ }
+ // Dummy handles, use AccessMode::WRITE_ONLY for createCacheHandles to create files.
+ hidl_vec<hidl_handle> modelHandle, dataHandle, tmpHandle;
+ createCacheHandles(mModelCache, AccessMode::WRITE_ONLY, &modelHandle);
+ createCacheHandles(mDataCache, AccessMode::WRITE_ONLY, &dataHandle);
+ createCacheHandles({{mTmpCache}}, AccessMode::WRITE_ONLY, &tmpHandle);
+
+ if (!mIsCachingSupported) {
+ LOG(INFO) << "NN VTS: Early termination of test because vendor service does not "
+ "support compilation caching.";
+ std::cout << "[ ] Early termination of test because vendor service does not "
+ "support compilation caching."
+ << std::endl;
+ }
+ }
+
+ void TearDown() override {
+ // If the test passes, remove the tmp directory. Otherwise, keep it for debugging purposes.
+ if (!testing::Test::HasFailure()) {
+ // Recursively remove the cache directory specified by mCacheDir.
+ auto callback = [](const char* entry, const struct stat*, int, struct FTW*) {
+ return remove(entry);
+ };
+ nftw(mCacheDir.c_str(), callback, 128, FTW_DEPTH | FTW_MOUNT | FTW_PHYS);
+ }
+ testing::Test::TearDown();
+ }
+
+ // Model and examples creators. According to kOperandType, the following methods will return
+ // either float32 model/examples or the quant8 variant.
+ TestModel createTestModel() {
+ if (kOperandType == OperandType::TENSOR_FLOAT32) {
+ return float32_model::get_test_model();
+ } else {
+ return quant8_model::get_test_model();
+ }
+ }
+
+ TestModel createLargeTestModel(OperationType op, uint32_t len) {
+ if (kOperandType == OperandType::TENSOR_FLOAT32) {
+ return createLargeTestModelImpl<float, TestOperandType::TENSOR_FLOAT32>(
+ static_cast<TestOperationType>(op), len);
+ } else {
+ return createLargeTestModelImpl<uint8_t, TestOperandType::TENSOR_QUANT8_ASYMM>(
+ static_cast<TestOperationType>(op), len);
+ }
+ }
+
+ // See if the service can handle the model.
+ bool isModelFullySupported(const Model& model) {
+ bool fullySupportsModel = false;
+ Return<void> supportedCall = kDevice->getSupportedOperations_1_2(
+ model,
+ [&fullySupportsModel, &model](ErrorStatus status, const hidl_vec<bool>& supported) {
+ ASSERT_EQ(ErrorStatus::NONE, status);
+ ASSERT_EQ(supported.size(), model.operations.size());
+ fullySupportsModel = std::all_of(supported.begin(), supported.end(),
+ [](bool valid) { return valid; });
+ });
+ EXPECT_TRUE(supportedCall.isOk());
+ return fullySupportsModel;
+ }
+
+ void saveModelToCache(const Model& model, const hidl_vec<hidl_handle>& modelCache,
+ const hidl_vec<hidl_handle>& dataCache,
+ sp<IPreparedModel>* preparedModel = nullptr) {
+ if (preparedModel != nullptr) *preparedModel = nullptr;
+
+ // Launch prepare model.
+ sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+ hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
+ Return<ErrorStatus> prepareLaunchStatus =
+ kDevice->prepareModel_1_2(model, ExecutionPreference::FAST_SINGLE_ANSWER,
+ modelCache, dataCache, cacheToken, preparedModelCallback);
+ ASSERT_TRUE(prepareLaunchStatus.isOk());
+ ASSERT_EQ(static_cast<ErrorStatus>(prepareLaunchStatus), ErrorStatus::NONE);
+
+ // Retrieve prepared model.
+ preparedModelCallback->wait();
+ ASSERT_EQ(preparedModelCallback->getStatus(), ErrorStatus::NONE);
+ if (preparedModel != nullptr) {
+ *preparedModel = IPreparedModel::castFrom(preparedModelCallback->getPreparedModel())
+ .withDefault(nullptr);
+ }
+ }
+
+ bool checkEarlyTermination(ErrorStatus status) {
+ if (status == ErrorStatus::GENERAL_FAILURE) {
+ LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
+ "save the prepared model that it does not support.";
+ std::cout << "[ ] Early termination of test because vendor service cannot "
+ "save the prepared model that it does not support."
+ << std::endl;
+ return true;
+ }
+ return false;
+ }
+
+ bool checkEarlyTermination(const Model& model) {
+ if (!isModelFullySupported(model)) {
+ LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
+ "prepare model that it does not support.";
+ std::cout << "[ ] Early termination of test because vendor service cannot "
+ "prepare model that it does not support."
+ << std::endl;
+ return true;
+ }
+ return false;
+ }
+
+ void prepareModelFromCache(const hidl_vec<hidl_handle>& modelCache,
+ const hidl_vec<hidl_handle>& dataCache,
+ sp<IPreparedModel>* preparedModel, ErrorStatus* status) {
+ // Launch prepare model from cache.
+ sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+ hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
+ Return<ErrorStatus> prepareLaunchStatus = kDevice->prepareModelFromCache(
+ modelCache, dataCache, cacheToken, preparedModelCallback);
+ ASSERT_TRUE(prepareLaunchStatus.isOk());
+ if (static_cast<ErrorStatus>(prepareLaunchStatus) != ErrorStatus::NONE) {
+ *preparedModel = nullptr;
+ *status = static_cast<ErrorStatus>(prepareLaunchStatus);
+ return;
+ }
+
+ // Retrieve prepared model.
+ preparedModelCallback->wait();
+ *status = preparedModelCallback->getStatus();
+ *preparedModel = IPreparedModel::castFrom(preparedModelCallback->getPreparedModel())
+ .withDefault(nullptr);
+ }
+
+ // Absolute path to the temporary cache directory.
+ std::string mCacheDir;
+
+ // Groups of file paths for model and data cache in the tmp cache directory, initialized with
+ // outer_size = mNum{Model|Data}Cache, inner_size = 1. The outer vector corresponds to handles
+ // and the inner vector is for fds held by each handle.
+ std::vector<std::vector<std::string>> mModelCache;
+ std::vector<std::vector<std::string>> mDataCache;
+
+ // A separate temporary file path in the tmp cache directory.
+ std::string mTmpCache;
+
+ uint8_t mToken[static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)] = {};
+ uint32_t mNumModelCache;
+ uint32_t mNumDataCache;
+ uint32_t mIsCachingSupported;
+
+ const sp<IDevice> kDevice;
+ // The primary data type of the testModel.
+ const OperandType kOperandType;
+};
+
+using CompilationCachingTestParam = std::tuple<NamedDevice, OperandType>;
+
+// A parameterized fixture of CompilationCachingTestBase. Every test will run twice, with the first
+// pass running with float32 models and the second pass running with quant8 models.
+class CompilationCachingTest : public CompilationCachingTestBase,
+ public testing::WithParamInterface<CompilationCachingTestParam> {
+ protected:
+ CompilationCachingTest()
+ : CompilationCachingTestBase(getData(std::get<NamedDevice>(GetParam())),
+ std::get<OperandType>(GetParam())) {}
+};
+
+TEST_P(CompilationCachingTest, CacheSavingAndRetrieval) {
+ // Create test HIDL model and compile.
+ const TestModel& testModel = createTestModel();
+ const Model model = createModel(testModel);
+ if (checkEarlyTermination(model)) return;
+ sp<IPreparedModel> preparedModel = nullptr;
+
+ // Save the compilation to cache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(model, modelCache, dataCache);
+ }
+
+ // Retrieve preparedModel from cache.
+ {
+ preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (!mIsCachingSupported) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ ASSERT_EQ(preparedModel, nullptr);
+ return;
+ } else if (checkEarlyTermination(status)) {
+ ASSERT_EQ(preparedModel, nullptr);
+ return;
+ } else {
+ ASSERT_EQ(status, ErrorStatus::NONE);
+ ASSERT_NE(preparedModel, nullptr);
+ }
+ }
+
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+}
+
+TEST_P(CompilationCachingTest, CacheSavingAndRetrievalNonZeroOffset) {
+ // Create test HIDL model and compile.
+ const TestModel& testModel = createTestModel();
+ const Model model = createModel(testModel);
+ if (checkEarlyTermination(model)) return;
+ sp<IPreparedModel> preparedModel = nullptr;
+
+ // Save the compilation to cache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ uint8_t dummyBytes[] = {0, 0};
+ // Write a dummy integer to the cache.
+ // The driver should be able to handle non-empty cache and non-zero fd offset.
+ for (uint32_t i = 0; i < modelCache.size(); i++) {
+ ASSERT_EQ(write(modelCache[i].getNativeHandle()->data[0], &dummyBytes,
+ sizeof(dummyBytes)),
+ sizeof(dummyBytes));
+ }
+ for (uint32_t i = 0; i < dataCache.size(); i++) {
+ ASSERT_EQ(
+ write(dataCache[i].getNativeHandle()->data[0], &dummyBytes, sizeof(dummyBytes)),
+ sizeof(dummyBytes));
+ }
+ saveModelToCache(model, modelCache, dataCache);
+ }
+
+ // Retrieve preparedModel from cache.
+ {
+ preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ uint8_t dummyByte = 0;
+ // Advance the offset of each handle by one byte.
+ // The driver should be able to handle non-zero fd offset.
+ for (uint32_t i = 0; i < modelCache.size(); i++) {
+ ASSERT_GE(read(modelCache[i].getNativeHandle()->data[0], &dummyByte, 1), 0);
+ }
+ for (uint32_t i = 0; i < dataCache.size(); i++) {
+ ASSERT_GE(read(dataCache[i].getNativeHandle()->data[0], &dummyByte, 1), 0);
+ }
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (!mIsCachingSupported) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ ASSERT_EQ(preparedModel, nullptr);
+ return;
+ } else if (checkEarlyTermination(status)) {
+ ASSERT_EQ(preparedModel, nullptr);
+ return;
+ } else {
+ ASSERT_EQ(status, ErrorStatus::NONE);
+ ASSERT_NE(preparedModel, nullptr);
+ }
+ }
+
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+}
+
+TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
+ // Create test HIDL model and compile.
+ const TestModel& testModel = createTestModel();
+ const Model model = createModel(testModel);
+ if (checkEarlyTermination(model)) return;
+
+ // Test with number of model cache files greater than mNumModelCache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ // Pass an additional cache file for model cache.
+ mModelCache.push_back({mTmpCache});
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mModelCache.pop_back();
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Test with number of model cache files smaller than mNumModelCache.
+ if (mModelCache.size() > 0) {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ // Pop out the last cache file.
+ auto tmp = mModelCache.back();
+ mModelCache.pop_back();
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mModelCache.push_back(tmp);
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Test with number of data cache files greater than mNumDataCache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ // Pass an additional cache file for data cache.
+ mDataCache.push_back({mTmpCache});
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mDataCache.pop_back();
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Test with number of data cache files smaller than mNumDataCache.
+ if (mDataCache.size() > 0) {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ // Pop out the last cache file.
+ auto tmp = mDataCache.back();
+ mDataCache.pop_back();
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mDataCache.push_back(tmp);
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+}
+
+TEST_P(CompilationCachingTest, PrepareModelFromCacheInvalidNumCache) {
+ // Create test HIDL model and compile.
+ const TestModel& testModel = createTestModel();
+ const Model model = createModel(testModel);
+ if (checkEarlyTermination(model)) return;
+
+ // Save the compilation to cache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(model, modelCache, dataCache);
+ }
+
+ // Test with number of model cache files greater than mNumModelCache.
+ {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ mModelCache.push_back({mTmpCache});
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mModelCache.pop_back();
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::GENERAL_FAILURE) {
+ ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Test with number of model cache files smaller than mNumModelCache.
+ if (mModelCache.size() > 0) {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ auto tmp = mModelCache.back();
+ mModelCache.pop_back();
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mModelCache.push_back(tmp);
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::GENERAL_FAILURE) {
+ ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Test with number of data cache files greater than mNumDataCache.
+ {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ mDataCache.push_back({mTmpCache});
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mDataCache.pop_back();
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::GENERAL_FAILURE) {
+ ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Test with number of data cache files smaller than mNumDataCache.
+ if (mDataCache.size() > 0) {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ auto tmp = mDataCache.back();
+ mDataCache.pop_back();
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mDataCache.push_back(tmp);
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::GENERAL_FAILURE) {
+ ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+}
+
+TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
+ // Create test HIDL model and compile.
+ const TestModel& testModel = createTestModel();
+ const Model model = createModel(testModel);
+ if (checkEarlyTermination(model)) return;
+
+ // Go through each handle in model cache, test with NumFd greater than 1.
+ for (uint32_t i = 0; i < mNumModelCache; i++) {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ // Pass an invalid number of fds for handle i.
+ mModelCache[i].push_back(mTmpCache);
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mModelCache[i].pop_back();
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Go through each handle in model cache, test with NumFd equal to 0.
+ for (uint32_t i = 0; i < mNumModelCache; i++) {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ // Pass an invalid number of fds for handle i.
+ auto tmp = mModelCache[i].back();
+ mModelCache[i].pop_back();
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mModelCache[i].push_back(tmp);
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Go through each handle in data cache, test with NumFd greater than 1.
+ for (uint32_t i = 0; i < mNumDataCache; i++) {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ // Pass an invalid number of fds for handle i.
+ mDataCache[i].push_back(mTmpCache);
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mDataCache[i].pop_back();
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Go through each handle in data cache, test with NumFd equal to 0.
+ for (uint32_t i = 0; i < mNumDataCache; i++) {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ // Pass an invalid number of fds for handle i.
+ auto tmp = mDataCache[i].back();
+ mDataCache[i].pop_back();
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mDataCache[i].push_back(tmp);
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+}
+
+TEST_P(CompilationCachingTest, PrepareModelFromCacheInvalidNumFd) {
+ // Create test HIDL model and compile.
+ const TestModel& testModel = createTestModel();
+ const Model model = createModel(testModel);
+ if (checkEarlyTermination(model)) return;
+
+ // Save the compilation to cache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(model, modelCache, dataCache);
+ }
+
+ // Go through each handle in model cache, test with NumFd greater than 1.
+ for (uint32_t i = 0; i < mNumModelCache; i++) {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ mModelCache[i].push_back(mTmpCache);
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mModelCache[i].pop_back();
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::GENERAL_FAILURE) {
+ ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Go through each handle in model cache, test with NumFd equal to 0.
+ for (uint32_t i = 0; i < mNumModelCache; i++) {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ auto tmp = mModelCache[i].back();
+ mModelCache[i].pop_back();
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mModelCache[i].push_back(tmp);
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::GENERAL_FAILURE) {
+ ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Go through each handle in data cache, test with NumFd greater than 1.
+ for (uint32_t i = 0; i < mNumDataCache; i++) {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ mDataCache[i].push_back(mTmpCache);
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mDataCache[i].pop_back();
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::GENERAL_FAILURE) {
+ ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Go through each handle in data cache, test with NumFd equal to 0.
+ for (uint32_t i = 0; i < mNumDataCache; i++) {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ auto tmp = mDataCache[i].back();
+ mDataCache[i].pop_back();
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ mDataCache[i].push_back(tmp);
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::GENERAL_FAILURE) {
+ ASSERT_EQ(status, ErrorStatus::INVALID_ARGUMENT);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+}
+
+TEST_P(CompilationCachingTest, SaveToCacheInvalidAccessMode) {
+ // Create test HIDL model and compile.
+ const TestModel& testModel = createTestModel();
+ const Model model = createModel(testModel);
+ if (checkEarlyTermination(model)) return;
+ std::vector<AccessMode> modelCacheMode(mNumModelCache, AccessMode::READ_WRITE);
+ std::vector<AccessMode> dataCacheMode(mNumDataCache, AccessMode::READ_WRITE);
+
+ // Go through each handle in model cache, test with invalid access mode.
+ for (uint32_t i = 0; i < mNumModelCache; i++) {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ modelCacheMode[i] = AccessMode::READ_ONLY;
+ createCacheHandles(mModelCache, modelCacheMode, &modelCache);
+ createCacheHandles(mDataCache, dataCacheMode, &dataCache);
+ modelCacheMode[i] = AccessMode::READ_WRITE;
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Go through each handle in data cache, test with invalid access mode.
+ for (uint32_t i = 0; i < mNumDataCache; i++) {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ dataCacheMode[i] = AccessMode::READ_ONLY;
+ createCacheHandles(mModelCache, modelCacheMode, &modelCache);
+ createCacheHandles(mDataCache, dataCacheMode, &dataCache);
+ dataCacheMode[i] = AccessMode::READ_WRITE;
+ sp<IPreparedModel> preparedModel = nullptr;
+ saveModelToCache(model, modelCache, dataCache, &preparedModel);
+ ASSERT_NE(preparedModel, nullptr);
+ // Execute and verify results.
+ EvaluatePreparedModel(preparedModel, testModel,
+ /*testDynamicOutputShape=*/false);
+ // Check if prepareModelFromCache fails.
+ preparedModel = nullptr;
+ ErrorStatus status;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ if (status != ErrorStatus::INVALID_ARGUMENT) {
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ }
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+}
+
+TEST_P(CompilationCachingTest, PrepareModelFromCacheInvalidAccessMode) {
+ // Create test HIDL model and compile.
+ const TestModel& testModel = createTestModel();
+ const Model model = createModel(testModel);
+ if (checkEarlyTermination(model)) return;
+ std::vector<AccessMode> modelCacheMode(mNumModelCache, AccessMode::READ_WRITE);
+ std::vector<AccessMode> dataCacheMode(mNumDataCache, AccessMode::READ_WRITE);
+
+ // Save the compilation to cache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(model, modelCache, dataCache);
+ }
+
+ // Go through each handle in model cache, test with invalid access mode.
+ for (uint32_t i = 0; i < mNumModelCache; i++) {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ modelCacheMode[i] = AccessMode::WRITE_ONLY;
+ createCacheHandles(mModelCache, modelCacheMode, &modelCache);
+ createCacheHandles(mDataCache, dataCacheMode, &dataCache);
+ modelCacheMode[i] = AccessMode::READ_WRITE;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+
+ // Go through each handle in data cache, test with invalid access mode.
+ for (uint32_t i = 0; i < mNumDataCache; i++) {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ dataCacheMode[i] = AccessMode::WRITE_ONLY;
+ createCacheHandles(mModelCache, modelCacheMode, &modelCache);
+ createCacheHandles(mDataCache, dataCacheMode, &dataCache);
+ dataCacheMode[i] = AccessMode::READ_WRITE;
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+}
+
+// Copy file contents between file groups.
+// The outer vector corresponds to handles and the inner vector is for fds held by each handle.
+// The outer vector sizes must match and the inner vectors must have size = 1.
+static void copyCacheFiles(const std::vector<std::vector<std::string>>& from,
+ const std::vector<std::vector<std::string>>& to) {
+ constexpr size_t kBufferSize = 1000000;
+ uint8_t buffer[kBufferSize];
+
+ ASSERT_EQ(from.size(), to.size());
+ for (uint32_t i = 0; i < from.size(); i++) {
+ ASSERT_EQ(from[i].size(), 1u);
+ ASSERT_EQ(to[i].size(), 1u);
+ int fromFd = open(from[i][0].c_str(), O_RDONLY);
+ int toFd = open(to[i][0].c_str(), O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
+ ASSERT_GE(fromFd, 0);
+ ASSERT_GE(toFd, 0);
+
+ ssize_t readBytes;
+ while ((readBytes = read(fromFd, &buffer, kBufferSize)) > 0) {
+ ASSERT_EQ(write(toFd, &buffer, readBytes), readBytes);
+ }
+ ASSERT_GE(readBytes, 0);
+
+ close(fromFd);
+ close(toFd);
+ }
+}
+
+// Number of operations in the large test model.
+constexpr uint32_t kLargeModelSize = 100;
+constexpr uint32_t kNumIterationsTOCTOU = 100;
+
+TEST_P(CompilationCachingTest, SaveToCache_TOCTOU) {
+ if (!mIsCachingSupported) return;
+
+ // Create test models and check if fully supported by the service.
+ const TestModel testModelMul = createLargeTestModel(OperationType::MUL, kLargeModelSize);
+ const Model modelMul = createModel(testModelMul);
+ if (checkEarlyTermination(modelMul)) return;
+ const TestModel testModelAdd = createLargeTestModel(OperationType::ADD, kLargeModelSize);
+ const Model modelAdd = createModel(testModelAdd);
+ if (checkEarlyTermination(modelAdd)) return;
+
+ // Save the modelMul compilation to cache.
+ auto modelCacheMul = mModelCache;
+ for (auto& cache : modelCacheMul) {
+ cache[0].append("_mul");
+ }
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(modelCacheMul, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(modelMul, modelCache, dataCache);
+ }
+
+ // Use a different token for modelAdd.
+ mToken[0]++;
+
+ // This test is probabilistic, so we run it multiple times.
+ for (uint32_t i = 0; i < kNumIterationsTOCTOU; i++) {
+ // Save the modelAdd compilation to cache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+
+ // Spawn a thread to copy the cache content concurrently while saving to cache.
+ std::thread thread(copyCacheFiles, std::cref(modelCacheMul), std::cref(mModelCache));
+ saveModelToCache(modelAdd, modelCache, dataCache);
+ thread.join();
+ }
+
+ // Retrieve preparedModel from cache.
+ {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+
+ // The preparation may fail or succeed, but must not crash. If the preparation succeeds,
+ // the prepared model must be executed with the correct result and not crash.
+ if (status != ErrorStatus::NONE) {
+ ASSERT_EQ(preparedModel, nullptr);
+ } else {
+ ASSERT_NE(preparedModel, nullptr);
+ EvaluatePreparedModel(preparedModel, testModelAdd,
+ /*testDynamicOutputShape=*/false);
+ }
+ }
+ }
+}
+
+TEST_P(CompilationCachingTest, PrepareFromCache_TOCTOU) {
+ if (!mIsCachingSupported) return;
+
+ // Create test models and check if fully supported by the service.
+ const TestModel testModelMul = createLargeTestModel(OperationType::MUL, kLargeModelSize);
+ const Model modelMul = createModel(testModelMul);
+ if (checkEarlyTermination(modelMul)) return;
+ const TestModel testModelAdd = createLargeTestModel(OperationType::ADD, kLargeModelSize);
+ const Model modelAdd = createModel(testModelAdd);
+ if (checkEarlyTermination(modelAdd)) return;
+
+ // Save the modelMul compilation to cache.
+ auto modelCacheMul = mModelCache;
+ for (auto& cache : modelCacheMul) {
+ cache[0].append("_mul");
+ }
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(modelCacheMul, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(modelMul, modelCache, dataCache);
+ }
+
+ // Use a different token for modelAdd.
+ mToken[0]++;
+
+ // This test is probabilistic, so we run it multiple times.
+ for (uint32_t i = 0; i < kNumIterationsTOCTOU; i++) {
+ // Save the modelAdd compilation to cache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(modelAdd, modelCache, dataCache);
+ }
+
+ // Retrieve preparedModel from cache.
+ {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+
+ // Spawn a thread to copy the cache content concurrently while preparing from cache.
+ std::thread thread(copyCacheFiles, std::cref(modelCacheMul), std::cref(mModelCache));
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ thread.join();
+
+ // The preparation may fail or succeed, but must not crash. If the preparation succeeds,
+ // the prepared model must be executed with the correct result and not crash.
+ if (status != ErrorStatus::NONE) {
+ ASSERT_EQ(preparedModel, nullptr);
+ } else {
+ ASSERT_NE(preparedModel, nullptr);
+ EvaluatePreparedModel(preparedModel, testModelAdd,
+ /*testDynamicOutputShape=*/false);
+ }
+ }
+ }
+}
+
+TEST_P(CompilationCachingTest, ReplaceSecuritySensitiveCache) {
+ if (!mIsCachingSupported) return;
+
+ // Create test models and check if fully supported by the service.
+ const TestModel testModelMul = createLargeTestModel(OperationType::MUL, kLargeModelSize);
+ const Model modelMul = createModel(testModelMul);
+ if (checkEarlyTermination(modelMul)) return;
+ const TestModel testModelAdd = createLargeTestModel(OperationType::ADD, kLargeModelSize);
+ const Model modelAdd = createModel(testModelAdd);
+ if (checkEarlyTermination(modelAdd)) return;
+
+ // Save the modelMul compilation to cache.
+ auto modelCacheMul = mModelCache;
+ for (auto& cache : modelCacheMul) {
+ cache[0].append("_mul");
+ }
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(modelCacheMul, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(modelMul, modelCache, dataCache);
+ }
+
+ // Use a different token for modelAdd.
+ mToken[0]++;
+
+ // Save the modelAdd compilation to cache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(modelAdd, modelCache, dataCache);
+ }
+
+ // Replace the model cache of modelAdd with modelMul.
+ copyCacheFiles(modelCacheMul, mModelCache);
+
+ // Retrieve the preparedModel from cache, expect failure.
+ {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ ASSERT_EQ(preparedModel, nullptr);
+ }
+}
+
+static const auto kNamedDeviceChoices = testing::ValuesIn(getNamedDevices());
+static const auto kOperandTypeChoices =
+ testing::Values(OperandType::TENSOR_FLOAT32, OperandType::TENSOR_QUANT8_ASYMM);
+
+std::string printCompilationCachingTest(
+ const testing::TestParamInfo<CompilationCachingTestParam>& info) {
+ const auto& [namedDevice, operandType] = info.param;
+ const std::string type = (operandType == OperandType::TENSOR_FLOAT32 ? "float32" : "quant8");
+ return gtestCompliantName(getName(namedDevice) + "_" + type);
+}
+
+INSTANTIATE_TEST_CASE_P(TestCompilationCaching, CompilationCachingTest,
+ testing::Combine(kNamedDeviceChoices, kOperandTypeChoices),
+ printCompilationCachingTest);
+
+using CompilationCachingSecurityTestParam = std::tuple<NamedDevice, OperandType, uint32_t>;
+
+class CompilationCachingSecurityTest
+ : public CompilationCachingTestBase,
+ public testing::WithParamInterface<CompilationCachingSecurityTestParam> {
+ protected:
+ CompilationCachingSecurityTest()
+ : CompilationCachingTestBase(getData(std::get<NamedDevice>(GetParam())),
+ std::get<OperandType>(GetParam())) {}
+
+ void SetUp() {
+ CompilationCachingTestBase::SetUp();
+ generator.seed(kSeed);
+ }
+
+ // Get a random integer within a closed range [lower, upper].
+ template <typename T>
+ T getRandomInt(T lower, T upper) {
+ std::uniform_int_distribution<T> dis(lower, upper);
+ return dis(generator);
+ }
+
+ // Randomly flip one single bit of the cache entry.
+ void flipOneBitOfCache(const std::string& filename, bool* skip) {
+ FILE* pFile = fopen(filename.c_str(), "r+");
+ ASSERT_EQ(fseek(pFile, 0, SEEK_END), 0);
+ long int fileSize = ftell(pFile);
+ if (fileSize == 0) {
+ fclose(pFile);
+ *skip = true;
+ return;
+ }
+ ASSERT_EQ(fseek(pFile, getRandomInt(0l, fileSize - 1), SEEK_SET), 0);
+ int readByte = fgetc(pFile);
+ ASSERT_NE(readByte, EOF);
+ ASSERT_EQ(fseek(pFile, -1, SEEK_CUR), 0);
+ ASSERT_NE(fputc(static_cast<uint8_t>(readByte) ^ (1U << getRandomInt(0, 7)), pFile), EOF);
+ fclose(pFile);
+ *skip = false;
+ }
+
+ // Randomly append bytes to the cache entry.
+ void appendBytesToCache(const std::string& filename, bool* skip) {
+ FILE* pFile = fopen(filename.c_str(), "a");
+ uint32_t appendLength = getRandomInt(1, 256);
+ for (uint32_t i = 0; i < appendLength; i++) {
+ ASSERT_NE(fputc(getRandomInt<uint8_t>(0, 255), pFile), EOF);
+ }
+ fclose(pFile);
+ *skip = false;
+ }
+
+ enum class ExpectedResult { GENERAL_FAILURE, NOT_CRASH };
+
+ // Test if the driver behaves as expected when given corrupted cache or token.
+ // The modifier will be invoked after save to cache but before prepare from cache.
+ // The modifier accepts one pointer argument "skip" as the returning value, indicating
+ // whether the test should be skipped or not.
+ void testCorruptedCache(ExpectedResult expected, std::function<void(bool*)> modifier) {
+ const TestModel& testModel = createTestModel();
+ const Model model = createModel(testModel);
+ if (checkEarlyTermination(model)) return;
+
+ // Save the compilation to cache.
+ {
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ saveModelToCache(model, modelCache, dataCache);
+ }
+
+ bool skip = false;
+ modifier(&skip);
+ if (skip) return;
+
+ // Retrieve preparedModel from cache.
+ {
+ sp<IPreparedModel> preparedModel = nullptr;
+ ErrorStatus status;
+ hidl_vec<hidl_handle> modelCache, dataCache;
+ createCacheHandles(mModelCache, AccessMode::READ_WRITE, &modelCache);
+ createCacheHandles(mDataCache, AccessMode::READ_WRITE, &dataCache);
+ prepareModelFromCache(modelCache, dataCache, &preparedModel, &status);
+
+ switch (expected) {
+ case ExpectedResult::GENERAL_FAILURE:
+ ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
+ ASSERT_EQ(preparedModel, nullptr);
+ break;
+ case ExpectedResult::NOT_CRASH:
+ ASSERT_EQ(preparedModel == nullptr, status != ErrorStatus::NONE);
+ break;
+ default:
+ FAIL();
+ }
+ }
+ }
+
+ const uint32_t kSeed = std::get<uint32_t>(GetParam());
+ std::mt19937 generator;
+};
+
+TEST_P(CompilationCachingSecurityTest, CorruptedModelCache) {
+ if (!mIsCachingSupported) return;
+ for (uint32_t i = 0; i < mNumModelCache; i++) {
+ testCorruptedCache(ExpectedResult::GENERAL_FAILURE,
+ [this, i](bool* skip) { flipOneBitOfCache(mModelCache[i][0], skip); });
+ }
+}
+
+TEST_P(CompilationCachingSecurityTest, WrongLengthModelCache) {
+ if (!mIsCachingSupported) return;
+ for (uint32_t i = 0; i < mNumModelCache; i++) {
+ testCorruptedCache(ExpectedResult::GENERAL_FAILURE,
+ [this, i](bool* skip) { appendBytesToCache(mModelCache[i][0], skip); });
+ }
+}
+
+TEST_P(CompilationCachingSecurityTest, CorruptedDataCache) {
+ if (!mIsCachingSupported) return;
+ for (uint32_t i = 0; i < mNumDataCache; i++) {
+ testCorruptedCache(ExpectedResult::NOT_CRASH,
+ [this, i](bool* skip) { flipOneBitOfCache(mDataCache[i][0], skip); });
+ }
+}
+
+TEST_P(CompilationCachingSecurityTest, WrongLengthDataCache) {
+ if (!mIsCachingSupported) return;
+ for (uint32_t i = 0; i < mNumDataCache; i++) {
+ testCorruptedCache(ExpectedResult::NOT_CRASH,
+ [this, i](bool* skip) { appendBytesToCache(mDataCache[i][0], skip); });
+ }
+}
+
+TEST_P(CompilationCachingSecurityTest, WrongToken) {
+ if (!mIsCachingSupported) return;
+ testCorruptedCache(ExpectedResult::GENERAL_FAILURE, [this](bool* skip) {
+ // Randomly flip one single bit in mToken.
+ uint32_t ind =
+ getRandomInt(0u, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN) - 1);
+ mToken[ind] ^= (1U << getRandomInt(0, 7));
+ *skip = false;
+ });
+}
+
+std::string printCompilationCachingSecurityTest(
+ const testing::TestParamInfo<CompilationCachingSecurityTestParam>& info) {
+ const auto& [namedDevice, operandType, seed] = info.param;
+ const std::string type = (operandType == OperandType::TENSOR_FLOAT32 ? "float32" : "quant8");
+ return gtestCompliantName(getName(namedDevice) + "_" + type + "_" + std::to_string(seed));
+}
+
+INSTANTIATE_TEST_CASE_P(TestCompilationCaching, CompilationCachingSecurityTest,
+ testing::Combine(kNamedDeviceChoices, kOperandTypeChoices,
+ testing::Range(0U, 10U)),
+ printCompilationCachingSecurityTest);
+
+} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp
new file mode 100644
index 0000000..2beec98
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.cpp
@@ -0,0 +1,408 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "GeneratedTestHarness.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.0/IDevice.h>
+#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
+#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
+#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <android/hardware/neuralnetworks/1.1/IDevice.h>
+#include <android/hardware/neuralnetworks/1.2/IDevice.h>
+#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
+#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
+#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
+#include <android/hidl/allocator/1.0/IAllocator.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+#include <hidlmemory/mapping.h>
+
+#include <gtest/gtest.h>
+#include <algorithm>
+#include <iostream>
+#include <numeric>
+
+#include "1.0/Utils.h"
+#include "1.2/Callbacks.h"
+#include "ExecutionBurstController.h"
+#include "MemoryUtils.h"
+#include "TestHarness.h"
+#include "Utils.h"
+#include "VtsHalNeuralnetworks.h"
+
+namespace android::hardware::neuralnetworks::V1_2::vts::functional {
+
+using namespace test_helper;
+using hidl::memory::V1_0::IMemory;
+using implementation::ExecutionCallback;
+using implementation::PreparedModelCallback;
+using V1_0::DataLocation;
+using V1_0::ErrorStatus;
+using V1_0::OperandLifeTime;
+using V1_0::Request;
+using V1_1::ExecutionPreference;
+using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
+
+enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
+
+Model createModel(const TestModel& testModel) {
+ // Model operands.
+ hidl_vec<Operand> operands(testModel.operands.size());
+ size_t constCopySize = 0, constRefSize = 0;
+ for (uint32_t i = 0; i < testModel.operands.size(); i++) {
+ const auto& op = testModel.operands[i];
+
+ DataLocation loc = {};
+ if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
+ loc = {.poolIndex = 0,
+ .offset = static_cast<uint32_t>(constCopySize),
+ .length = static_cast<uint32_t>(op.data.size())};
+ constCopySize += op.data.alignedSize();
+ } else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
+ loc = {.poolIndex = 0,
+ .offset = static_cast<uint32_t>(constRefSize),
+ .length = static_cast<uint32_t>(op.data.size())};
+ constRefSize += op.data.alignedSize();
+ }
+
+ Operand::ExtraParams extraParams;
+ if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
+ extraParams.channelQuant(SymmPerChannelQuantParams{
+ .scales = op.channelQuant.scales, .channelDim = op.channelQuant.channelDim});
+ }
+
+ operands[i] = {.type = static_cast<OperandType>(op.type),
+ .dimensions = op.dimensions,
+ .numberOfConsumers = op.numberOfConsumers,
+ .scale = op.scale,
+ .zeroPoint = op.zeroPoint,
+ .lifetime = static_cast<OperandLifeTime>(op.lifetime),
+ .location = loc,
+ .extraParams = std::move(extraParams)};
+ }
+
+ // Model operations.
+ hidl_vec<Operation> operations(testModel.operations.size());
+ std::transform(testModel.operations.begin(), testModel.operations.end(), operations.begin(),
+ [](const TestOperation& op) -> Operation {
+ return {.type = static_cast<OperationType>(op.type),
+ .inputs = op.inputs,
+ .outputs = op.outputs};
+ });
+
+ // Constant copies.
+ hidl_vec<uint8_t> operandValues(constCopySize);
+ for (uint32_t i = 0; i < testModel.operands.size(); i++) {
+ const auto& op = testModel.operands[i];
+ if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
+ const uint8_t* begin = op.data.get<uint8_t>();
+ const uint8_t* end = begin + op.data.size();
+ std::copy(begin, end, operandValues.data() + operands[i].location.offset);
+ }
+ }
+
+ // Shared memory.
+ hidl_vec<hidl_memory> pools = {};
+ if (constRefSize > 0) {
+ hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize));
+ CHECK_NE(pools[0].size(), 0u);
+
+ // load data
+ sp<IMemory> mappedMemory = mapMemory(pools[0]);
+ CHECK(mappedMemory.get() != nullptr);
+ uint8_t* mappedPtr =
+ reinterpret_cast<uint8_t*>(static_cast<void*>(mappedMemory->getPointer()));
+ CHECK(mappedPtr != nullptr);
+
+ for (uint32_t i = 0; i < testModel.operands.size(); i++) {
+ const auto& op = testModel.operands[i];
+ if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
+ const uint8_t* begin = op.data.get<uint8_t>();
+ const uint8_t* end = begin + op.data.size();
+ std::copy(begin, end, mappedPtr + operands[i].location.offset);
+ }
+ }
+ }
+
+ return {.operands = std::move(operands),
+ .operations = std::move(operations),
+ .inputIndexes = testModel.inputIndexes,
+ .outputIndexes = testModel.outputIndexes,
+ .operandValues = std::move(operandValues),
+ .pools = std::move(pools),
+ .relaxComputationFloat32toFloat16 = testModel.isRelaxed};
+}
+
+static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) {
+ const auto byteSize = testModel.operands[testModel.outputIndexes[index]].data.size();
+ return byteSize > 1u;
+}
+
+static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
+ auto& length = request->outputs[outputIndex].location.length;
+ ASSERT_GT(length, 1u);
+ length -= 1u;
+}
+
+static void makeOutputDimensionsUnspecified(Model* model) {
+ for (auto i : model->outputIndexes) {
+ auto& dims = model->operands[i].dimensions;
+ std::fill(dims.begin(), dims.end(), 0);
+ }
+}
+
+static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
+ const Request& request, MeasureTiming measure,
+ sp<ExecutionCallback>& callback) {
+ return preparedModel->execute_1_2(request, measure, callback);
+}
+static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
+ const Request& request, MeasureTiming measure,
+ hidl_vec<OutputShape>* outputShapes,
+ Timing* timing) {
+ ErrorStatus result;
+ Return<void> ret = preparedModel->executeSynchronously(
+ request, measure,
+ [&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
+ const Timing& time) {
+ result = error;
+ *outputShapes = shapes;
+ *timing = time;
+ });
+ if (!ret.isOk()) {
+ return ErrorStatus::GENERAL_FAILURE;
+ }
+ return result;
+}
+static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
+ const sp<IPreparedModel>& preparedModel) {
+ return android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true);
+}
+enum class Executor { ASYNC, SYNC, BURST };
+
+void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
+ Executor executor, MeasureTiming measure, OutputType outputType) {
+ // If output0 does not have size larger than one byte, we can not test with insufficient buffer.
+ if (outputType == OutputType::INSUFFICIENT && !isOutputSizeGreaterThanOne(testModel, 0)) {
+ return;
+ }
+
+ Request request = createRequest(testModel);
+ if (outputType == OutputType::INSUFFICIENT) {
+ makeOutputInsufficientSize(/*outputIndex=*/0, &request);
+ }
+
+ ErrorStatus executionStatus;
+ hidl_vec<OutputShape> outputShapes;
+ Timing timing;
+ switch (executor) {
+ case Executor::ASYNC: {
+ SCOPED_TRACE("asynchronous");
+
+ // launch execution
+ sp<ExecutionCallback> executionCallback = new ExecutionCallback();
+ Return<ErrorStatus> executionLaunchStatus =
+ ExecutePreparedModel(preparedModel, request, measure, executionCallback);
+ ASSERT_TRUE(executionLaunchStatus.isOk());
+ EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
+
+ // retrieve execution status
+ executionCallback->wait();
+ executionStatus = executionCallback->getStatus();
+ outputShapes = executionCallback->getOutputShapes();
+ timing = executionCallback->getTiming();
+
+ break;
+ }
+ case Executor::SYNC: {
+ SCOPED_TRACE("synchronous");
+
+ // execute
+ Return<ErrorStatus> executionReturnStatus =
+ ExecutePreparedModel(preparedModel, request, measure, &outputShapes, &timing);
+ ASSERT_TRUE(executionReturnStatus.isOk());
+ executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
+
+ break;
+ }
+ case Executor::BURST: {
+ SCOPED_TRACE("burst");
+
+ // create burst
+ const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
+ CreateBurst(preparedModel);
+ ASSERT_NE(nullptr, controller.get());
+
+ // create memory keys
+ std::vector<intptr_t> keys(request.pools.size());
+ for (size_t i = 0; i < keys.size(); ++i) {
+ keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
+ }
+
+ // execute burst
+ std::tie(executionStatus, outputShapes, timing) =
+ controller->compute(request, measure, keys);
+
+ break;
+ }
+ }
+
+ if (outputType != OutputType::FULLY_SPECIFIED &&
+ executionStatus == ErrorStatus::GENERAL_FAILURE) {
+ LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
+ "execute model that it does not support.";
+ std::cout << "[ ] Early termination of test because vendor service cannot "
+ "execute model that it does not support."
+ << std::endl;
+ GTEST_SKIP();
+ }
+ if (measure == MeasureTiming::NO) {
+ EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
+ EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
+ } else {
+ if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
+ EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
+ }
+ }
+
+ switch (outputType) {
+ case OutputType::FULLY_SPECIFIED:
+ // If the model output operands are fully specified, outputShapes must be either
+ // either empty, or have the same number of elements as the number of outputs.
+ ASSERT_EQ(ErrorStatus::NONE, executionStatus);
+ ASSERT_TRUE(outputShapes.size() == 0 ||
+ outputShapes.size() == testModel.outputIndexes.size());
+ break;
+ case OutputType::UNSPECIFIED:
+ // If the model output operands are not fully specified, outputShapes must have
+ // the same number of elements as the number of outputs.
+ ASSERT_EQ(ErrorStatus::NONE, executionStatus);
+ ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
+ break;
+ case OutputType::INSUFFICIENT:
+ ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
+ ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
+ ASSERT_FALSE(outputShapes[0].isSufficient);
+ return;
+ }
+
+ // Go through all outputs, check returned output shapes.
+ for (uint32_t i = 0; i < outputShapes.size(); i++) {
+ EXPECT_TRUE(outputShapes[i].isSufficient);
+ const auto& expect = testModel.operands[testModel.outputIndexes[i]].dimensions;
+ const std::vector<uint32_t> actual = outputShapes[i].dimensions;
+ EXPECT_EQ(expect, actual);
+ }
+
+ // Retrieve execution results.
+ const std::vector<TestBuffer> outputs = getOutputBuffers(request);
+
+ // We want "close-enough" results.
+ checkResults(testModel, outputs);
+}
+
+void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
+ bool testDynamicOutputShape) {
+ if (testDynamicOutputShape) {
+ EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
+ OutputType::UNSPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
+ OutputType::UNSPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
+ OutputType::UNSPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
+ OutputType::UNSPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
+ OutputType::UNSPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
+ OutputType::UNSPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
+ OutputType::INSUFFICIENT);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
+ OutputType::INSUFFICIENT);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
+ OutputType::INSUFFICIENT);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
+ OutputType::INSUFFICIENT);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
+ OutputType::INSUFFICIENT);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
+ OutputType::INSUFFICIENT);
+ } else {
+ EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
+ OutputType::FULLY_SPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
+ OutputType::FULLY_SPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
+ OutputType::FULLY_SPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
+ OutputType::FULLY_SPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
+ OutputType::FULLY_SPECIFIED);
+ EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
+ OutputType::FULLY_SPECIFIED);
+ }
+}
+
+void Execute(const sp<IDevice>& device, const TestModel& testModel, bool testDynamicOutputShape) {
+ Model model = createModel(testModel);
+ if (testDynamicOutputShape) {
+ makeOutputDimensionsUnspecified(&model);
+ }
+
+ sp<IPreparedModel> preparedModel;
+ createPreparedModel(device, model, &preparedModel);
+ if (preparedModel == nullptr) return;
+
+ EvaluatePreparedModel(preparedModel, testModel, testDynamicOutputShape);
+}
+
+void GeneratedTestBase::SetUp() {
+ testing::TestWithParam<GeneratedTestParam>::SetUp();
+ ASSERT_NE(kDevice, nullptr);
+}
+
+std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
+ return TestModelManager::get().getTestModels(filter);
+}
+
+std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
+ const auto& [namedDevice, namedModel] = info.param;
+ return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
+}
+
+// Tag for the generated tests
+class GeneratedTest : public GeneratedTestBase {};
+
+// Tag for the dynamic output shape tests
+class DynamicOutputShapeTest : public GeneratedTest {};
+
+TEST_P(GeneratedTest, Test) {
+ Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/false);
+}
+
+TEST_P(DynamicOutputShapeTest, Test) {
+ Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/true);
+}
+
+INSTANTIATE_GENERATED_TEST(GeneratedTest,
+ [](const TestModel& testModel) { return !testModel.expectFailure; });
+
+INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest,
+ [](const TestModel& testModel) { return !testModel.expectFailure; });
+
+} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.h b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.h
new file mode 100644
index 0000000..dfc980c
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/GeneratedTestHarness.h
@@ -0,0 +1,65 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_NEURALNETWORKS_V1_2_GENERATED_TEST_HARNESS_H
+#define ANDROID_HARDWARE_NEURALNETWORKS_V1_2_GENERATED_TEST_HARNESS_H
+
+#include <android/hardware/neuralnetworks/1.2/IDevice.h>
+#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
+#include <android/hardware/neuralnetworks/1.2/types.h>
+#include <functional>
+#include <vector>
+#include "1.0/Utils.h"
+#include "TestHarness.h"
+#include "VtsHalNeuralnetworks.h"
+
+namespace android::hardware::neuralnetworks::V1_2::vts::functional {
+
+using NamedModel = Named<const test_helper::TestModel*>;
+using GeneratedTestParam = std::tuple<NamedDevice, NamedModel>;
+
+class GeneratedTestBase : public testing::TestWithParam<GeneratedTestParam> {
+ protected:
+ void SetUp() override;
+ const sp<IDevice> kDevice = getData(std::get<NamedDevice>(GetParam()));
+ const test_helper::TestModel& kTestModel = *getData(std::get<NamedModel>(GetParam()));
+};
+
+using FilterFn = std::function<bool(const test_helper::TestModel&)>;
+std::vector<NamedModel> getNamedModels(const FilterFn& filter);
+
+std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info);
+
+#define INSTANTIATE_GENERATED_TEST(TestSuite, filter) \
+ INSTANTIATE_TEST_SUITE_P(TestGenerated, TestSuite, \
+ testing::Combine(testing::ValuesIn(getNamedDevices()), \
+ testing::ValuesIn(getNamedModels(filter))), \
+ printGeneratedTest)
+
+// Tag for the validation tests, instantiated in VtsHalNeuralnetworks.cpp.
+// TODO: Clean up the hierarchy for ValidationTest.
+class ValidationTest : public GeneratedTestBase {};
+
+Model createModel(const test_helper::TestModel& testModel);
+
+void PrepareModel(const sp<IDevice>& device, const Model& model, sp<IPreparedModel>* preparedModel);
+
+void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel,
+ const test_helper::TestModel& testModel, bool testDynamicOutputShape);
+
+} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
+
+#endif // ANDROID_HARDWARE_NEURALNETWORKS_V1_2_GENERATED_TEST_HARNESS_H
diff --git a/neuralnetworks/1.3/vts/functional/TestAssertions.cpp b/neuralnetworks/1.3/vts/functional/TestAssertions.cpp
new file mode 100644
index 0000000..a0aa3c3
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/TestAssertions.cpp
@@ -0,0 +1,141 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <android/hardware/neuralnetworks/1.2/types.h>
+#include "TestHarness.h"
+
+namespace android::hardware::neuralnetworks::V1_2 {
+
+// Make sure that the HIDL enums are compatible with the values defined in
+// frameworks/ml/nn/tools/test_generator/test_harness/include/TestHarness.h.
+using namespace test_helper;
+#define CHECK_TEST_ENUM(EnumType, enumValue) \
+ static_assert(static_cast<EnumType>(Test##EnumType::enumValue) == EnumType::enumValue)
+
+CHECK_TEST_ENUM(OperandType, FLOAT32);
+CHECK_TEST_ENUM(OperandType, INT32);
+CHECK_TEST_ENUM(OperandType, UINT32);
+CHECK_TEST_ENUM(OperandType, TENSOR_FLOAT32);
+CHECK_TEST_ENUM(OperandType, TENSOR_INT32);
+CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_ASYMM);
+CHECK_TEST_ENUM(OperandType, BOOL);
+CHECK_TEST_ENUM(OperandType, TENSOR_QUANT16_SYMM);
+CHECK_TEST_ENUM(OperandType, TENSOR_FLOAT16);
+CHECK_TEST_ENUM(OperandType, TENSOR_BOOL8);
+CHECK_TEST_ENUM(OperandType, FLOAT16);
+CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_SYMM_PER_CHANNEL);
+CHECK_TEST_ENUM(OperandType, TENSOR_QUANT16_ASYMM);
+CHECK_TEST_ENUM(OperandType, TENSOR_QUANT8_SYMM);
+
+CHECK_TEST_ENUM(OperationType, ADD);
+CHECK_TEST_ENUM(OperationType, AVERAGE_POOL_2D);
+CHECK_TEST_ENUM(OperationType, CONCATENATION);
+CHECK_TEST_ENUM(OperationType, CONV_2D);
+CHECK_TEST_ENUM(OperationType, DEPTHWISE_CONV_2D);
+CHECK_TEST_ENUM(OperationType, DEPTH_TO_SPACE);
+CHECK_TEST_ENUM(OperationType, DEQUANTIZE);
+CHECK_TEST_ENUM(OperationType, EMBEDDING_LOOKUP);
+CHECK_TEST_ENUM(OperationType, FLOOR);
+CHECK_TEST_ENUM(OperationType, FULLY_CONNECTED);
+CHECK_TEST_ENUM(OperationType, HASHTABLE_LOOKUP);
+CHECK_TEST_ENUM(OperationType, L2_NORMALIZATION);
+CHECK_TEST_ENUM(OperationType, L2_POOL_2D);
+CHECK_TEST_ENUM(OperationType, LOCAL_RESPONSE_NORMALIZATION);
+CHECK_TEST_ENUM(OperationType, LOGISTIC);
+CHECK_TEST_ENUM(OperationType, LSH_PROJECTION);
+CHECK_TEST_ENUM(OperationType, LSTM);
+CHECK_TEST_ENUM(OperationType, MAX_POOL_2D);
+CHECK_TEST_ENUM(OperationType, MUL);
+CHECK_TEST_ENUM(OperationType, RELU);
+CHECK_TEST_ENUM(OperationType, RELU1);
+CHECK_TEST_ENUM(OperationType, RELU6);
+CHECK_TEST_ENUM(OperationType, RESHAPE);
+CHECK_TEST_ENUM(OperationType, RESIZE_BILINEAR);
+CHECK_TEST_ENUM(OperationType, RNN);
+CHECK_TEST_ENUM(OperationType, SOFTMAX);
+CHECK_TEST_ENUM(OperationType, SPACE_TO_DEPTH);
+CHECK_TEST_ENUM(OperationType, SVDF);
+CHECK_TEST_ENUM(OperationType, TANH);
+CHECK_TEST_ENUM(OperationType, BATCH_TO_SPACE_ND);
+CHECK_TEST_ENUM(OperationType, DIV);
+CHECK_TEST_ENUM(OperationType, MEAN);
+CHECK_TEST_ENUM(OperationType, PAD);
+CHECK_TEST_ENUM(OperationType, SPACE_TO_BATCH_ND);
+CHECK_TEST_ENUM(OperationType, SQUEEZE);
+CHECK_TEST_ENUM(OperationType, STRIDED_SLICE);
+CHECK_TEST_ENUM(OperationType, SUB);
+CHECK_TEST_ENUM(OperationType, TRANSPOSE);
+CHECK_TEST_ENUM(OperationType, ABS);
+CHECK_TEST_ENUM(OperationType, ARGMAX);
+CHECK_TEST_ENUM(OperationType, ARGMIN);
+CHECK_TEST_ENUM(OperationType, AXIS_ALIGNED_BBOX_TRANSFORM);
+CHECK_TEST_ENUM(OperationType, BIDIRECTIONAL_SEQUENCE_LSTM);
+CHECK_TEST_ENUM(OperationType, BIDIRECTIONAL_SEQUENCE_RNN);
+CHECK_TEST_ENUM(OperationType, BOX_WITH_NMS_LIMIT);
+CHECK_TEST_ENUM(OperationType, CAST);
+CHECK_TEST_ENUM(OperationType, CHANNEL_SHUFFLE);
+CHECK_TEST_ENUM(OperationType, DETECTION_POSTPROCESSING);
+CHECK_TEST_ENUM(OperationType, EQUAL);
+CHECK_TEST_ENUM(OperationType, EXP);
+CHECK_TEST_ENUM(OperationType, EXPAND_DIMS);
+CHECK_TEST_ENUM(OperationType, GATHER);
+CHECK_TEST_ENUM(OperationType, GENERATE_PROPOSALS);
+CHECK_TEST_ENUM(OperationType, GREATER);
+CHECK_TEST_ENUM(OperationType, GREATER_EQUAL);
+CHECK_TEST_ENUM(OperationType, GROUPED_CONV_2D);
+CHECK_TEST_ENUM(OperationType, HEATMAP_MAX_KEYPOINT);
+CHECK_TEST_ENUM(OperationType, INSTANCE_NORMALIZATION);
+CHECK_TEST_ENUM(OperationType, LESS);
+CHECK_TEST_ENUM(OperationType, LESS_EQUAL);
+CHECK_TEST_ENUM(OperationType, LOG);
+CHECK_TEST_ENUM(OperationType, LOGICAL_AND);
+CHECK_TEST_ENUM(OperationType, LOGICAL_NOT);
+CHECK_TEST_ENUM(OperationType, LOGICAL_OR);
+CHECK_TEST_ENUM(OperationType, LOG_SOFTMAX);
+CHECK_TEST_ENUM(OperationType, MAXIMUM);
+CHECK_TEST_ENUM(OperationType, MINIMUM);
+CHECK_TEST_ENUM(OperationType, NEG);
+CHECK_TEST_ENUM(OperationType, NOT_EQUAL);
+CHECK_TEST_ENUM(OperationType, PAD_V2);
+CHECK_TEST_ENUM(OperationType, POW);
+CHECK_TEST_ENUM(OperationType, PRELU);
+CHECK_TEST_ENUM(OperationType, QUANTIZE);
+CHECK_TEST_ENUM(OperationType, QUANTIZED_16BIT_LSTM);
+CHECK_TEST_ENUM(OperationType, RANDOM_MULTINOMIAL);
+CHECK_TEST_ENUM(OperationType, REDUCE_ALL);
+CHECK_TEST_ENUM(OperationType, REDUCE_ANY);
+CHECK_TEST_ENUM(OperationType, REDUCE_MAX);
+CHECK_TEST_ENUM(OperationType, REDUCE_MIN);
+CHECK_TEST_ENUM(OperationType, REDUCE_PROD);
+CHECK_TEST_ENUM(OperationType, REDUCE_SUM);
+CHECK_TEST_ENUM(OperationType, ROI_ALIGN);
+CHECK_TEST_ENUM(OperationType, ROI_POOLING);
+CHECK_TEST_ENUM(OperationType, RSQRT);
+CHECK_TEST_ENUM(OperationType, SELECT);
+CHECK_TEST_ENUM(OperationType, SIN);
+CHECK_TEST_ENUM(OperationType, SLICE);
+CHECK_TEST_ENUM(OperationType, SPLIT);
+CHECK_TEST_ENUM(OperationType, SQRT);
+CHECK_TEST_ENUM(OperationType, TILE);
+CHECK_TEST_ENUM(OperationType, TOPK_V2);
+CHECK_TEST_ENUM(OperationType, TRANSPOSE_CONV_2D);
+CHECK_TEST_ENUM(OperationType, UNIDIRECTIONAL_SEQUENCE_LSTM);
+CHECK_TEST_ENUM(OperationType, UNIDIRECTIONAL_SEQUENCE_RNN);
+CHECK_TEST_ENUM(OperationType, RESIZE_NEAREST_NEIGHBOR);
+
+#undef CHECK_TEST_ENUM
+
+} // namespace android::hardware::neuralnetworks::V1_2
diff --git a/neuralnetworks/1.3/vts/functional/ValidateBurst.cpp b/neuralnetworks/1.3/vts/functional/ValidateBurst.cpp
new file mode 100644
index 0000000..1d4493d
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/ValidateBurst.cpp
@@ -0,0 +1,400 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "1.2/Callbacks.h"
+#include "ExecutionBurstController.h"
+#include "ExecutionBurstServer.h"
+#include "GeneratedTestHarness.h"
+#include "TestHarness.h"
+#include "Utils.h"
+
+#include <android-base/logging.h>
+#include <cstring>
+
+namespace android::hardware::neuralnetworks::V1_2::vts::functional {
+
+using nn::ExecutionBurstController;
+using nn::RequestChannelSender;
+using nn::ResultChannelReceiver;
+using V1_0::ErrorStatus;
+using V1_0::Request;
+using ExecutionBurstCallback = ExecutionBurstController::ExecutionBurstCallback;
+
+// This constant value represents the length of an FMQ that is large enough to
+// return a result from a burst execution for all of the generated test cases.
+constexpr size_t kExecutionBurstChannelLength = 1024;
+
+// This constant value represents a length of an FMQ that is not large enough
+// to return a result from a burst execution for some of the generated test
+// cases.
+constexpr size_t kExecutionBurstChannelSmallLength = 8;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static bool badTiming(Timing timing) {
+ return timing.timeOnDevice == UINT64_MAX && timing.timeInDriver == UINT64_MAX;
+}
+
+static void createBurst(const sp<IPreparedModel>& preparedModel, const sp<IBurstCallback>& callback,
+ std::unique_ptr<RequestChannelSender>* sender,
+ std::unique_ptr<ResultChannelReceiver>* receiver,
+ sp<IBurstContext>* context,
+ size_t resultChannelLength = kExecutionBurstChannelLength) {
+ ASSERT_NE(nullptr, preparedModel.get());
+ ASSERT_NE(nullptr, sender);
+ ASSERT_NE(nullptr, receiver);
+ ASSERT_NE(nullptr, context);
+
+ // create FMQ objects
+ auto [fmqRequestChannel, fmqRequestDescriptor] =
+ RequestChannelSender::create(kExecutionBurstChannelLength, /*blocking=*/true);
+ auto [fmqResultChannel, fmqResultDescriptor] =
+ ResultChannelReceiver::create(resultChannelLength, /*blocking=*/true);
+ ASSERT_NE(nullptr, fmqRequestChannel.get());
+ ASSERT_NE(nullptr, fmqResultChannel.get());
+ ASSERT_NE(nullptr, fmqRequestDescriptor);
+ ASSERT_NE(nullptr, fmqResultDescriptor);
+
+ // configure burst
+ ErrorStatus errorStatus;
+ sp<IBurstContext> burstContext;
+ const Return<void> ret = preparedModel->configureExecutionBurst(
+ callback, *fmqRequestDescriptor, *fmqResultDescriptor,
+ [&errorStatus, &burstContext](ErrorStatus status, const sp<IBurstContext>& context) {
+ errorStatus = status;
+ burstContext = context;
+ });
+ ASSERT_TRUE(ret.isOk());
+ ASSERT_EQ(ErrorStatus::NONE, errorStatus);
+ ASSERT_NE(nullptr, burstContext.get());
+
+ // return values
+ *sender = std::move(fmqRequestChannel);
+ *receiver = std::move(fmqResultChannel);
+ *context = burstContext;
+}
+
+static void createBurstWithResultChannelLength(
+ const sp<IPreparedModel>& preparedModel, size_t resultChannelLength,
+ std::shared_ptr<ExecutionBurstController>* controller) {
+ ASSERT_NE(nullptr, preparedModel.get());
+ ASSERT_NE(nullptr, controller);
+
+ // create FMQ objects
+ std::unique_ptr<RequestChannelSender> sender;
+ std::unique_ptr<ResultChannelReceiver> receiver;
+ sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
+ sp<IBurstContext> context;
+ ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context,
+ resultChannelLength));
+ ASSERT_NE(nullptr, sender.get());
+ ASSERT_NE(nullptr, receiver.get());
+ ASSERT_NE(nullptr, context.get());
+
+ // return values
+ *controller = std::make_shared<ExecutionBurstController>(std::move(sender), std::move(receiver),
+ context, callback);
+}
+
+// Primary validation function. This function will take a valid serialized
+// request, apply a mutation to it to invalidate the serialized request, then
+// pass it to interface calls that use the serialized request. Note that the
+// serialized request here is passed by value, and any mutation to the
+// serialized request does not leave this function.
+static void validate(RequestChannelSender* sender, ResultChannelReceiver* receiver,
+ const std::string& message, std::vector<FmqRequestDatum> serialized,
+ const std::function<void(std::vector<FmqRequestDatum>*)>& mutation) {
+ mutation(&serialized);
+
+ // skip if packet is too large to send
+ if (serialized.size() > kExecutionBurstChannelLength) {
+ return;
+ }
+
+ SCOPED_TRACE(message);
+
+ // send invalid packet
+ ASSERT_TRUE(sender->sendPacket(serialized));
+
+ // receive error
+ auto results = receiver->getBlocking();
+ ASSERT_TRUE(results.has_value());
+ const auto [status, outputShapes, timing] = std::move(*results);
+ EXPECT_NE(ErrorStatus::NONE, status);
+ EXPECT_EQ(0u, outputShapes.size());
+ EXPECT_TRUE(badTiming(timing));
+}
+
+// For validation, valid packet entries are mutated to invalid packet entries,
+// or invalid packet entries are inserted into valid packets. This function
+// creates pre-set invalid packet entries for convenience.
+static std::vector<FmqRequestDatum> createBadRequestPacketEntries() {
+ const FmqRequestDatum::PacketInformation packetInformation = {
+ /*.packetSize=*/10, /*.numberOfInputOperands=*/10, /*.numberOfOutputOperands=*/10,
+ /*.numberOfPools=*/10};
+ const FmqRequestDatum::OperandInformation operandInformation = {
+ /*.hasNoValue=*/false, /*.location=*/{}, /*.numberOfDimensions=*/10};
+ const int32_t invalidPoolIdentifier = std::numeric_limits<int32_t>::max();
+ std::vector<FmqRequestDatum> bad(7);
+ bad[0].packetInformation(packetInformation);
+ bad[1].inputOperandInformation(operandInformation);
+ bad[2].inputOperandDimensionValue(0);
+ bad[3].outputOperandInformation(operandInformation);
+ bad[4].outputOperandDimensionValue(0);
+ bad[5].poolIdentifier(invalidPoolIdentifier);
+ bad[6].measureTiming(MeasureTiming::YES);
+ return bad;
+}
+
+// For validation, valid packet entries are mutated to invalid packet entries,
+// or invalid packet entries are inserted into valid packets. This function
+// retrieves pre-set invalid packet entries for convenience. This function
+// caches these data so they can be reused on subsequent validation checks.
+static const std::vector<FmqRequestDatum>& getBadRequestPacketEntries() {
+ static const std::vector<FmqRequestDatum> bad = createBadRequestPacketEntries();
+ return bad;
+}
+
+///////////////////////// REMOVE DATUM ////////////////////////////////////
+
+static void removeDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
+ const std::vector<FmqRequestDatum>& serialized) {
+ for (size_t index = 0; index < serialized.size(); ++index) {
+ const std::string message = "removeDatum: removed datum at index " + std::to_string(index);
+ validate(sender, receiver, message, serialized,
+ [index](std::vector<FmqRequestDatum>* serialized) {
+ serialized->erase(serialized->begin() + index);
+ });
+ }
+}
+
+///////////////////////// ADD DATUM ////////////////////////////////////
+
+static void addDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
+ const std::vector<FmqRequestDatum>& serialized) {
+ const std::vector<FmqRequestDatum>& extra = getBadRequestPacketEntries();
+ for (size_t index = 0; index <= serialized.size(); ++index) {
+ for (size_t type = 0; type < extra.size(); ++type) {
+ const std::string message = "addDatum: added datum type " + std::to_string(type) +
+ " at index " + std::to_string(index);
+ validate(sender, receiver, message, serialized,
+ [index, type, &extra](std::vector<FmqRequestDatum>* serialized) {
+ serialized->insert(serialized->begin() + index, extra[type]);
+ });
+ }
+ }
+}
+
+///////////////////////// MUTATE DATUM ////////////////////////////////////
+
+static bool interestingCase(const FmqRequestDatum& lhs, const FmqRequestDatum& rhs) {
+ using Discriminator = FmqRequestDatum::hidl_discriminator;
+
+ const bool differentValues = (lhs != rhs);
+ const bool sameDiscriminator = (lhs.getDiscriminator() == rhs.getDiscriminator());
+ const auto discriminator = rhs.getDiscriminator();
+ const bool isDimensionValue = (discriminator == Discriminator::inputOperandDimensionValue ||
+ discriminator == Discriminator::outputOperandDimensionValue);
+
+ return differentValues && !(sameDiscriminator && isDimensionValue);
+}
+
+static void mutateDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
+ const std::vector<FmqRequestDatum>& serialized) {
+ const std::vector<FmqRequestDatum>& change = getBadRequestPacketEntries();
+ for (size_t index = 0; index < serialized.size(); ++index) {
+ for (size_t type = 0; type < change.size(); ++type) {
+ if (interestingCase(serialized[index], change[type])) {
+ const std::string message = "mutateDatum: changed datum at index " +
+ std::to_string(index) + " to datum type " +
+ std::to_string(type);
+ validate(sender, receiver, message, serialized,
+ [index, type, &change](std::vector<FmqRequestDatum>* serialized) {
+ (*serialized)[index] = change[type];
+ });
+ }
+ }
+ }
+}
+
+///////////////////////// BURST VALIATION TESTS ////////////////////////////////////
+
+static void validateBurstSerialization(const sp<IPreparedModel>& preparedModel,
+ const Request& request) {
+ // create burst
+ std::unique_ptr<RequestChannelSender> sender;
+ std::unique_ptr<ResultChannelReceiver> receiver;
+ sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
+ sp<IBurstContext> context;
+ ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context));
+ ASSERT_NE(nullptr, sender.get());
+ ASSERT_NE(nullptr, receiver.get());
+ ASSERT_NE(nullptr, context.get());
+
+ // load memory into callback slots
+ std::vector<intptr_t> keys;
+ keys.reserve(request.pools.size());
+ std::transform(request.pools.begin(), request.pools.end(), std::back_inserter(keys),
+ [](const auto& pool) { return reinterpret_cast<intptr_t>(&pool); });
+ const std::vector<int32_t> slots = callback->getSlots(request.pools, keys);
+
+ // ensure slot std::numeric_limits<int32_t>::max() doesn't exist (for
+ // subsequent slot validation testing)
+ ASSERT_TRUE(std::all_of(slots.begin(), slots.end(), [](int32_t slot) {
+ return slot != std::numeric_limits<int32_t>::max();
+ }));
+
+ // serialize the request
+ const auto serialized = android::nn::serialize(request, MeasureTiming::YES, slots);
+
+ // validations
+ removeDatumTest(sender.get(), receiver.get(), serialized);
+ addDatumTest(sender.get(), receiver.get(), serialized);
+ mutateDatumTest(sender.get(), receiver.get(), serialized);
+}
+
+// This test validates that when the Result message size exceeds length of the
+// result FMQ, the service instance gracefully fails and returns an error.
+static void validateBurstFmqLength(const sp<IPreparedModel>& preparedModel,
+ const Request& request) {
+ // create regular burst
+ std::shared_ptr<ExecutionBurstController> controllerRegular;
+ ASSERT_NO_FATAL_FAILURE(createBurstWithResultChannelLength(
+ preparedModel, kExecutionBurstChannelLength, &controllerRegular));
+ ASSERT_NE(nullptr, controllerRegular.get());
+
+ // create burst with small output channel
+ std::shared_ptr<ExecutionBurstController> controllerSmall;
+ ASSERT_NO_FATAL_FAILURE(createBurstWithResultChannelLength(
+ preparedModel, kExecutionBurstChannelSmallLength, &controllerSmall));
+ ASSERT_NE(nullptr, controllerSmall.get());
+
+ // load memory into callback slots
+ std::vector<intptr_t> keys(request.pools.size());
+ for (size_t i = 0; i < keys.size(); ++i) {
+ keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
+ }
+
+ // collect serialized result by running regular burst
+ const auto [statusRegular, outputShapesRegular, timingRegular] =
+ controllerRegular->compute(request, MeasureTiming::NO, keys);
+
+ // skip test if regular burst output isn't useful for testing a failure
+ // caused by having too small of a length for the result FMQ
+ const std::vector<FmqResultDatum> serialized =
+ android::nn::serialize(statusRegular, outputShapesRegular, timingRegular);
+ if (statusRegular != ErrorStatus::NONE ||
+ serialized.size() <= kExecutionBurstChannelSmallLength) {
+ return;
+ }
+
+ // by this point, execution should fail because the result channel isn't
+ // large enough to return the serialized result
+ const auto [statusSmall, outputShapesSmall, timingSmall] =
+ controllerSmall->compute(request, MeasureTiming::NO, keys);
+ EXPECT_NE(ErrorStatus::NONE, statusSmall);
+ EXPECT_EQ(0u, outputShapesSmall.size());
+ EXPECT_TRUE(badTiming(timingSmall));
+}
+
+static bool isSanitized(const FmqResultDatum& datum) {
+ using Discriminator = FmqResultDatum::hidl_discriminator;
+
+ // check to ensure the padding values in the returned
+ // FmqResultDatum::OperandInformation are initialized to 0
+ if (datum.getDiscriminator() == Discriminator::operandInformation) {
+ static_assert(
+ offsetof(FmqResultDatum::OperandInformation, isSufficient) == 0,
+ "unexpected value for offset of FmqResultDatum::OperandInformation::isSufficient");
+ static_assert(
+ sizeof(FmqResultDatum::OperandInformation::isSufficient) == 1,
+ "unexpected value for size of FmqResultDatum::OperandInformation::isSufficient");
+ static_assert(offsetof(FmqResultDatum::OperandInformation, numberOfDimensions) == 4,
+ "unexpected value for offset of "
+ "FmqResultDatum::OperandInformation::numberOfDimensions");
+ static_assert(sizeof(FmqResultDatum::OperandInformation::numberOfDimensions) == 4,
+ "unexpected value for size of "
+ "FmqResultDatum::OperandInformation::numberOfDimensions");
+ static_assert(sizeof(FmqResultDatum::OperandInformation) == 8,
+ "unexpected value for size of "
+ "FmqResultDatum::OperandInformation");
+
+ constexpr size_t paddingOffset =
+ offsetof(FmqResultDatum::OperandInformation, isSufficient) +
+ sizeof(FmqResultDatum::OperandInformation::isSufficient);
+ constexpr size_t paddingSize =
+ offsetof(FmqResultDatum::OperandInformation, numberOfDimensions) - paddingOffset;
+
+ FmqResultDatum::OperandInformation initialized{};
+ std::memset(&initialized, 0, sizeof(initialized));
+
+ const char* initializedPaddingStart =
+ reinterpret_cast<const char*>(&initialized) + paddingOffset;
+ const char* datumPaddingStart =
+ reinterpret_cast<const char*>(&datum.operandInformation()) + paddingOffset;
+
+ return std::memcmp(datumPaddingStart, initializedPaddingStart, paddingSize) == 0;
+ }
+
+ // there are no other padding initialization checks required, so return true
+ // for any sum-type that isn't FmqResultDatum::OperandInformation
+ return true;
+}
+
+static void validateBurstSanitized(const sp<IPreparedModel>& preparedModel,
+ const Request& request) {
+ // create burst
+ std::unique_ptr<RequestChannelSender> sender;
+ std::unique_ptr<ResultChannelReceiver> receiver;
+ sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
+ sp<IBurstContext> context;
+ ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context));
+ ASSERT_NE(nullptr, sender.get());
+ ASSERT_NE(nullptr, receiver.get());
+ ASSERT_NE(nullptr, context.get());
+
+ // load memory into callback slots
+ std::vector<intptr_t> keys;
+ keys.reserve(request.pools.size());
+ std::transform(request.pools.begin(), request.pools.end(), std::back_inserter(keys),
+ [](const auto& pool) { return reinterpret_cast<intptr_t>(&pool); });
+ const std::vector<int32_t> slots = callback->getSlots(request.pools, keys);
+
+ // send valid request
+ ASSERT_TRUE(sender->send(request, MeasureTiming::YES, slots));
+
+ // receive valid result
+ auto serialized = receiver->getPacketBlocking();
+ ASSERT_TRUE(serialized.has_value());
+
+ // sanitize result
+ ASSERT_TRUE(std::all_of(serialized->begin(), serialized->end(), isSanitized))
+ << "The result serialized data is not properly sanitized";
+}
+
+///////////////////////////// ENTRY POINT //////////////////////////////////
+
+void validateBurst(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ ASSERT_NO_FATAL_FAILURE(validateBurstSerialization(preparedModel, request));
+ ASSERT_NO_FATAL_FAILURE(validateBurstFmqLength(preparedModel, request));
+ ASSERT_NO_FATAL_FAILURE(validateBurstSanitized(preparedModel, request));
+}
+
+} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/ValidateModel.cpp b/neuralnetworks/1.3/vts/functional/ValidateModel.cpp
new file mode 100644
index 0000000..30530be
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/ValidateModel.cpp
@@ -0,0 +1,713 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "1.0/Utils.h"
+#include "1.2/Callbacks.h"
+#include "GeneratedTestHarness.h"
+#include "VtsHalNeuralnetworks.h"
+
+namespace android::hardware::neuralnetworks::V1_2::vts::functional {
+
+using implementation::PreparedModelCallback;
+using V1_0::ErrorStatus;
+using V1_0::OperandLifeTime;
+using V1_1::ExecutionPreference;
+using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
+ const Model& model) {
+ SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
+
+ Return<void> ret = device->getSupportedOperations_1_2(
+ model, [&](ErrorStatus status, const hidl_vec<bool>&) {
+ EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
+ });
+ EXPECT_TRUE(ret.isOk());
+}
+
+static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
+ const Model& model, ExecutionPreference preference) {
+ SCOPED_TRACE(message + " [prepareModel_1_2]");
+
+ sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+ Return<ErrorStatus> prepareLaunchStatus =
+ device->prepareModel_1_2(model, preference, hidl_vec<hidl_handle>(),
+ hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
+ ASSERT_TRUE(prepareLaunchStatus.isOk());
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+ preparedModelCallback->wait();
+ ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
+ sp<IPreparedModel> preparedModel = getPreparedModel_1_2(preparedModelCallback);
+ ASSERT_EQ(nullptr, preparedModel.get());
+}
+
+static bool validExecutionPreference(ExecutionPreference preference) {
+ return preference == ExecutionPreference::LOW_POWER ||
+ preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
+ preference == ExecutionPreference::SUSTAINED_SPEED;
+}
+
+// Primary validation function. This function will take a valid model, apply a
+// mutation to it to invalidate the model, then pass it to interface calls that
+// use the model. Note that the model here is passed by value, and any mutation
+// to the model does not leave this function.
+static void validate(const sp<IDevice>& device, const std::string& message, Model model,
+ const std::function<void(Model*)>& mutation,
+ ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
+ mutation(&model);
+ if (validExecutionPreference(preference)) {
+ validateGetSupportedOperations(device, message, model);
+ }
+ validatePrepareModel(device, message, model, preference);
+}
+
+static uint32_t addOperand(Model* model) {
+ return hidl_vec_push_back(&model->operands,
+ {
+ .type = OperandType::INT32,
+ .dimensions = {},
+ .numberOfConsumers = 0,
+ .scale = 0.0f,
+ .zeroPoint = 0,
+ .lifetime = OperandLifeTime::MODEL_INPUT,
+ .location = {.poolIndex = 0, .offset = 0, .length = 0},
+ });
+}
+
+static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
+ uint32_t index = addOperand(model);
+ model->operands[index].numberOfConsumers = 1;
+ model->operands[index].lifetime = lifetime;
+ return index;
+}
+
+///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
+
+static const uint32_t invalidOperandTypes[] = {
+ static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN) - 1,
+ static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX) + 1,
+ static_cast<uint32_t>(OperandTypeRange::OEM_MIN) - 1,
+ static_cast<uint32_t>(OperandTypeRange::OEM_MAX) + 1,
+};
+
+static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ for (uint32_t invalidOperandType : invalidOperandTypes) {
+ const std::string message = "mutateOperandTypeTest: operand " +
+ std::to_string(operand) + " set to value " +
+ std::to_string(invalidOperandType);
+ validate(device, message, model, [operand, invalidOperandType](Model* model) {
+ model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE OPERAND RANK /////////////////////////
+
+static uint32_t getInvalidRank(OperandType type) {
+ switch (type) {
+ case OperandType::FLOAT16:
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ case OperandType::BOOL:
+ return 1;
+ case OperandType::TENSOR_BOOL8:
+ case OperandType::TENSOR_FLOAT16:
+ case OperandType::TENSOR_FLOAT32:
+ case OperandType::TENSOR_INT32:
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ case OperandType::TENSOR_QUANT8_SYMM:
+ case OperandType::TENSOR_QUANT16_ASYMM:
+ case OperandType::TENSOR_QUANT16_SYMM:
+ case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+ return 0;
+ default:
+ return 0;
+ }
+}
+
+static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
+ if (invalidRank == 0) {
+ continue;
+ }
+ const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
+ " has rank of " + std::to_string(invalidRank);
+ validate(device, message, model, [operand, invalidRank](Model* model) {
+ model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
+ });
+ }
+}
+
+///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
+
+static float getInvalidScale(OperandType type) {
+ switch (type) {
+ case OperandType::FLOAT16:
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ case OperandType::BOOL:
+ case OperandType::TENSOR_BOOL8:
+ case OperandType::TENSOR_FLOAT16:
+ case OperandType::TENSOR_FLOAT32:
+ case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+ return 1.0f;
+ case OperandType::TENSOR_INT32:
+ return -1.0f;
+ case OperandType::TENSOR_QUANT8_SYMM:
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ case OperandType::TENSOR_QUANT16_ASYMM:
+ case OperandType::TENSOR_QUANT16_SYMM:
+ return 0.0f;
+ default:
+ return 0.0f;
+ }
+}
+
+static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const float invalidScale = getInvalidScale(model.operands[operand].type);
+ const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
+ " has scale of " + std::to_string(invalidScale);
+ validate(device, message, model, [operand, invalidScale](Model* model) {
+ model->operands[operand].scale = invalidScale;
+ });
+ }
+}
+
+///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
+
+static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
+ switch (type) {
+ case OperandType::FLOAT16:
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ case OperandType::BOOL:
+ case OperandType::TENSOR_BOOL8:
+ case OperandType::TENSOR_FLOAT16:
+ case OperandType::TENSOR_FLOAT32:
+ case OperandType::TENSOR_INT32:
+ case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+ return {1};
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return {-1, 256};
+ case OperandType::TENSOR_QUANT8_SYMM:
+ return {-129, -1, 1, 128};
+ case OperandType::TENSOR_QUANT16_ASYMM:
+ return {-1, 65536};
+ case OperandType::TENSOR_QUANT16_SYMM:
+ return {-32769, -1, 1, 32768};
+ default:
+ return {};
+ }
+}
+
+static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ const std::vector<int32_t> invalidZeroPoints =
+ getInvalidZeroPoints(model.operands[operand].type);
+ for (int32_t invalidZeroPoint : invalidZeroPoints) {
+ const std::string message = "mutateOperandZeroPointTest: operand " +
+ std::to_string(operand) + " has zero point of " +
+ std::to_string(invalidZeroPoint);
+ validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
+ model->operands[operand].zeroPoint = invalidZeroPoint;
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE EXTRA ??? /////////////////////////
+
+// TODO: Operand::lifetime
+// TODO: Operand::location
+
+///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
+
+static void mutateOperand(Operand* operand, OperandType type) {
+ Operand newOperand = *operand;
+ newOperand.type = type;
+ switch (type) {
+ case OperandType::FLOAT16:
+ case OperandType::FLOAT32:
+ case OperandType::INT32:
+ case OperandType::UINT32:
+ case OperandType::BOOL:
+ newOperand.dimensions = hidl_vec<uint32_t>();
+ newOperand.scale = 0.0f;
+ newOperand.zeroPoint = 0;
+ break;
+ case OperandType::TENSOR_BOOL8:
+ case OperandType::TENSOR_FLOAT16:
+ case OperandType::TENSOR_FLOAT32:
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.scale = 0.0f;
+ newOperand.zeroPoint = 0;
+ break;
+ case OperandType::TENSOR_INT32:
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.zeroPoint = 0;
+ break;
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ case OperandType::TENSOR_QUANT8_SYMM:
+ case OperandType::TENSOR_QUANT16_ASYMM:
+ case OperandType::TENSOR_QUANT16_SYMM:
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
+ break;
+ case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
+ newOperand.dimensions =
+ operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+ newOperand.scale = 0.0f;
+ newOperand.zeroPoint = 0;
+
+ SymmPerChannelQuantParams channelQuant;
+ channelQuant.channelDim = 0;
+ channelQuant.scales = hidl_vec<float>(
+ operand->dimensions.size() > 0 ? static_cast<size_t>(operand->dimensions[0])
+ : 0);
+ for (size_t i = 0; i < channelQuant.scales.size(); ++i) {
+ channelQuant.scales[i] = 1.0f;
+ }
+ newOperand.extraParams.channelQuant(std::move(channelQuant));
+ } break;
+ case OperandType::OEM:
+ case OperandType::TENSOR_OEM_BYTE:
+ default:
+ break;
+ }
+ *operand = newOperand;
+}
+
+static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, const Model& model) {
+ // Do not test OEM types
+ if (type == model.operands[operand].type || type == OperandType::OEM ||
+ type == OperandType::TENSOR_OEM_BYTE) {
+ return true;
+ }
+ for (const Operation& operation : model.operations) {
+ // Skip mutateOperationOperandTypeTest for the following operations.
+ // - LSH_PROJECTION's second argument is allowed to have any type.
+ // - ARGMIN and ARGMAX's first argument can be any of
+ // TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
+ // - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
+ // - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
+ // - DEQUANTIZE input can be any of
+ // TENSOR_(QUANT8_ASYMM|QUANT8_SYMM|QUANT8_SYMM_PER_CHANNEL), output can
+ // be of either TENSOR_FLOAT16 or TENSOR_FLOAT32.
+ // - QUANTIZE input can be either TENSOR_FLOAT16 or TENSOR_FLOAT32
+ // - CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
+ // - DEPTHWISE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
+ // - GROUPED_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
+ // - TRANSPOSE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
+ switch (operation.type) {
+ case OperationType::LSH_PROJECTION: {
+ if (operand == operation.inputs[1]) {
+ return true;
+ }
+ } break;
+ case OperationType::CAST:
+ case OperationType::ARGMAX:
+ case OperationType::ARGMIN: {
+ if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32 ||
+ type == OperandType::TENSOR_INT32 || type == OperandType::TENSOR_QUANT8_ASYMM) {
+ return true;
+ }
+ } break;
+ case OperationType::QUANTIZE:
+ case OperationType::RANDOM_MULTINOMIAL: {
+ if (operand == operation.inputs[0] &&
+ (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
+ return true;
+ }
+ } break;
+ case OperationType::DEQUANTIZE: {
+ if (operand == operation.inputs[0] &&
+ (type == OperandType::TENSOR_QUANT8_ASYMM ||
+ type == OperandType::TENSOR_QUANT8_SYMM ||
+ type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
+ return true;
+ }
+ if (operand == operation.outputs[0] &&
+ (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
+ return true;
+ }
+ } break;
+ case OperationType::TRANSPOSE_CONV_2D:
+ case OperationType::GROUPED_CONV_2D:
+ case OperationType::DEPTHWISE_CONV_2D:
+ case OperationType::CONV_2D: {
+ if (operand == operation.inputs[1] &&
+ (type == OperandType::TENSOR_QUANT8_ASYMM ||
+ type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
+ return true;
+ }
+ } break;
+ default:
+ break;
+ }
+ }
+ return false;
+}
+
+static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
+ if (mutateOperationOperandTypeSkip(operand, invalidOperandType, model)) {
+ continue;
+ }
+ const std::string message = "mutateOperationOperandTypeTest: operand " +
+ std::to_string(operand) + " set to type " +
+ toString(invalidOperandType);
+ validate(device, message, model, [operand, invalidOperandType](Model* model) {
+ mutateOperand(&model->operands[operand], invalidOperandType);
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
+
+static const uint32_t invalidOperationTypes[] = {
+ static_cast<uint32_t>(OperationTypeRange::FUNDAMENTAL_MAX) + 1,
+ static_cast<uint32_t>(OperationTypeRange::OEM_MIN) - 1,
+ static_cast<uint32_t>(OperationTypeRange::OEM_MAX) + 1,
+};
+
+static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ for (uint32_t invalidOperationType : invalidOperationTypes) {
+ const std::string message = "mutateOperationTypeTest: operation " +
+ std::to_string(operation) + " set to value " +
+ std::to_string(invalidOperationType);
+ validate(device, message, model, [operation, invalidOperationType](Model* model) {
+ model->operations[operation].type =
+ static_cast<OperationType>(invalidOperationType);
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const uint32_t invalidOperand = model.operands.size();
+ for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+ const std::string message = "mutateOperationInputOperandIndexTest: operation " +
+ std::to_string(operation) + " input " +
+ std::to_string(input);
+ validate(device, message, model, [operation, input, invalidOperand](Model* model) {
+ model->operations[operation].inputs[input] = invalidOperand;
+ });
+ }
+ }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const uint32_t invalidOperand = model.operands.size();
+ for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+ const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
+ std::to_string(operation) + " output " +
+ std::to_string(output);
+ validate(device, message, model, [operation, output, invalidOperand](Model* model) {
+ model->operations[operation].outputs[output] = invalidOperand;
+ });
+ }
+ }
+}
+
+///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
+
+static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
+ if (vec) {
+ // remove elements matching "value"
+ auto last = std::remove(vec->begin(), vec->end(), value);
+ vec->resize(std::distance(vec->begin(), last));
+
+ // decrement elements exceeding "value"
+ std::transform(vec->begin(), vec->end(), vec->begin(),
+ [value](uint32_t v) { return v > value ? v-- : v; });
+ }
+}
+
+static void removeOperand(Model* model, uint32_t index) {
+ hidl_vec_removeAt(&model->operands, index);
+ for (Operation& operation : model->operations) {
+ removeValueAndDecrementGreaterValues(&operation.inputs, index);
+ removeValueAndDecrementGreaterValues(&operation.outputs, index);
+ }
+ removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
+ removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
+}
+
+static bool removeOperandSkip(size_t operand, const Model& model) {
+ for (const Operation& operation : model.operations) {
+ // Skip removeOperandTest for the following operations.
+ // - SPLIT's outputs are not checked during prepareModel.
+ if (operation.type == OperationType::SPLIT) {
+ for (const size_t outOprand : operation.outputs) {
+ if (operand == outOprand) {
+ return true;
+ }
+ }
+ }
+ // BIDIRECTIONAL_SEQUENCE_LSTM and BIDIRECTIONAL_SEQUENCE_RNN can have either one or two
+ // outputs depending on their mergeOutputs parameter.
+ if (operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_LSTM ||
+ operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_RNN) {
+ for (const size_t outOprand : operation.outputs) {
+ if (operand == outOprand) {
+ return true;
+ }
+ }
+ }
+ }
+ return false;
+}
+
+static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+ if (removeOperandSkip(operand, model)) {
+ continue;
+ }
+ const std::string message = "removeOperandTest: operand " + std::to_string(operand);
+ validate(device, message, model,
+ [operand](Model* model) { removeOperand(model, operand); });
+ }
+}
+
+///////////////////////// REMOVE OPERATION /////////////////////////
+
+static void removeOperation(Model* model, uint32_t index) {
+ for (uint32_t operand : model->operations[index].inputs) {
+ model->operands[operand].numberOfConsumers--;
+ }
+ hidl_vec_removeAt(&model->operations, index);
+}
+
+static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const std::string message = "removeOperationTest: operation " + std::to_string(operation);
+ validate(device, message, model,
+ [operation](Model* model) { removeOperation(model, operation); });
+ }
+}
+
+///////////////////////// REMOVE OPERATION INPUT /////////////////////////
+
+static bool removeOperationInputSkip(const Operation& op, size_t input) {
+ // Skip removeOperationInputTest for the following operations.
+ // - CONCATENATION has at least 2 inputs, with the last element being INT32.
+ // - CONV_2D, DEPTHWISE_CONV_2D, MAX_POOL_2D, AVERAGE_POOL_2D, L2_POOL_2D, RESIZE_BILINEAR,
+ // SPACE_TO_DEPTH, SPACE_TO_DEPTH, SPACE_TO_BATCH_ND, BATCH_TO_SPACE_ND can have an optional
+ // layout parameter.
+ // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional axis
+ // parameter.
+ switch (op.type) {
+ case OperationType::CONCATENATION: {
+ if (op.inputs.size() > 2 && input != op.inputs.size() - 1) {
+ return true;
+ }
+ } break;
+ case OperationType::DEPTHWISE_CONV_2D: {
+ if ((op.inputs.size() == 12 && input == 11) || (op.inputs.size() == 9 && input == 8)) {
+ return true;
+ }
+ } break;
+ case OperationType::CONV_2D:
+ case OperationType::AVERAGE_POOL_2D:
+ case OperationType::MAX_POOL_2D:
+ case OperationType::L2_POOL_2D: {
+ if ((op.inputs.size() == 11 && input == 10) || (op.inputs.size() == 8 && input == 7)) {
+ return true;
+ }
+ } break;
+ case OperationType::RESIZE_BILINEAR: {
+ if (op.inputs.size() == 4 && input == 3) {
+ return true;
+ }
+ } break;
+ case OperationType::SPACE_TO_DEPTH:
+ case OperationType::DEPTH_TO_SPACE:
+ case OperationType::BATCH_TO_SPACE_ND: {
+ if (op.inputs.size() == 3 && input == 2) {
+ return true;
+ }
+ } break;
+ case OperationType::SPACE_TO_BATCH_ND: {
+ if (op.inputs.size() == 4 && input == 3) {
+ return true;
+ }
+ } break;
+ case OperationType::L2_NORMALIZATION: {
+ if (op.inputs.size() == 2 && input == 1) {
+ return true;
+ }
+ } break;
+ case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
+ if (op.inputs.size() == 6 && input == 5) {
+ return true;
+ }
+ } break;
+ case OperationType::SOFTMAX: {
+ if (op.inputs.size() == 3 && input == 2) {
+ return true;
+ }
+ } break;
+ default:
+ break;
+ }
+ return false;
+}
+
+static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+ const Operation& op = model.operations[operation];
+ if (removeOperationInputSkip(op, input)) {
+ continue;
+ }
+ const std::string message = "removeOperationInputTest: operation " +
+ std::to_string(operation) + ", input " +
+ std::to_string(input);
+ validate(device, message, model, [operation, input](Model* model) {
+ uint32_t operand = model->operations[operation].inputs[input];
+ model->operands[operand].numberOfConsumers--;
+ hidl_vec_removeAt(&model->operations[operation].inputs, input);
+ });
+ }
+ }
+}
+
+///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
+
+static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+ const std::string message = "removeOperationOutputTest: operation " +
+ std::to_string(operation) + ", output " +
+ std::to_string(output);
+ validate(device, message, model, [operation, output](Model* model) {
+ hidl_vec_removeAt(&model->operations[operation].outputs, output);
+ });
+ }
+ }
+}
+
+///////////////////////// MODEL VALIDATION /////////////////////////
+
+// TODO: remove model input
+// TODO: remove model output
+// TODO: add unused operation
+
+///////////////////////// ADD OPERATION INPUT /////////////////////////
+
+static bool addOperationInputSkip(const Operation& op) {
+ // Skip addOperationInputTest for the following operations.
+ // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional INT32 axis
+ // parameter.
+ if ((op.type == OperationType::L2_NORMALIZATION && op.inputs.size() == 1) ||
+ (op.type == OperationType::LOCAL_RESPONSE_NORMALIZATION && op.inputs.size() == 5) ||
+ (op.type == OperationType::SOFTMAX && op.inputs.size() == 2)) {
+ return true;
+ }
+ return false;
+}
+
+static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ if (addOperationInputSkip(model.operations[operation])) {
+ continue;
+ }
+ const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
+ validate(device, message, model, [operation](Model* model) {
+ uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
+ hidl_vec_push_back(&model->operations[operation].inputs, index);
+ hidl_vec_push_back(&model->inputIndexes, index);
+ });
+ }
+}
+
+///////////////////////// ADD OPERATION OUTPUT /////////////////////////
+
+static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
+ for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+ const std::string message =
+ "addOperationOutputTest: operation " + std::to_string(operation);
+ validate(device, message, model, [operation](Model* model) {
+ uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
+ hidl_vec_push_back(&model->operations[operation].outputs, index);
+ hidl_vec_push_back(&model->outputIndexes, index);
+ });
+ }
+}
+
+///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
+
+static const int32_t invalidExecutionPreferences[] = {
+ static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1, // lower bound
+ static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1, // upper bound
+};
+
+static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
+ for (int32_t preference : invalidExecutionPreferences) {
+ const std::string message =
+ "mutateExecutionPreferenceTest: preference " + std::to_string(preference);
+ validate(
+ device, message, model, [](Model*) {},
+ static_cast<ExecutionPreference>(preference));
+ }
+}
+
+////////////////////////// ENTRY POINT //////////////////////////////
+
+void validateModel(const sp<IDevice>& device, const Model& model) {
+ mutateOperandTypeTest(device, model);
+ mutateOperandRankTest(device, model);
+ mutateOperandScaleTest(device, model);
+ mutateOperandZeroPointTest(device, model);
+ mutateOperationOperandTypeTest(device, model);
+ mutateOperationTypeTest(device, model);
+ mutateOperationInputOperandIndexTest(device, model);
+ mutateOperationOutputOperandIndexTest(device, model);
+ removeOperandTest(device, model);
+ removeOperationTest(device, model);
+ removeOperationInputTest(device, model);
+ removeOperationOutputTest(device, model);
+ addOperationInputTest(device, model);
+ addOperationOutputTest(device, model);
+ mutateExecutionPreferenceTest(device, model);
+}
+
+} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/ValidateRequest.cpp b/neuralnetworks/1.3/vts/functional/ValidateRequest.cpp
new file mode 100644
index 0000000..f25ee62
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/ValidateRequest.cpp
@@ -0,0 +1,168 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "1.0/Utils.h"
+#include "1.2/Callbacks.h"
+#include "ExecutionBurstController.h"
+#include "GeneratedTestHarness.h"
+#include "TestHarness.h"
+#include "Utils.h"
+#include "VtsHalNeuralnetworks.h"
+
+namespace android::hardware::neuralnetworks::V1_2::vts::functional {
+
+using implementation::ExecutionCallback;
+using V1_0::ErrorStatus;
+using V1_0::Request;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static bool badTiming(Timing timing) {
+ return timing.timeOnDevice == UINT64_MAX && timing.timeInDriver == UINT64_MAX;
+}
+
+// Primary validation function. This function will take a valid request, apply a
+// mutation to it to invalidate the request, then pass it to interface calls
+// that use the request. Note that the request here is passed by value, and any
+// mutation to the request does not leave this function.
+static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
+ Request request, const std::function<void(Request*)>& mutation) {
+ mutation(&request);
+
+ // We'd like to test both with timing requested and without timing
+ // requested. Rather than running each test both ways, we'll decide whether
+ // to request timing by hashing the message. We do not use std::hash because
+ // it is not guaranteed stable across executions.
+ char hash = 0;
+ for (auto c : message) {
+ hash ^= c;
+ };
+ MeasureTiming measure = (hash & 1) ? MeasureTiming::YES : MeasureTiming::NO;
+
+ // asynchronous
+ {
+ SCOPED_TRACE(message + " [execute_1_2]");
+
+ sp<ExecutionCallback> executionCallback = new ExecutionCallback();
+ Return<ErrorStatus> executeLaunchStatus =
+ preparedModel->execute_1_2(request, measure, executionCallback);
+ ASSERT_TRUE(executeLaunchStatus.isOk());
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
+
+ executionCallback->wait();
+ ErrorStatus executionReturnStatus = executionCallback->getStatus();
+ const auto& outputShapes = executionCallback->getOutputShapes();
+ Timing timing = executionCallback->getTiming();
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
+ ASSERT_EQ(outputShapes.size(), 0);
+ ASSERT_TRUE(badTiming(timing));
+ }
+
+ // synchronous
+ {
+ SCOPED_TRACE(message + " [executeSynchronously]");
+
+ Return<void> executeStatus = preparedModel->executeSynchronously(
+ request, measure,
+ [](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes,
+ const Timing& timing) {
+ ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
+ EXPECT_EQ(outputShapes.size(), 0);
+ EXPECT_TRUE(badTiming(timing));
+ });
+ ASSERT_TRUE(executeStatus.isOk());
+ }
+
+ // burst
+ {
+ SCOPED_TRACE(message + " [burst]");
+
+ // create burst
+ std::shared_ptr<::android::nn::ExecutionBurstController> burst =
+ android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true);
+ ASSERT_NE(nullptr, burst.get());
+
+ // create memory keys
+ std::vector<intptr_t> keys(request.pools.size());
+ for (size_t i = 0; i < keys.size(); ++i) {
+ keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
+ }
+
+ // execute and verify
+ ErrorStatus error;
+ std::vector<OutputShape> outputShapes;
+ Timing timing;
+ std::tie(error, outputShapes, timing) = burst->compute(request, measure, keys);
+ EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
+ EXPECT_EQ(outputShapes.size(), 0);
+ EXPECT_TRUE(badTiming(timing));
+
+ // additional burst testing
+ if (request.pools.size() > 0) {
+ // valid free
+ burst->freeMemory(keys.front());
+
+ // negative test: invalid free of unknown (blank) memory
+ burst->freeMemory(intptr_t{});
+
+ // negative test: double free of memory
+ burst->freeMemory(keys.front());
+ }
+ }
+}
+
+///////////////////////// REMOVE INPUT ////////////////////////////////////
+
+static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ for (size_t input = 0; input < request.inputs.size(); ++input) {
+ const std::string message = "removeInput: removed input " + std::to_string(input);
+ validate(preparedModel, message, request,
+ [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
+ }
+}
+
+///////////////////////// REMOVE OUTPUT ////////////////////////////////////
+
+static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ for (size_t output = 0; output < request.outputs.size(); ++output) {
+ const std::string message = "removeOutput: removed Output " + std::to_string(output);
+ validate(preparedModel, message, request,
+ [output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
+ }
+}
+
+///////////////////////////// ENTRY POINT //////////////////////////////////
+
+void validateRequest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ removeInputTest(preparedModel, request);
+ removeOutputTest(preparedModel, request);
+}
+
+void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const Request& request) {
+ SCOPED_TRACE("Expecting request to fail [executeSynchronously]");
+ Return<void> executeStatus = preparedModel->executeSynchronously(
+ request, MeasureTiming::NO,
+ [](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes, const Timing& timing) {
+ ASSERT_NE(ErrorStatus::NONE, error);
+ EXPECT_EQ(outputShapes.size(), 0);
+ EXPECT_TRUE(badTiming(timing));
+ });
+ ASSERT_TRUE(executeStatus.isOk());
+}
+
+} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
new file mode 100644
index 0000000..4fbd0e2
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
@@ -0,0 +1,171 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+#include <android-base/logging.h>
+#include <hidl/ServiceManagement.h>
+#include <string>
+#include <utility>
+#include "1.0/Callbacks.h"
+#include "1.0/Utils.h"
+#include "GeneratedTestHarness.h"
+#include "TestHarness.h"
+
+namespace android::hardware::neuralnetworks::V1_2::vts::functional {
+
+using implementation::PreparedModelCallback;
+using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
+using V1_0::ErrorStatus;
+using V1_0::Request;
+using V1_1::ExecutionPreference;
+
+// internal helper function
+void createPreparedModel(const sp<IDevice>& device, const Model& model,
+ sp<IPreparedModel>* preparedModel) {
+ ASSERT_NE(nullptr, preparedModel);
+ *preparedModel = nullptr;
+
+ // see if service can handle model
+ bool fullySupportsModel = false;
+ const Return<void> supportedCall = device->getSupportedOperations_1_2(
+ model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
+ ASSERT_EQ(ErrorStatus::NONE, status);
+ ASSERT_NE(0ul, supported.size());
+ fullySupportsModel = std::all_of(supported.begin(), supported.end(),
+ [](bool valid) { return valid; });
+ });
+ ASSERT_TRUE(supportedCall.isOk());
+
+ // launch prepare model
+ const sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+ const Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
+ model, ExecutionPreference::FAST_SINGLE_ANSWER, hidl_vec<hidl_handle>(),
+ hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
+ ASSERT_TRUE(prepareLaunchStatus.isOk());
+ ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+ // retrieve prepared model
+ preparedModelCallback->wait();
+ const ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+ *preparedModel = getPreparedModel_1_2(preparedModelCallback);
+
+ // The getSupportedOperations_1_2 call returns a list of operations that are
+ // guaranteed not to fail if prepareModel_1_2 is called, and
+ // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
+ // If a driver has any doubt that it can prepare an operation, it must
+ // return false. So here, if a driver isn't sure if it can support an
+ // operation, but reports that it successfully prepared the model, the test
+ // can continue.
+ if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
+ ASSERT_EQ(nullptr, preparedModel->get());
+ LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot prepare "
+ "model that it does not support.";
+ std::cout << "[ ] Early termination of test because vendor service cannot "
+ "prepare model that it does not support."
+ << std::endl;
+ GTEST_SKIP();
+ }
+ ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
+ ASSERT_NE(nullptr, preparedModel->get());
+}
+
+void NeuralnetworksHidlTest::SetUp() {
+ testing::TestWithParam<NeuralnetworksHidlTestParam>::SetUp();
+ ASSERT_NE(kDevice, nullptr);
+}
+
+static NamedDevice makeNamedDevice(const std::string& name) {
+ return {name, IDevice::getService(name)};
+}
+
+static std::vector<NamedDevice> getNamedDevicesImpl() {
+ // Retrieves the name of all service instances that implement IDevice,
+ // including any Lazy HAL instances.
+ const std::vector<std::string> names = hardware::getAllHalInstanceNames(IDevice::descriptor);
+
+ // Get a handle to each device and pair it with its name.
+ std::vector<NamedDevice> namedDevices;
+ namedDevices.reserve(names.size());
+ std::transform(names.begin(), names.end(), std::back_inserter(namedDevices), makeNamedDevice);
+ return namedDevices;
+}
+
+const std::vector<NamedDevice>& getNamedDevices() {
+ const static std::vector<NamedDevice> devices = getNamedDevicesImpl();
+ return devices;
+}
+
+std::string printNeuralnetworksHidlTest(
+ const testing::TestParamInfo<NeuralnetworksHidlTestParam>& info) {
+ return gtestCompliantName(getName(info.param));
+}
+
+INSTANTIATE_DEVICE_TEST(NeuralnetworksHidlTest);
+
+// Forward declaration from ValidateModel.cpp
+void validateModel(const sp<IDevice>& device, const Model& model);
+// Forward declaration from ValidateRequest.cpp
+void validateRequest(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
+// Forward declaration from ValidateRequest.cpp
+void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
+// Forward declaration from ValidateBurst.cpp
+void validateBurst(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
+
+void validateEverything(const sp<IDevice>& device, const Model& model, const Request& request) {
+ validateModel(device, model);
+
+ // Create IPreparedModel.
+ sp<IPreparedModel> preparedModel;
+ createPreparedModel(device, model, &preparedModel);
+ if (preparedModel == nullptr) return;
+
+ validateRequest(preparedModel, request);
+ validateBurst(preparedModel, request);
+}
+
+void validateFailure(const sp<IDevice>& device, const Model& model, const Request& request) {
+ // TODO: Should this always succeed?
+ // What if the invalid input is part of the model (i.e., a parameter).
+ validateModel(device, model);
+
+ // Create IPreparedModel.
+ sp<IPreparedModel> preparedModel;
+ createPreparedModel(device, model, &preparedModel);
+ if (preparedModel == nullptr) return;
+
+ validateRequestFailure(preparedModel, request);
+}
+
+TEST_P(ValidationTest, Test) {
+ const Model model = createModel(kTestModel);
+ const Request request = createRequest(kTestModel);
+ if (kTestModel.expectFailure) {
+ validateFailure(kDevice, model, request);
+ } else {
+ validateEverything(kDevice, model, request);
+ }
+}
+
+INSTANTIATE_GENERATED_TEST(ValidationTest, [](const test_helper::TestModel&) { return true; });
+
+sp<IPreparedModel> getPreparedModel_1_2(const sp<implementation::PreparedModelCallback>& callback) {
+ sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
+ return IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
+}
+
+} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
diff --git a/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h
new file mode 100644
index 0000000..d01336e
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.h
@@ -0,0 +1,57 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_NEURALNETWORKS_V1_2_VTS_HAL_NEURALNETWORKS_H
+#define ANDROID_HARDWARE_NEURALNETWORKS_V1_2_VTS_HAL_NEURALNETWORKS_H
+
+#include <android/hardware/neuralnetworks/1.2/IDevice.h>
+#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
+#include <android/hardware/neuralnetworks/1.2/types.h>
+#include <gtest/gtest.h>
+#include "1.0/Utils.h"
+#include "1.2/Callbacks.h"
+
+namespace android::hardware::neuralnetworks::V1_2::vts::functional {
+
+using NamedDevice = Named<sp<IDevice>>;
+using NeuralnetworksHidlTestParam = NamedDevice;
+
+class NeuralnetworksHidlTest : public testing::TestWithParam<NeuralnetworksHidlTestParam> {
+ protected:
+ void SetUp() override;
+ const sp<IDevice> kDevice = getData(GetParam());
+};
+
+const std::vector<NamedDevice>& getNamedDevices();
+
+std::string printNeuralnetworksHidlTest(
+ const testing::TestParamInfo<NeuralnetworksHidlTestParam>& info);
+
+#define INSTANTIATE_DEVICE_TEST(TestSuite) \
+ INSTANTIATE_TEST_SUITE_P(PerInstance, TestSuite, testing::ValuesIn(getNamedDevices()), \
+ printNeuralnetworksHidlTest)
+
+// Create an IPreparedModel object. If the model cannot be prepared,
+// "preparedModel" will be nullptr instead.
+void createPreparedModel(const sp<IDevice>& device, const Model& model,
+ sp<IPreparedModel>* preparedModel);
+
+// Utility function to get PreparedModel from callback and downcast to V1_2.
+sp<IPreparedModel> getPreparedModel_1_2(const sp<implementation::PreparedModelCallback>& callback);
+
+} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
+
+#endif // ANDROID_HARDWARE_NEURALNETWORKS_V1_2_VTS_HAL_NEURALNETWORKS_H
diff --git a/neuralnetworks/1.3/vts/functional/include/1.2/Callbacks.h b/neuralnetworks/1.3/vts/functional/include/1.2/Callbacks.h
new file mode 100644
index 0000000..bf4792c
--- /dev/null
+++ b/neuralnetworks/1.3/vts/functional/include/1.2/Callbacks.h
@@ -0,0 +1,325 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_NEURALNETWORKS_V1_2_CALLBACKS_H
+#define ANDROID_HARDWARE_NEURALNETWORKS_V1_2_CALLBACKS_H
+
+#include <android-base/thread_annotations.h>
+#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
+#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
+#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
+#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
+#include <hidl/Status.h>
+#include <condition_variable>
+#include <mutex>
+
+/*
+ * The Callback classes are used internally by the NeuralNetworks runtime to
+ * synchronize between different threads. An asynchronous task is launched
+ * paired with a callback object. When a client thread requires the output being
+ * generated by the asynchronous task, the client thread can wait for the result
+ * and be blocked until it has completed. Any wait may safely be called
+ * concurrently, even on the same callback object. When the asynchronous task
+ * has finished its workload, it must immediately call "notify*". If the
+ * asynchronous task has failed to launch, the function that tried to launch the
+ * asynchronous task must immediately call "notify*". This "notify*" call
+ * awakens any client threads waiting on the callback object.
+ *
+ * These classes exist to enable synchronization across HIDL. When
+ * synchronization is only required in the same process, consider using
+ * std::future, std::mutex, std::condition_variable, or std::experimental::latch
+ * instead.
+ */
+
+namespace android::hardware::neuralnetworks::V1_2::implementation {
+
+/**
+ * The PreparedModelCallback class is used to receive the error status of
+ * preparing a model as well as the prepared model from a task executing
+ * asynchronously with respect to the runtime. If a calling thread calls wait
+ * or get* on a PreparedModelCallback object and the corresponding asynchronous
+ * task has not finished preparing the model, the calling thread will block
+ * until the asynchronous task has either called notify or notify_1_2.
+ *
+ * If the callback object is notified more than once, only the results of the
+ * first call to notify* are used, and the results from subsequent calls are
+ * discarded.
+ *
+ * This callback object is passed as an argument to IDevice::prepareModel*.
+ */
+class PreparedModelCallback : public IPreparedModelCallback {
+ public:
+ /**
+ * IPreparedModelCallback::notify marks the callback object with the return
+ * status of the asynchronous model preparation along with the prepared
+ * model, and allows all prior and future wait calls on the
+ * PreparedModelCallback object to proceed.
+ *
+ * Either IPreparedModelCallback::notify or
+ * IPreparedModelCallback::notify_1_2 must be called on a given
+ * PreparedModelCallback object.
+ *
+ * If the callback object is notified more than once, only the results of
+ * the first call to notify* are used, and the results from subsequent calls
+ * are discarded.
+ *
+ * @param status Error status returned from asynchronously preparing the
+ * model; will be:
+ * - NONE if the asynchronous preparation was successful
+ * - DEVICE_UNAVAILABLE if driver is offline or busy
+ * - GENERAL_FAILURE if there is an unspecified error
+ * - INVALID_ARGUMENT if the input model is invalid
+ * @param preparedModel Returned model that has been prepared for execution,
+ * nullptr if the model was unable to be prepared.
+ */
+ Return<void> notify(V1_0::ErrorStatus status,
+ const sp<V1_0::IPreparedModel>& preparedModel) override;
+
+ /**
+ * IPreparedModelCallback::notify_1_2 marks the callback object with the
+ * return status of the asynchronous model preparation along with the
+ * prepared model, and allows all prior and future wait calls on the
+ * PreparedModelCallback object to proceed.
+ *
+ * Either IPreparedModelCallback::notify or
+ * IPreparedModelCallback::notify_1_2 must be called on a given
+ * PreparedModelCallback object.
+ *
+ * If the callback object is notified more than once, only the results of
+ * the first call to notify* are used, and the results from subsequent calls
+ * are discarded.
+ *
+ * @param status Error status returned from asynchronously preparing the
+ * model; will be:
+ * - NONE if the asynchronous preparation was successful
+ * - DEVICE_UNAVAILABLE if driver is offline or busy
+ * - GENERAL_FAILURE if there is an unspecified error
+ * - INVALID_ARGUMENT if the input model is invalid
+ * @param preparedModel Returned model that has been prepared for execution,
+ * nullptr if the model was unable to be prepared.
+ */
+ Return<void> notify_1_2(V1_0::ErrorStatus status,
+ const sp<V1_2::IPreparedModel>& preparedModel) override;
+
+ /**
+ * PreparedModelCallback::wait blocks until notify* has been called on the
+ * callback object.
+ */
+ void wait() const;
+
+ /**
+ * Retrieves the error status returned from the asynchronous task launched
+ * by IDevice::prepareModel*. If IDevice::prepareModel* has not finished
+ * asynchronously preparing the model, this call will block until the
+ * asynchronous task notifies the object.
+ *
+ * @return status Error status returned from asynchronously preparing the
+ * model; will be:
+ * - NONE if the asynchronous preparation was successful
+ * - DEVICE_UNAVAILABLE if driver is offline or busy
+ * - GENERAL_FAILURE if there is an unspecified error
+ * - INVALID_ARGUMENT if the input model is invalid
+ */
+ V1_0::ErrorStatus getStatus() const;
+
+ /**
+ * Retrieves the model that has been prepared for execution from the
+ * asynchronous task launched by IDevice::prepareModel*. If
+ * IDevice::prepareModel* has not finished asynchronously preparing the
+ * model, this call will block until the asynchronous task notifies the
+ * object.
+ *
+ * @return preparedModel Returned model that has been prepared for
+ * execution, nullptr if the model was unable to be prepared.
+ */
+ sp<V1_0::IPreparedModel> getPreparedModel() const;
+
+ private:
+ mutable std::mutex mMutex;
+ mutable std::condition_variable mCondition;
+ bool mNotified GUARDED_BY(mMutex) = false;
+ V1_0::ErrorStatus mErrorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
+ sp<V1_0::IPreparedModel> mPreparedModel;
+};
+
+/**
+ * The ExecutionCallback class is used to receive the results of the execution
+ * from a task executing asynchronously with respect to the runtime. If a
+ * calling thread calls wait or get* on a ExecutionCallback object and the
+ * corresponding asynchronous task has not finished the execution, the calling
+ * thread will block until the asynchronous task has either called notify or
+ * notify_1_2.
+ *
+ * If the callback object is notified more than once, only the results of the
+ * first call to notify* are used, and the results from subsequent calls are
+ * discarded.
+ *
+ * This callback object is passed as an argument to IPreparedModel::execute*.
+ */
+class ExecutionCallback : public IExecutionCallback {
+ public:
+ /**
+ * IExecutionCallback::notify marks the callback object with the return
+ * status of the asynchronous execution that held this callback and enables
+ * all prior and future wait calls on the ExecutionCallback object to
+ * proceed.
+ *
+ * Either IExecutionCallback::notify or IExecutionCallback::notify_1_2 must
+ * be called on a given ExecutionCallback object.
+ *
+ * If the callback object is notified more than once, only the results of
+ * the first call to notify* are used, and the results from subsequent calls
+ * are discarded.
+ *
+ * @param status Error status returned from launching the asynchronous task
+ * (if the launch fails) or from the asynchronous task itself (if the
+ * launch succeeds). Must be:
+ * - NONE if the asynchronous execution was successful
+ * - DEVICE_UNAVAILABLE if driver is offline or busy
+ * - GENERAL_FAILURE if there is an unspecified error
+ * - OUTPUT_INSUFFICIENT_SIZE if provided output buffer is not large
+ * enough to store the resultant values
+ * - INVALID_ARGUMENT if the input request is invalid
+ */
+ Return<void> notify(V1_0::ErrorStatus status) override;
+
+ /**
+ * IExecutionCallback::notify_1_2 marks the callback object with the results
+ * (error status, dynamic output shapes, and timing information) of the
+ * asynchronous execution that held this callback and enables all prior and
+ * future wait calls on the ExecutionCallback object to proceed.
+ *
+ * Either IExecutionCallback::notify or IExecutionCallback::notify_1_2 must
+ * be called on a given ExecutionCallback object.
+ *
+ * If the callback object is notified more than once, only the results of
+ * the first call to notify* are used, and the results from subsequent calls
+ * are discarded.
+ *
+ * @param status Error status returned from launching the asynchronous task
+ * (if the launch fails) or from the asynchronous task itself (if the
+ * launch succeeds). Must be:
+ * - NONE if the asynchronous execution was successful
+ * - DEVICE_UNAVAILABLE if driver is offline or busy
+ * - GENERAL_FAILURE if the asynchronous task resulted in an unspecified
+ * error
+ * - OUTPUT_INSUFFICIENT_SIZE if at least one output operand buffer is
+ * not large enough to store the corresponding output
+ * - INVALID_ARGUMENT if one of the input arguments to prepareModel is
+ * invalid
+ * @param outputShapes A list of shape information of model output operands.
+ * The index into "outputShapes" corresponds to the index of the output
+ * operand in the Request outputs vector. outputShapes must be empty
+ * unless the status is either NONE or OUTPUT_INSUFFICIENT_SIZE.
+ * @param Timing Duration of execution. Unless MeasureTiming::YES was passed
+ * when launching the execution and status is NONE, all times must be
+ * reported as UINT64_MAX. A driver may choose to report any time as
+ * UINT64_MAX, indicating that particular measurement is not available.
+ */
+ Return<void> notify_1_2(V1_0::ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
+ const Timing& timing) override;
+
+ // An overload of the latest notify interface to hide the version from ExecutionBuilder.
+ Return<void> notify(V1_0::ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
+ const Timing& timing) {
+ return notify_1_2(status, outputShapes, timing);
+ }
+
+ /**
+ * ExecutionCallback::wait blocks until notify* has been called on the
+ * callback object.
+ */
+ void wait() const;
+
+ /**
+ * Retrieves the error status returned from the asynchronous task launched
+ * by either IPreparedModel::execute or IPreparedModel::execute_1_2. If
+ * IPreparedModel::execute or IPreparedModel::execute_1_2 has not finished
+ * asynchronously executing, this call will block until the asynchronous
+ * task notifies the object.
+ *
+ * @return status Error status returned from launching the asynchronous task
+ * (if the launch fails) or from the asynchronous task itself (if the
+ * launch succeeds). Must be:
+ * - NONE if the asynchronous execution was successful
+ * - DEVICE_UNAVAILABLE if driver is offline or busy
+ * - GENERAL_FAILURE if the asynchronous task resulted in an unspecified
+ * error
+ * - OUTPUT_INSUFFICIENT_SIZE if at least one output operand buffer is
+ * not large enough to store the corresponding output
+ * - INVALID_ARGUMENT if one of the input arguments to prepareModel is
+ * invalid
+ */
+ V1_0::ErrorStatus getStatus() const;
+
+ /**
+ * Retrieves the output shapes returned from the asynchronous task launched
+ * by IPreparedModel::execute_1_2. If IPreparedModel::execute_1_2 has not
+ * finished asynchronously executing, this call will block until the
+ * asynchronous task notifies the object.
+ *
+ * If the asynchronous task was launched by IPreparedModel::execute, an
+ * empty vector will be returned.
+ *
+ * @return outputShapes A list of shape information of model output
+ * operands. The index into "outputShapes" corresponds to the index of
+ * the output operand in the Request outputs vector. outputShapes must
+ * be empty unless the status is either NONE or
+ * OUTPUT_INSUFFICIENT_SIZE. outputShaps may be empty if the status is
+ * NONE and all model output operands are fully-specified at execution
+ * time. outputShapes must have the same number of elements as the
+ * number of model output operands if the status is
+ * OUTPUT_INSUFFICIENT_SIZE, or if the status is NONE and the model has
+ * at least one output operand that is not fully-specified.
+ */
+ const std::vector<OutputShape>& getOutputShapes() const;
+
+ /**
+ * Retrieves the duration of execution of the asynchronous task launched by
+ * IPreparedModel::execute_1_2. If IPreparedModel::execute_1_2 has not
+ * finished asynchronously executing, this call will block until the
+ * asynchronous task notifies the object.
+ *
+ * If the asynchronous task was launched by IPreparedModel::execute, every
+ * time must be UINT64_MAX.
+ *
+ * @return timing Duration of the execution. Every time must be UINT64_MAX
+ * unless the status is NONE.
+ */
+ Timing getTiming() const;
+
+ private:
+ /*
+ * ExecutionCallback::notifyInternal stores the results of the execution
+ * (status, output shapes, and timing information) in the ExecutionCallback
+ * object before any call to wait or get* return. It then enables all prior
+ * and future wait calls on the ExecutionCallback object to proceed.
+ */
+ void notifyInternal(V1_0::ErrorStatus errorStatus, const hidl_vec<OutputShape>& outputShapes,
+ const Timing& timing);
+
+ // members
+ mutable std::mutex mMutex;
+ mutable std::condition_variable mCondition;
+ bool mNotified GUARDED_BY(mMutex) = false;
+ V1_0::ErrorStatus mErrorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
+ std::vector<OutputShape> mOutputShapes = {};
+ Timing mTiming = {};
+};
+
+} // namespace android::hardware::neuralnetworks::V1_2::implementation
+
+#endif // ANDROID_HARDWARE_NEURALNETWORKS_V1_2_CALLBACKS_H