Merge "Increate testcase timeout for VtsHalHealthStorageV1_0TargetTest"
diff --git a/OWNERS b/OWNERS
index 9fbcb47..1d7a8e1 100644
--- a/OWNERS
+++ b/OWNERS
@@ -3,3 +3,4 @@
 malchev@google.com
 smoreland@google.com
 yim@google.com  # vts tests
+guangzhu@google.com # vts tests
diff --git a/camera/device/3.2/ICameraDevice.hal b/camera/device/3.2/ICameraDevice.hal
index 1f523e4..5236bb1 100644
--- a/camera/device/3.2/ICameraDevice.hal
+++ b/camera/device/3.2/ICameraDevice.hal
@@ -148,7 +148,9 @@
      * session handle for active operations.
      *
      * @param callback Interface to invoke by the HAL for device asynchronous
-     *     events.
+     *     events. For HALs newer than version 3.2, HAL must use castFrom
+     *     method to check the exact version of callback sent by camera service.
+     *
      * @return status Status code for the operation, one of:
      *     OK:
      *         On a successful open of the camera device.
diff --git a/camera/device/3.2/ICameraDeviceSession.hal b/camera/device/3.2/ICameraDeviceSession.hal
index e62dc07..278be5d 100644
--- a/camera/device/3.2/ICameraDeviceSession.hal
+++ b/camera/device/3.2/ICameraDeviceSession.hal
@@ -149,9 +149,8 @@
      *           - Including too many output streams of a certain format.
      *           - Unsupported rotation configuration
      *           - Stream sizes/formats don't satisfy the
-     *             camera3_stream_configuration_t->operation_mode requirements
-     *             for non-NORMAL mode, or the requested operation_mode is not
-     *             supported by the HAL.
+     *             StreamConfigurationMode requirements for non-NORMAL mode, or
+     *             the requested operation_mode is not supported by the HAL.
      *           - Unsupported usage flag
      *         The camera service cannot filter out all possible illegal stream
      *         configurations, since some devices may support more simultaneous
diff --git a/camera/device/3.4/ICameraDeviceSession.hal b/camera/device/3.4/ICameraDeviceSession.hal
index c41d90e..e1663e6 100644
--- a/camera/device/3.4/ICameraDeviceSession.hal
+++ b/camera/device/3.4/ICameraDeviceSession.hal
@@ -54,7 +54,7 @@
      *           - Including too many output streams of a certain format.
      *           - Unsupported rotation configuration
      *           - Stream sizes/formats don't satisfy the
-     *             camera3_stream_configuration_t->operation_mode requirements
+     *             StreamConfigurationMode requirements
      *             for non-NORMAL mode, or the requested operation_mode is not
      *             supported by the HAL.
      *           - Unsupported usage flag
diff --git a/camera/metadata/3.2/types.hal b/camera/metadata/3.2/types.hal
index 67b4e44..cef0397 100644
--- a/camera/metadata/3.2/types.hal
+++ b/camera/metadata/3.2/types.hal
@@ -1396,7 +1396,8 @@
      *
      * <p>The arrangement of color filters on sensor;
      * represents the colors in the top-left 2x2 section of
-     * the sensor, in reading order.</p>
+     * the sensor, in reading order, for a Bayer camera, or the
+     * light spectrum it captures for MONOCHROME camera.</p>
      */
     ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
 
diff --git a/camera/metadata/3.3/types.hal b/camera/metadata/3.3/types.hal
index 04edfe9..27d82b9 100644
--- a/camera/metadata/3.3/types.hal
+++ b/camera/metadata/3.3/types.hal
@@ -100,7 +100,7 @@
 
     /** android.request.availablePhysicalCameraRequestKeys [static, int32[], hidden]
      *
-     * <p>A subset of the available request keys that can be overriden for
+     * <p>A subset of the available request keys that can be overridden for
      * physical devices backing a logical multi-camera.</p>
      */
     ANDROID_REQUEST_AVAILABLE_PHYSICAL_CAMERA_REQUEST_KEYS,
@@ -109,8 +109,8 @@
 
     /** android.statistics.oisDataMode [dynamic, enum, public]
      *
-     * <p>A control for selecting whether OIS position information is included in output
-     * result metadata.</p>
+     * <p>A control for selecting whether optical stabilization (OIS) position
+     * information is included in output result metadata.</p>
      */
     ANDROID_STATISTICS_OIS_DATA_MODE = android.hardware.camera.metadata@3.2::CameraMetadataTag:ANDROID_STATISTICS_END,
 
@@ -154,7 +154,7 @@
 
     ANDROID_INFO_END_3_3,
 
-    /** android.logicalMultiCamera.physicalIds [static, byte[], hidden]
+    /** android.logicalMultiCamera.physicalIds [static, byte[], ndk_public]
      *
      * <p>String containing the ids of the underlying physical cameras.</p>
      */
diff --git a/current.txt b/current.txt
index 1f327f6..8f93d8e 100644
--- a/current.txt
+++ b/current.txt
@@ -385,8 +385,12 @@
 10ff2fae516346b86121368ce5790d5accdfcb73983246b813f3d488b66db45a android.hardware.wifi.supplicant@1.1::ISupplicantStaNetwork
 
 # ABI preserving changes to HALs during Android Q
-f72d23278af99a2f6a9c1d40352b67dbf1f582282f799f88f7235dc7c13892b5 android.hardware.camera.device@3.2::ICameraDeviceSession
+2a55e224aa9bc62c0387cd85ad3c97e33f0c33a4e1489cbae86b2523e6f9df35 android.hardware.camera.device@3.2::ICameraDevice
+8caf9104dc6885852c0b117d853dd93f6d4b61a0a365138295eb8bcd41b36423 android.hardware.camera.device@3.2::ICameraDeviceSession
+684702a60deef03a1e8093961dc0a18c555c857ad5a77ba7340b0635ae01eb70 android.hardware.camera.device@3.4::ICameraDeviceSession
 f8a19622cb0cc890913b1ef3e32b675ffb26089a09e02fef4056ebad324d2b5d android.hardware.camera.device@3.4::types
+291638a1b6d4e63283e9e722ab5049d9351717ffa2b66162124f84d1aa7c2835 android.hardware.camera.metadata@3.2::types
+8a075cf3a17fe99c6d23415a3e9a65612f1fee73ee052a3a8a0ca5b8877395a4 android.hardware.camera.metadata@3.3::types
 da33234403ff5d60f3473711917b9948e6484a4260b5247acdafb111193a9de2 android.hardware.configstore@1.0::ISurfaceFlingerConfigs
 21165b8e30c4b2d52980e4728f661420adc16e38bbe73476c06b2085be908f4c android.hardware.gnss@1.0::IGnssCallback
 d702fb01dc2a0733aa820b7eb65435ee3334f75632ef880bafd2fb8803a20a58 android.hardware.gnss@1.0::IGnssMeasurementCallback
@@ -401,3 +405,40 @@
 e78cf871f9fd1c072874e481e06e18e2681763cf2aa38c1fd777d53bab4eb69b android.hardware.sensors@1.0::types
 1722ad002317b1fae1400de709e90f442d94ef22864e05f7a12af48c32e8edc8 android.hardware.usb@1.1::types
 29c8da7a13c40d488f569c812441d5754ee45bdcdb8ce6564f524b708d10a057 android.hardware.vibrator@1.1::types
+
+# HALs released in Android Q
+438dc52ab820befb7a11e953e82110f0d8c91cdf96ef62be921efc64f5a3d580 android.hardware.atrace@1.0::IAtraceDevice
+20b9f81bb0b1f812f150ec94d42648b01087f2344ea91df0416bce0fb6cdfbd4 android.hardware.atrace@1.0::types
+44480c912e4ab90b9ed17e56569cd5ca98413a8a2372efb028f4181204b6b73e android.hardware.fastboot@1.0::IFastboot
+7b2989744e3c555292d4b5b829acd09a7b40f96ead62ce54174cd959503b64bb android.hardware.fastboot@1.0::types
+c3f831a66d5815baf74f5b82fe79cf099542ddae4dfab3f388e1d41828e794fc android.hardware.health.storage@1.0::IGarbageCollectCallback
+dd1ec219f5d2e2b33c6c0bcb92e63bbedb36f7c716413462848f6b6ae74fc864 android.hardware.health.storage@1.0::IStorage
+2b4a14661e6a38617b7dd0c6ebb66a56a90e564674ac7697a14cb8a0cab92b2f android.hardware.health.storage@1.0::types
+4880af120fc1640225abdc2c60bda6d79617d73484d5124913c7278af3b11e2d android.hardware.neuralnetworks@1.2::IBurstCallback
+19877e466ad8c6ed42b38050b77bd010cf7800ff365fdc8574f45bbfda03a758 android.hardware.neuralnetworks@1.2::IBurstContext
+96249c852dabeefa3a9496ecdfc44681a071c665bfbf88527bf775c88bf1ab1b android.hardware.neuralnetworks@1.2::IDevice
+92714960d1a53fc2ec557302b41c7cc93d2636d8364a44bd0f85be0c92927ff8 android.hardware.neuralnetworks@1.2::IExecutionCallback
+83885d366f22ada42c00d8854f0b7e7ba4cf73ddf80bb0d8e168ce132cec57ea android.hardware.neuralnetworks@1.2::IPreparedModel
+e1c734d1545e1a4ae749ff1dd9704a8e594c59aea7c8363159dc258e93e0df3b android.hardware.neuralnetworks@1.2::IPreparedModelCallback
+313b341f1f6196a48cf304eaf067f67510c1ebc04df8c7cd536db5611df5c5c2 android.hardware.neuralnetworks@1.2::types
+cf7a4ba516a638f9b82a249c91fb603042c2d9ca43fd5aad9cf6c0401ed2a5d7 android.hardware.nfc@1.2::INfc
+abf98c2ae08bf765db54edc8068e36d52eb558cff6706b6fd7c18c65a1f3fc18 android.hardware.nfc@1.2::types
+4cb252dc6372a874aef666b92a6e9529915aa187521a700f0789065c3c702ead android.hardware.power.stats@1.0::IPowerStats
+69c394e7fe3236beb6231a709865e8a882aac7a612c8dddf64f5a66028fa2c68 android.hardware.power.stats@1.0::types
+11620ce020b6ef8f5b63eb2a39390de4a2fbbccc0a5e558b5b1a0e22e33f63cf android.hardware.radio@1.3::IRadio
+e9d0f11a52715f5a29d89e2d8e2e21db1e16a43174af6b9d51a62d705cda1455 android.hardware.radio@1.3::IRadioIndication
+d233f0da44f55fdef0a95db5229231412787bb67695cd1ea197ce89a3c2908b9 android.hardware.radio@1.3::IRadioResponse
+750a363c8cec70baa1aac19e275c15233c5898e93c6bb5155fa2ca7f365490dc android.hardware.radio@1.3::types
+21e6ce53f1759f6a213ca05bac3c0325ed911f74764d1c1f6fa5ed8068ade65b android.hardware.radio@1.4::IRadio
+33d9e6895cca98aa56296bb01720d18b8acd0e4de4960beb712e63ad147438a5 android.hardware.radio@1.4::IRadioIndication
+0cc0dd87c634aad36d7df22b2832839ef7ded71909dbcde11cfdd69dc0dc52b8 android.hardware.radio@1.4::IRadioResponse
+29d34232cc3974626b08759e039fe788bded7695cdeb098458e3e11e4c7d3603 android.hardware.radio@1.4::types
+51e696c0ceff30f74da8ff8d02fe4522ffd2f4a04cdfdbca0c68bfa64fcd306b android.hardware.radio.config@1.1::IRadioConfig
+7fcf167f593b10c67b59ab70321781c26a5575eab60803e7cbb1c14c71085a3b android.hardware.radio.config@1.1::IRadioConfigIndication
+b42eb3bbd5e7b519e28362340c2205aa75356de6b30f4fd09ec2ea784f250ab0 android.hardware.radio.config@1.1::IRadioConfigResponse
+989ffce9105bb21626fd7ef51330ad47a3292a77bef77ac59badd9da40316ca7 android.hardware.radio.config@1.1::types
+b0d452f9a2e45f80bdb672b1e4cb649fff50293bdf208099be41738f11cd2ead android.hardware.radio.config@1.2::IRadioConfigIndication
+d8e7717e8187dd7453d4142f8f331e7c325e7a6f9e8d44ac0d52b3be502bfe83 android.hardware.radio.config@1.2::IRadioConfigResponse
+93b8102078e25057ae347ac9704e87529eb26121c2a1b419b362dd36eccefc4d android.hardware.radio.config@1.2::types
+08d439c463e4044fa78874037d8e8379aa3cabecde32f08a775897eea5a538af android.hardware.secure_element@1.1::ISecureElement
+b53ac9d61c24efb16a2d63a861cef20680f6d57adb244a03b9778c675550628b android.hardware.secure_element@1.1::ISecureElementHalCallback
diff --git a/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp b/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
index 2e13854..0724c09 100644
--- a/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
+++ b/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
@@ -548,7 +548,7 @@
         std::cout << "[          ]   Early termination of test because vendor service cannot "
                      "prepare model that it does not support."
                   << std::endl;
-        GTEST_SKIP();
+        return;
     }
     EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
     ASSERT_NE(nullptr, preparedModel->get());
@@ -561,6 +561,9 @@
     V1_2::Model model = create_model();
     sp<V1_2::IPreparedModel> preparedModel = nullptr;
     PrepareModel(device, model, &preparedModel);
+    if (preparedModel == nullptr) {
+        GTEST_SKIP();
+    }
     EvaluatePreparedModel(preparedModel, is_ignored, examples,
                           model.relaxComputationFloat32toFloat16, testDynamicOutputShape);
 }
diff --git a/neuralnetworks/1.2/Android.bp b/neuralnetworks/1.2/Android.bp
index 0642dce..daf0c18 100644
--- a/neuralnetworks/1.2/Android.bp
+++ b/neuralnetworks/1.2/Android.bp
@@ -24,6 +24,7 @@
     types: [
         "Constant",
         "DeviceType",
+        "Extension",
         "FmqRequestDatum",
         "FmqResultDatum",
         "MeasureTiming",
diff --git a/neuralnetworks/1.2/types.hal b/neuralnetworks/1.2/types.hal
index 5b1c7f9..06bdc6a 100644
--- a/neuralnetworks/1.2/types.hal
+++ b/neuralnetworks/1.2/types.hal
@@ -38,6 +38,8 @@
      *
      * Values of this operand type are either true or false. A zero value
      * represents false; any other value represents true.
+     *
+     * Available since API level 29.
      */
     BOOL = 6,
     /**
@@ -48,41 +50,49 @@
      * realValue = integerValue * scale.
      *
      * scale is a 32 bit floating point with value greater than zero.
+     *
+     * Available since API level 29.
      */
     TENSOR_QUANT16_SYMM = 7,
-    /** A tensor of IEEE 754 16 bit floating point values. */
+    /**
+     * A tensor of IEEE 754 16 bit floating point values.
+     *
+     * Available since API level 29.
+     */
     TENSOR_FLOAT16 = 8,
     /**
      * A tensor of 8 bit boolean values.
      *
      * Values of this operand type are either true or false. A zero value
      * represents false; any other value represents true.
+     *
+     * Available since API level 29.
      */
     TENSOR_BOOL8 = 9,
-    /** An IEEE 754 16 bit floating point scalar value. */
+    /**
+     * An IEEE 754 16 bit floating point scalar value.
+     *
+     * Available since API level 29.
+     */
     FLOAT16 = 10,
     /**
      * A tensor of 8 bit signed integers that represent real numbers.
      *
-     * This tensor is associated with additional fields that are
-     * used to convert the 8 bit signed integer to the real value and vice versa.
+     * This tensor is associated with additional fields that can
+     * be used to convert the 8 bit signed integer to the real value and vice versa.
      * These fields are:
      * - channelDim: a 32 bit unsigned integer indicating channel dimension.
      * - scales: an array of positive 32 bit floating point values.
      * The size of the scales array must be equal to dimensions[channelDim].
-     * These fields are located inside Operand's extraParams union, inside the
-     * SymmPerChannelQuantParams struct.
      *
-     * An Operand of this type must use the 'channelQuant' variant of its
-     * extraParams field.
+     * The channel dimension of this tensor must not be unknown (dimensions[channelDim] != 0).
      *
-     * The channel dimension of this tensor must be known, i.e.
-     * dimensions[channelDim] must be non-zero.
-     *
-     * The formula for real values:
+     * The formula is:
      * realValue[..., C, ...] =
      *     integerValue[..., C, ...] * scales[C]
      * where C is an index in the Channel dimension.
+     *
+     * Available since API level 29.
      */
     TENSOR_QUANT8_SYMM_PER_CHANNEL = 11,
     /**
@@ -95,6 +105,8 @@
      *
      * The formula is:
      * real_value = (integer_value - zeroPoint) * scale.
+     *
+     * Available since API level 29.
      */
     TENSOR_QUANT16_ASYMM = 12,
     /**
@@ -105,8 +117,24 @@
      * realValue = integerValue * scale.
      *
      * scale is a 32 bit floating point with value greater than zero.
+     *
+     * Available since API level 29.
      */
     TENSOR_QUANT8_SYMM = 13,
+    /*
+     * DEPRECATED. Since NNAPI 1.2, extensions are the preferred alternative to
+     * OEM operation and data types.
+     *
+     * OEM specific scalar value.
+     * OEM                 = 10000,
+     */
+    /*
+     * DEPRECATED. Since NNAPI 1.2, extensions are the preferred alternative to
+     * OEM operation and data types.
+     *
+     * A tensor of OEM specific values.
+     * TENSOR_OEM_BYTE     = 10001,
+     */
     /* ADDING A NEW FUNDAMENTAL TYPE REQUIRES UPDATING THE VALUE OF
      * OperandTypeRange::FUNDAMENTAL_MAX.
      */
@@ -132,64 +160,4342 @@
  *
  * The type of an operation in a model.
  */
-enum OperationType : @1.1::OperationType {
-    // TODO(b/116445845): Sync docs when all ops are implemented.
+enum OperationType : int32_t {
+    /**
+     * Adds two tensors, element-wise.
+     *
+     * Takes two input tensors of identical {@link OperandType} and compatible
+     * dimensions. The output is the sum of both input tensors, optionally
+     * modified by an activation function.
+     *
+     * Two dimensions are compatible when:
+     *     1. they are equal, or
+     *     2. one of them is 1
+     *
+     * The size of the output is the maximum size along each dimension of the
+     * input operands. It starts with the trailing dimensions, and works its
+     * way forward.
+     *
+     * Example:
+     *
+     *     input1.dimension = {4, 1, 2}
+     *     input2.dimension = {5, 4, 3, 1}
+     *     output.dimension = {5, 4, 3, 2}
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType}, and compatible dimensions
+     *      as input0.
+     * * 2: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     *
+     * Outputs:
+     * * 0: The sum, a tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 27.
+     */
+    ADD = @1.1::OperationType:ADD,
+
+    /**
+     * Performs a 2-D average pooling operation.
+     *
+     * The output dimensions are functions of the filter dimensions, stride, and
+     * padding.
+     *
+     * The values in the output tensor are computed as:
+     *
+     *     output[b, i, j, channel] =
+     *         sum_{di, dj}(
+     *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
+     *         ) / sum(1)
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Both explicit padding and implicit padding are supported.
+     *
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the left, in the ‘width’ dimension.
+     * * 2: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the right, in the ‘width’ dimension.
+     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the top, in the ‘height’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the bottom, in the ‘height’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 7: An {@link OperandType::INT32} scalar, specifying the filter
+     *      width.
+     * * 8: An {@link OperandType::INT32} scalar, specifying the filter
+     *      height.
+     * * 9: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 10: An optional {@link OperandType::BOOL} scalar, default to false.
+     *       Set to true to specify NCHW data layout for input0 and output0.
+     *       Available since API level 29.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the implicit
+     *      padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 2: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 3: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the filter
+     *      width.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the filter
+     *      height.
+     * * 6: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 7: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape
+     *      [batches, out_height, out_width, depth].
+     *
+     * Available since API level 27.
+     */
+    AVERAGE_POOL_2D = @1.1::OperationType:AVERAGE_POOL_2D,
+
+    /**
+     * Concatenates the input tensors along the given dimension.
+     *
+     * The input tensors must have identical {@link OperandType} and the same
+     * dimensions except the dimension along the concatenation axis.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM} (full support since API
+     *   level 29, see the input section)
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0 ~ n-1: The list of n input tensors, of shape
+     *            [D0, D1, ..., Daxis(i), ..., Dm].
+     *            Before API level 29, all input tensors of
+     *            {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *            must have the same scale and zeroPoint as the output tensor.
+     * * n: An {@link OperandType::INT32} scalar, specifying the
+     *      concatenation axis.
+     *
+     * Outputs:
+     * * 0: The output, a tensor of the same {@link OperandType} as the input
+     *      tensors. The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
+     *
+     * Available since API level 27.
+     */
+    CONCATENATION = @1.1::OperationType:CONCATENATION,
+
+    /**
+     * Performs an 2-D convolution operation.
+     *
+     * The CONV_2D op sweeps a 2-D filter that can mix channels together over a
+     * batch of images, applying the filter to each window of each image of the
+     * appropriate size.
+     *
+     * The output dimensions are functions of the filter dimensions, stride, and
+     * padding.
+     *
+     * The values in the output tensor are computed as:
+     *
+     *     output[b, i, j, channel] =
+     *         sum_{di, dj, k} (
+     *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
+     *             filter[channel, di, dj, k]
+     *         ) + bias[channel]
+     *
+     * Supported tensor {@link OperandType} configurations:
+     * * 32 bit Floating point :
+     * * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
+     *
+     * * Quantized:
+     * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
+     * * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
+     * * * input.scale * filter.scale).
+     *
+     * Available since API level 29:
+     * * Quantized with symetric per channel quantization for the filter:
+     * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
+     * * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
+     * * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
+     * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
+     *
+     * * 16 bit Floating point:
+     * * {@link OperandType::TENSOR_FLOAT16} for input, filter, output, and bias.
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Both explicit padding and implicit padding are supported.
+     *
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input.
+     * * 1: A 4-D tensor, of shape
+     *      [depth_out, filter_height, filter_width, depth_in], specifying the
+     *      filter. For tensor of type
+     *      {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
+     *      dimension (extraParams.channelQuant.channelDim) must be set to 0.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
+     *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
+     *      {@link OperandType::TENSOR_FLOAT16}, the bias must be of the same
+     *      type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
+     *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
+     *      of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
+     *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
+     *      bias_scale[i] = input_scale * filter_scale[i].
+     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the left, in the ‘width’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the right, in the ‘width’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the top, in the ‘height’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the bottom, in the ‘height’ dimension.
+     * * 7: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 8: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 9: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 10: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     * * 11: An optional {@link OperandType::INT32} scalar, specifying the dilation
+     *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
+     *      cells between each filter element on width dimension. If this input is set,
+     *      input 12 (dilation factor for height) must be specified as well.
+     *      Available since API level 29.
+     * * 12: An optional {@link OperandType::INT32} scalar, specifying the dilation
+     *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
+     *      cells between each filter element on height dimension. If this input is set,
+     *      input 11 (dilation factor for width) must be specified as well.
+     *      Available since API level 29.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input.
+     * * 1: A 4-D tensor, of shape
+     *      [depth_out, filter_height, filter_width, depth_in], specifying the
+     *      filter. For tensor of type
+     *      {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
+     *      dimension (extraParams.channelQuant.channelDim) must be set to 0.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
+     *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
+     *      {@link OperandType::TENSOR_FLOAT16}, the bias must be of the same
+     *      type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
+     *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
+     *      of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
+     *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
+     *      bias_scale[i] = input_scale * filter_scale[i].
+     * * 3: An {@link OperandType::INT32} scalar, specifying the implicit
+     *      padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 7: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     * * 8: An optional {@link OperandType::INT32} scalar, specifying the dilation
+     *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
+     *      cells between each filter element on width dimension. If this input is set,
+     *      input 9 (dilation factor for height) must be specified as well.
+     *      Available since API level 29.
+     * * 9: An optional {@link OperandType::INT32} scalar, specifying the dilation
+     *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
+     *      cells between each filter element on height dimension. If this input is set,
+     *      input 8 (dilation factor for width) must be specified as well.
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape
+     *      [batches, out_height, out_width, depth_out]. For output tensor of
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
+     *      must be satisfied: output_scale > input_scale * filter_scale (for
+     *      filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
+     *      this condition must be true for all filter scales).
+     *
+     * Available since API level 27.
+     */
+    CONV_2D = @1.1::OperationType:CONV_2D,
+
+    /**
+     * Performs a depthwise 2-D convolution operation.
+     *
+     * Given an input tensor of shape [batches, height, width, depth_in] and a
+     * filter tensor of shape [1, filter_height, filter_width, depth_out]
+     * containing depth_out convolutional filters of depth 1, DEPTHWISE_CONV
+     * applies a different filter to each input channel (expanding from 1
+     * channel to channel_multiplier channels for each), then concatenates the
+     * results together.
+     *
+     * The output has depth_out = depth_in * depth_multiplier channels.
+     * The output dimensions are functions of the filter dimensions, stride, and
+     * padding.
+     *
+     * The values in the output tensor are computed as:
+     *
+     *     output[b, i, j, k * channel_multiplier + q] =
+     *         sum_{di, dj} (
+     *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
+     *             filter[1, di, dj, k * channel_multiplier + q]
+     *         ) + bias[k * channel_multiplier + q]
+     *
+     * Supported tensor {@link OperandType} configurations:
+     * * 32 bit Floating point :
+     * * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
+     *
+     * * Quantized:
+     * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
+     * * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
+     * * * input.scale * filter.scale).
+     *
+     * Available since API level 29:
+     * * Quantized with symetric per channel quantization for the filter:
+     * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
+     * * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
+     * * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
+     * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Both explicit padding and implicit padding are supported.
+     *
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input.
+     * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
+     *      specifying the filter. For tensor of type
+     *      {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
+     *      dimension (extraParams.channelQuant.channelDim) must be set to 3.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
+     *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
+     *      {@link OperandType::TENSOR_FLOAT16}, the bias must be of the same
+     *      type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
+     *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
+     *      of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
+     *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
+     *      bias_scale[i] = input_scale * filter_scale[i].
+     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the left, in the ‘width’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the right, in the ‘width’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the top, in the ‘height’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the bottom, in the ‘height’ dimension.
+     * * 7: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 8: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 9: An {@link OperandType::INT32} scalar, specifying the depthwise
+     *      multiplier.
+     * * 10: An {@link OperandType::INT32} scalar, and has to be one of the
+     *       {@link FusedActivationFunc} values. Specifies the activation to
+     *       invoke on the result.
+     * * 11: An optional {@link OperandType::BOOL} scalar, default to false.
+     *       Set to true to specify NCHW data layout for input0 and output0.
+     *       Available since API level 29.
+     * * 12: An optional {@link OperandType::INT32} scalar, specifying the dilation
+     *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
+     *      cells between each filter element on width dimension. If this input is set,
+     *      input 13 (dilation factor for height) must be specified as well.
+     *      Available since API level 29.
+     * * 13: An optional {@link OperandType::INT32} scalar, specifying the dilation
+     *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
+     *      cells between each filter element on height dimension. If this input is set,
+     *      input 12 (dilation factor for width) must be specified as well.
+     *      Available since API level 29.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input.
+     * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
+     *      specifying the filter.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
+     *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
+     *      {@link OperandType::TENSOR_FLOAT16}, the bias must be of the same
+     *      type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
+     *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
+     *      of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
+     *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
+     *      bias_scale[i] = input_scale * filter_scale[i].
+     * * 3: An {@link OperandType::INT32} scalar, specifying the implicit
+     *      padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the depthwise
+     *      multiplier.
+     * * 7: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 8: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     * * 9: An optional {@link OperandType::INT32} scalar, specifying the dilation
+     *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
+     *      cells between each filter element on width dimension. If this input is set,
+     *      input 10 (dilation factor for height) must be specified as well.
+     *      Available since API level 29.
+     * * 10: An optional {@link OperandType::INT32} scalar, specifying the dilation
+     *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
+     *      cells between each filter element on height dimension. If this input is set,
+     *      input 9 (dilation factor for width) must be specified as well.
+     *      Available since API level 29.
+
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape
+     *      [batches, out_height, out_width, depth_out]. For output tensor of
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
+     *      must be satisfied: output_scale > input_scale * filter_scale (for
+     *      filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
+     *      this condition must be true for all filter scales).
+     *
+     * Available since API level 27.
+     */
+    DEPTHWISE_CONV_2D = @1.1::OperationType:DEPTHWISE_CONV_2D,
+
+    /**
+     * Rearranges data from depth into blocks of spatial data.
+     *
+     * More specifically, this op outputs a copy of the input tensor where
+     * values from the depth dimension are moved in spatial blocks to the height
+     * and width dimensions. The value block_size indicates the input block size
+     * and how the data is moved.
+     *
+     * Chunks of data of size block_size * block_size from depth are rearranged
+     * into non-overlapping blocks of size block_size x block_size.
+     *
+     * The width of the output tensor is input_depth * block_size, whereas the
+     * height is input_height * block_size. The depth of the input tensor must
+     * be divisible by block_size * block_size
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the block_size.
+     *      block_size must be >=1 and block_size * block_size must be a divisor
+     *      of the input depth.
+     * * 2: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batch, height*block_size,
+     *      width*block_size, depth/(block_size*block_size)].
+     *
+     * Available since API level 27.
+     */
+    DEPTH_TO_SPACE = @1.1::OperationType:DEPTH_TO_SPACE,
+
+    /**
+     * Dequantizes the input tensor.
+     *
+     * The formula is:
+     *
+     *     output = (input - zeroPoint) * scale.
+     *
+     * Supported input tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     * * {@link OperandType::TENSOR_QUANT8_SYMM} (since API level 29)
+     * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} (since API level 29)
+     *
+     * Supported output tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}.
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: A tensor with the same shape as input0.
+     *
+     * Available since API level 27.
+     */
+    DEQUANTIZE = @1.1::OperationType:DEQUANTIZE,
+
+    /**
+     * Looks up sub-tensors in the input tensor.
+     *
+     * This operator takes for input a tensor of values (Values) and
+     * a one-dimensional tensor of selection indices (Lookups).
+     * The output tensor is the concatenation of sub-tensors of Values as
+     * selected by Lookups.
+     *
+     * Think of Values as being sliced along its first dimension:
+     * The entries in Lookups select which slices are concatenated together
+     * to create the output tensor.
+     *
+     * For example, if Values has shape of [40, 200, 300] and
+     * Lookups has shape of [3], all three values found in Lookups are
+     * expected to be between 0 and 39. The resulting tensor must
+     * have shape of [3, 200, 300].
+     *
+     * If a value in Lookups is out of bounds, the operation must fail
+     * and an error must be reported.
+     *
+     * Supported value tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported value tensor rank: from 2
+     *
+     * Inputs:
+     * * 0: Lookups. A 1-D tensor of {@link OperandType::TENSOR_INT32}.
+     *      The values are indices into the first dimension of Values.
+     * * 1: Values. An n-D tensor, where n >= 2, from which sub-tensors are
+     *      extracted.
+     *
+     * Output:
+     * * 0: A n-D tensor with the same rank and shape as the Values
+     *      tensor, except for the first dimension which has the same size
+     *      as Lookups' only dimension.
+     *
+     * Available since API level 27.
+     */
+    EMBEDDING_LOOKUP = @1.1::OperationType:EMBEDDING_LOOKUP,
+
+    /**
+     * Computes element-wise floor() on the input tensor.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor, of the same {@link OperandType} and dimensions as
+     *      the input tensor.
+     *
+     * Available since API level 27.
+     */
+    FLOOR = @1.1::OperationType:FLOOR,
+
+    /**
+     * Denotes a fully (densely) connected layer, which connects all elements
+     * in the input tensor with each element in the output tensor.
+     *
+     * This layer implements the operation:
+     *
+     *     outputs = activation(inputs * weights’ + bias)
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4.
+     *
+     * Inputs:
+     * * 0: A tensor of at least rank 2, specifying the input. If rank is
+     *      greater than 2, then it gets flattened to a 2-D Tensor. The
+     *      (flattened) 2-D Tensor is reshaped (if necessary) to
+     *      [batch_size, input_size], where "input_size" corresponds to the
+     *      number of inputs to the layer, matching the second dimension of
+     *      weights, and "batch_size" is calculated by dividing the number of
+     *      elements by "input_size".
+     * * 1: A 2-D tensor, specifying the weights, of shape
+     *      [num_units, input_size], where "num_units" corresponds to the number
+     *      of output nodes.
+     * * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input
+     *      tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
+     *      also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor
+     *      of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
+     *      of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
+     *      bias_scale == input_scale * filter_scale.
+     * * 3: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     *
+     * Outputs:
+     * * 0: The output tensor, of shape [batch_size, num_units]. For output
+     *      tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the following
+     *      condition must be satisfied:
+     *      output_scale > input_scale * filter_scale.
+     *
+     * Available since API level 27.
+     */
+    FULLY_CONNECTED = @1.1::OperationType:FULLY_CONNECTED,
+
+    /**
+     * Looks up sub-tensors in the input tensor using a key-value map.
+     *
+     * This operator takes for input a tensor of values (Values),
+     * a one-dimensional tensor of selection values (Lookups) and
+     * a one-dimensional tensor that maps these values to Values
+     * indexes. The output tensor is the concatenation of sub-tensors of
+     * Values as selected by Lookups via Keys.
+     *
+     * Think of Values as being sliced along its outer-most dimension.
+     * The output is a concatenation of selected slices, with one slice
+     * for each entry of Lookups. The slice selected is the one at the
+     * same index as the Maps entry that matches the value in Lookups.
+     *
+     * For a hit, the corresponding sub-tensor of Values is included
+     * in the Output tensor. For a miss, the corresponding sub-tensor in
+     * Output must have zero values.
+     *
+     * For example, if Values has shape of [40, 200, 300],
+     * Keys should have a shape of [40]. If Lookups tensor has shape
+     * of [3], three slices are being concatenated, so the resulting tensor
+     * must have the shape of [3, 200, 300]. If the first entry in Lookups
+     * has the value 123456, that value must be located in Keys tensor.
+     * If the sixth entry of Keys contains 123456, the sixth slice of Values
+     * must be selected. If no entry in Keys has 123456, a slice of zeroes
+     * must be concatenated.
+     *
+     * Supported value tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported value tensor rank: from 2
+     *
+     * Inputs:
+     * * 0: Lookups. A 1-D {@link OperandType::TENSOR_INT32} tensor with
+     *      shape [ k ].
+     * * 1: Keys. A 1-D {@link OperandType::TENSOR_INT32} tensor with shape
+     *      [ n ]; Keys and Values pair represent a map, i.e., the ith element
+     *      in Keys (Keys[i]) is the key to select the ith sub-tensor in Values
+     *      (Values[i]), where 0 <= i <= n-1. Keys tensor *MUST* be sorted in
+     *      ascending order.
+     * * 2: Values. A tensor with shape of [ n, … ]; i.e., the first dimension
+     *      must be n.
+     *
+     * Outputs:
+     * * 0: Output. A tensor with shape [ k …].
+     * * 1: Hits. A boolean tensor with shape [ k ] indicates whether the lookup
+     *      hits (True) or not (False).
+     *      Stored as {@link OperandType::TENSOR_QUANT8_ASYMM} with offset 0
+     *      and scale 1.0f.
+     *      A non-zero byte represents True, a hit. A zero indicates otherwise.
+     *
+     * Available since API level 27.
+     */
+    HASHTABLE_LOOKUP = @1.1::OperationType:HASHTABLE_LOOKUP,
+
+    /**
+     * Applies L2 normalization along the depth dimension.
+     *
+     * The values in the output tensor are computed as:
+     *
+     *     output[batch, row, col, channel] =
+     *         input[batch, row, col, channel] /
+     *         sqrt(sum_{c} pow(input[batch, row, col, c], 2))
+     *
+     * For input tensor with rank less than 4, independently normalizes each
+     * 1-D slice along dimension dim.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: up to 4
+     * Tensors with rank less than 4 are only supported since API level 29.
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the tensor to be normalized.
+     * * 1: An optional {@link OperandType::INT32} scalar, default to -1,
+     *      specifying the dimension normalization would be performed on.
+     *      Negative index is used to specify axis from the end (e.g. -1 for
+     *      the last axis). Must be in the range [-n, n).
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} and same shape as input0.
+     *
+     * Available since API level 27.
+     */
+    L2_NORMALIZATION = @1.1::OperationType:L2_NORMALIZATION,
+
+    /**
+     * Performs an 2-D L2 pooling operation.
+     *
+     * The output dimensions are functions of the filter dimensions, stride, and
+     * padding.
+     *
+     * The values in the output tensor are computed as:
+     *
+     *     output[b, i, j, c] =
+     *         sqrt(sum_{di, dj} pow(input[b, strides[1] * i + di, strides[2] * j + dj, c], 2) /
+     *              sum(1))
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Both explicit padding and implicit padding are supported.
+     *
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the left, in the ‘width’ dimension.
+     * * 2: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the right, in the ‘width’ dimension.
+     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the top, in the ‘height’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the bottom, in the ‘height’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 7: An {@link OperandType::INT32} scalar, specifying the filter
+     *      width.
+     * * 8: An {@link OperandType::INT32} scalar, specifying the filter
+     *      height.
+     * * 9: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 10: An optional {@link OperandType::BOOL} scalar, default to false.
+     *       Set to true to specify NCHW data layout for input0 and output0.
+     *       Available since API level 29.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the implicit
+     *      padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 2: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 3: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the filter
+     *      width.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the filter
+     *      height.
+     * * 6: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 7: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape
+     *      [batches, out_height, out_width, depth].
+     *
+     * Available since API level 27.
+     */
+    L2_POOL_2D = @1.1::OperationType:L2_POOL_2D,
+
+    /**
+     * Applies Local Response Normalization along the depth dimension.
+     *
+     * The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the
+     * last dimension), and each vector is normalized independently. Within a
+     * given vector, each component is divided by the weighted, squared sum of
+     * inputs within depth_radius.
+     *
+     * The output is calculated using this formula:
+     *
+     *     sqr_sum[a, b, c, d] = sum(
+     *         pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2))
+     *     output = input / pow((bias + alpha * sqr_sum), beta)
+     *
+     * For input tensor with rank less than 4, independently normalizes each
+     * 1-D slice along specified dimension.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: up to 4
+     * Tensors with rank less than 4 are only supported since API level 29.
+     *
+     * Inputs:
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the radius of
+     *      the normalization window.
+     * * 2: An {@link OperandType::FLOAT32} scalar, specifying the bias, must
+     *      not be zero.
+     * * 3: An {@link OperandType::FLOAT32} scalar, specifying the scale
+     *      factor, alpha.
+     * * 4: An {@link OperandType::FLOAT32} scalar, specifying the exponent,
+     *      beta.
+     * * 5: An optional {@link OperandType::INT32} scalar, default to -1,
+     *      specifying the dimension normalization would be performed on.
+     *      Negative index is used to specify axis from the end (e.g. -1 for
+     *      the last axis). Must be in the range [-n, n).
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 27.
+     */
+    LOCAL_RESPONSE_NORMALIZATION = @1.1::OperationType:LOCAL_RESPONSE_NORMALIZATION,
+
+    /**
+     * Computes sigmoid activation on the input tensor element-wise.
+     *
+     * The output is calculated using this formula:
+     *
+     *     output = 1 / (1 + exp(-input))
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4.
+     *
+     * Inputs:
+     * * 0: A tensor, specifying the input.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *      For {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the scale must be 1.f / 256 and the zeroPoint must be 0.
+     *
+     * Available since API level 27.
+     */
+    LOGISTIC = @1.1::OperationType:LOGISTIC,
+
+    /**
+     * Projects an input to a bit vector via locality senstive hashing.
+     *
+     * Supported input tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported input tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: Hash functions. Dim.size == 2, DataType: Float.
+     *      Tensor[0].Dim[0]: Number of hash functions.
+     *      Tensor[0].Dim[1]: Number of projected output bits generated by each
+     *      hash function.
+     *      If the projection type is Sparse:
+     *      Tensor[0].Dim[1] + ceil(log2(Tensor[0].Dim[0])) <= 32
+     *
+     * * 1: Input. Dim.size >= 1, no restriction on DataType.
+     * * 2: Weight. Optional. Dim.size == 1, DataType: Float.
+     *      If not set, each input element is considered to have the same weight
+     *      of 1.0.
+     *      Tensor[1].Dim[0] == Tensor[2].Dim[0]
+     * * 3: Type:
+     *        Sparse:
+     *          Value LSHProjectionType_SPARSE(=3) (since API level 29).
+     *          Computed bit vector is considered to be sparse.
+     *          Each output element is an int32 made up of multiple bits
+     *          computed from hash functions.
+     *
+     *          NOTE: To avoid collisions across hash functions, an offset value
+     *          of k * (1 << Tensor[0].Dim[1]) will be added to each signature,
+     *          where k is the index of the hash function.
+     *
+     *          Value LSHProjectionType_SPARSE_DEPRECATED(=1).
+     *          Legacy behavior that does not include the offset value.
+     *
+     *        Dense:
+     *          Value LSHProjectionType_DENSE(=2).
+     *          Computed bit vector is considered to be dense. Each output
+     *          element represents a bit and can take the value of either
+     *          0 or 1.
+     *
+     * Outputs:
+     * * 0: If the projection type is Sparse:
+     *      Output.Dim == { Tensor[0].Dim[0] }
+     *      A tensor of int32 that represents hash signatures,
+     *
+     *      If the projection type is Dense:
+     *      Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
+     *      A flattened tensor that represents projected bit vectors.
+     *
+     * Available since API level 27.
+     * The offset value for sparse projections was added in API level 29.
+     */
+    LSH_PROJECTION = @1.1::OperationType:LSH_PROJECTION,
+
+    /**
+     * Performs a single time step in a Long Short-Term Memory (LSTM) layer
+     *
+     * The LSTM operation is described by the following equations.
+     *
+     * \f{eqnarray*}{
+     * i_t =& \sigma(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}C_{t-1}+b_i) & \\
+     * f_t =& \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}C_{t-1}+b_f) & \\
+     * C_t =& clip(f_t \odot C_{t-1} + i_t \odot
+     *        g(W_{xc}x_t+W_{hc}h_{t-1}+b_c),\ t_{cell}) & \\
+     * o_t =& \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}C_t+b_o) & \\
+     *      & & \\
+     *      & clip(W_{proj}(o_t \odot g(C_t))+b_{proj},\ t_{proj})
+     *      & if\ there\ is\ a\ projection; \\
+     * h_t =& & \\
+     *      & o_t \odot g(C_t) & otherwise. \\
+     * \f}
+     * Where:
+     * * \f$x_t\f$ is the input,
+     * * \f$i_t\f$ is the input gate,
+     * * \f$f_t\f$ is the forget gate,
+     * * \f$C_t\f$ is the cell state,
+     * * \f$o_t\f$ is the output,
+     * * \f$h_t\f$ is the output state,
+     * * \f$\sigma\f$ is the logistic sigmoid function,
+     * * \f$g\f$ is the cell input and cell output activation function, usually
+     *   \f$tahn\f$,
+     * * \f$W_{xi}\f$ is the input-to-input weight matrix,
+     * * \f$W_{hi}\f$ is the recurrent to input weight matrix,
+     * * \f$W_{ci}\f$ is the cell-to-input weight matrix,
+     * * \f$b_i\f$ is the input gate bias,
+     * * \f$W_{xf}\f$ is the input-to-forget weight matrix,
+     * * \f$W_{hf}\f$ is the recurrent-to-forget weight matrix,
+     * * \f$W_{cf}\f$ is the cell-to-forget weight matrix,
+     * * \f$b_f\f$ is the forget gate bias,
+     * * \f$W_{xc}\f$ is the input-to-cell weight matrix,
+     * * \f$W_{hc}\f$ is the recurrent-to-cell weight matrix,
+     * * \f$b_c\f$ is the cell bias,
+     * * \f$W_{xo}\f$ is the input-to-output weight matrix,
+     * * \f$W_{ho}\f$ is the recurrent-to-output weight matrix,
+     * * \f$W_{co}\f$ is the cell-to-output weight matrix,
+     * * \f$b_o\f$ is the output gate bias,
+     * * \f$W_{proj}\f$ is the projection weight matrix,
+     * * \f$b_{proj}\f$ is the projection bias,
+     * * \f$t_{cell}\f$ is the threshold for clipping the cell state, and
+     * * \f$t_{proj}\f$ is the threshold for clipping the projected output.
+     * * \f$\odot\f$ is the
+     *   <a href="https://en.wikipedia.org/wiki/Hadamard_product_(matrices)">
+     *   Hadamard product</a> that takes two matrices and produces another
+     *   matrix, each element of which is the product of the corresponding
+     *   elements of the input matrices.
+     *
+     * Since API level 29 LSTM supports layer normalization.
+     * In case layer normalization is used, the inputs to internal activation
+     * functions (sigmoid and \f$g\f$) are normalized, rescaled and recentered
+     * following an approach from section 3.1 from
+     * https://arxiv.org/pdf/1607.06450.pdf
+     *
+     * The operation has the following independently optional inputs:
+     * * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights
+     *   (\f$W_{hi}\f$), cell-to-input (\f$W_{ci}\f$) weights, and input gate
+     *   bias (\f$b_i\f$) either all have values, or none of them have values
+     *   (i.e., all set to null). If they have no values, coupling of input and
+     *   forget gates (CIFG) is used, in which case the input gate (\f$i_t\f$)
+     *   is calculated using the following equation instead.
+     *   \f{eqnarray*}{
+     *   i_t = 1 - f_t
+     *   \f}
+     * * The cell-to-forget weights (\f$W_{cf}\f$) and cell-to-output weights
+     *   (\f$W_{co}\f$) either both have values or neither of them have values.
+     *   If they have values, the peephole optimization is used. Additionally,
+     *   if CIFG is not used, cell-to-input weights (\f$W_{ci}\f$) is also
+     *   required to have values for peephole optimization.
+     * * The projection weights (\f$W_{proj}\f$) is required only for the
+     *   recurrent projection layer, and should otherwise have no value.
+     * * The projection bias (\f$b_{proj}\f$) may (but not required to) have a
+     *   value if the recurrent projection layer exists, and should otherwise
+     *   have no value.
+     * * (API level >= 29) The four layer normalization weights either all have
+     *   values or none of them have values. Layer normalization is used when
+     *   values are present.
+     *
+     * References:
+     *
+     * The default non-peephole non-CIFG implementation is based on:
+     * http://www.bioinf.jku.at/publications/older/2604.pdf
+     * S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural
+     * Computation, 9(8):1735-1780, 1997.
+     *
+     * The peephole implementation and projection layer is based on:
+     * https://research.google.com/pubs/archive/43905.pdf
+     * Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory
+     * recurrent neural network architectures for large scale acoustic
+     * modeling." INTERSPEECH, 2014.
+     * (However, the concept of peephole optimization was introduced in work
+     * prior to this paper.)
+     *
+     * The coupling of input and forget gate (CIFG) is based on:
+     * http://arxiv.org/pdf/1503.04069.pdf
+     * Greff et al. "LSTM: A Search Space Odyssey"
+     *
+     * The layer normalization is based on:
+     * https://arxiv.org/pdf/1607.06450.pdf
+     * Jimmy Ba et al. "Layer Normalization"
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * All input and output tensors must be of the same type.
+     *
+     * Inputs:
+     * * 0: The input (\f$x_t\f$).
+     *      A 2-D tensor of shape [batch_size, input_size], where “batch_size”
+     *      corresponds to the batching dimension, and “input_size” is the size
+     *      of the input.
+     * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
+     *      A 2-D tensor of shape [num_units, input_size], where “num_units”
+     *      corresponds to the number of cell units.
+     * * 2: The input-to-forget weights (\f$W_{xf}\f$).
+     *      A 2-D tensor of shape [num_units, input_size].
+     * * 3: The input-to-cell weights (\f$W_{xc}\f$).
+     *      A 2-D tensor of shape [num_units, input_size].
+     * * 4: The input-to-output weights (\f$W_{xo}\f$).
+     *      A 2-D tensor of shape [num_units, input_size].
+     * * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
+     *      A 2-D tensor of shape [num_units, output_size], where “output_size”
+     *      corresponds to either the number of cell units (i.e., “num_units”),
+     *      or the second dimension of the “projection_weights”, if defined.
+     * * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
+     *      A 2-D tensor of shape [num_units, output_size].
+     * * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
+     *      A 2-D tensor of shape [num_units, output_size].
+     * * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
+     *      A 2-D tensor of shape [num_units, output_size].
+     * * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
+     *      A 1-D tensor of shape [num_units].
+     * * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
+     *      A 1-D tensor of shape [num_units].
+     * * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
+     *      A 1-D tensor of shape [num_units].
+     * * 12:The input gate bias (\f$b_i\f$). Optional.
+     *      A 1-D tensor of shape [num_units].
+     * * 13:The forget gate bias (\f$b_f\f$).
+     *      A 1-D tensor of shape [num_units].
+     * * 14:The cell bias (\f$b_c\f$).
+     *      A 1-D tensor of shape [num_units].
+     * * 15:The output gate bias (\f$b_o\f$).
+     *      A 1-D tensor of shape [num_units].
+     * * 16:The projection weights (\f$W_{proj}\f$). Optional.
+     *      A 2-D tensor of shape [output_size, num_units].
+     * * 17:The projection bias (\f$b_{proj}\f$). Optional.
+     *      A 1-D tensor of shape [output_size].
+     * * 18:The output state (in) (\f$h_{t-1}\f$).
+     *      A 2-D tensor of shape [batch_size, output_size].
+     * * 19:The cell state (in) (\f$C_{t-1}\f$).
+     *      A 2-D tensor of shape [batch_size, num_units].
+     * * 20:The activation function (\f$g\f$).
+     *      A value indicating the activation function:
+     *      <ul>
+     *      <li>0: None;
+     *      <li>1: Relu;
+     *      <li>3: Relu6;
+     *      <li>4: Tanh;
+     *      <li>6: Sigmoid.
+     *      </ul>
+     * * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
+     *      that values are bound within [-cell_clip, cell_clip]. If set to 0.0
+     *      then clipping is disabled.
+     *      Until API level 29 this scalar must be of type {@link
+     *      FLOAT32}. Since API level 29, if all the input
+     *      tensors have type {@link OperandType::TENSOR_FLOAT32}, this
+     *      scalar must be of the type {@link OperandType::FLOAT32},
+     *      otherwise if all the input tensors have the type {@link
+     *      TENSOR_FLOAT16}, this scalar must be of type {@link
+     *      FLOAT16}.
+     * * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
+     *      projection layer, such that values are bound within
+     *      [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
+     *      Until API level 29 this scalar must be of type {@link
+     *      FLOAT32}. Since API level 29, if all the input
+     *      tensors have type {@link OperandType::TENSOR_FLOAT32}, this
+     *      scalar must be of the type {@link OperandType::FLOAT32},
+     *      otherwise if all the input tensors have the type {@link
+     *      TENSOR_FLOAT16}, this scalar must be of type {@link
+     *      FLOAT16}.
+     * Since API level 29 there are additional inputs to this op:
+     * * 23:The input layer normalization weights.
+     *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
+     *      to activation at input gate.
+     * * 24:The forget layer normalization weights.
+     *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
+     *      to activation at forget gate.
+     * * 25:The cell layer normalization weights.
+     *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
+     *      to activation at cell gate.
+     * * 26:The output layer normalization weights.
+     *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
+     *      to activation at output gate.
+     *
+     * Outputs:
+     * * 0: The scratch buffer.
+     *      A 2-D tensor of shape [batch_size, num_units * 3] with CIFG, or
+     *      [batch_size, num_units * 4] without CIFG.
+     * * 1: The output state (out) (\f$h_t\f$).
+     *      A 2-D tensor of shape [batch_size, output_size].
+     * * 2: The cell state (out) (\f$C_t\f$).
+     *      A 2-D tensor of shape [batch_size, num_units].
+     * * 3: The output (\f$o_t\f$).
+     *      A 2-D tensor of shape [batch_size, output_size]. This is effectively
+     *      the same as the current “output state (out)” value.
+     *
+     * Available since API level 27.
+     */
+    LSTM = @1.1::OperationType:LSTM,
+
+    /**
+     * Performs an 2-D max pooling operation.
+     *
+     * The output dimensions are functions of the filter dimensions, stride, and
+     * padding.
+     *
+     * The values in the output tensor are computed as:
+     *
+     *     output[b, i, j, channel] =
+     *         max_{di, dj} (
+     *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
+     *         )
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Both explicit padding and implicit padding are supported.
+     *
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the left, in the ‘width’ dimension.
+     * * 2: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the right, in the ‘width’ dimension.
+     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the top, in the ‘height’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the bottom, in the ‘height’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 7: An {@link OperandType::INT32} scalar, specifying the filter
+     *      width.
+     * * 8: An {@link OperandType::INT32} scalar, specifying the filter
+     *      height.
+     * * 9: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 10: An optional {@link OperandType::BOOL} scalar, default to false.
+     *       Set to true to specify NCHW data layout for input0 and output0.
+     *       Available since API level 29.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the implicit
+     *      padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 2: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 3: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the filter
+     *      width.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the filter
+     *      height.
+     * * 6: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 7: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape
+     *      [batches, out_height, out_width, depth].
+     *
+     * Available since API level 27.
+     */
+    MAX_POOL_2D = @1.1::OperationType:MAX_POOL_2D,
+
+    /**
+     * Multiplies two tensors, element-wise.
+     *
+     * Takes two input tensors of identical {@link OperandType} and compatible
+     * dimensions. The output is the product of both input tensors, optionally
+     * modified by an activation function.
+     *
+     * Two dimensions are compatible when:
+     *     1. they are equal, or
+     *     2. one of them is 1
+     *
+     * The size of the resulting output is the maximum size along each dimension
+     * of the input operands. It starts with the trailing dimensions, and works
+     * its way forward.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType}, and compatible dimensions
+     *      as input0.
+     * * 2: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     *
+     * Outputs:
+     * * 0: The product, a tensor of the same {@link OperandType} as input0.
+     *      For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the following condition must be satisfied:
+     *      output_scale > input1_scale * input2_scale.
+     *
+     * Available since API level 27.
+     */
+    MUL = @1.1::OperationType:MUL,
+
+    /**
+     * Computes rectified linear activation on the input tensor element-wise.
+     *
+     * The output is calculated using this formula:
+     *
+     *     output = max(0, input)
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4.
+     *
+     * Inputs:
+     * * 0: A tensor, specifying the input.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 27.
+     */
+    RELU = @1.1::OperationType:RELU,
+
+    /**
+     * Computes rectified linear 1 activation on the input tensor element-wise.
+     *
+     * The output is calculated using this formula:
+     *
+     *     output = min(1.f, max(-1.f, input))
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4.
+     *
+     * Inputs:
+     * * 0: A tensor, specifying the input.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 27.
+     */
+    RELU1 = @1.1::OperationType:RELU1,
+
+    /**
+     * Computes rectified linear 6 activation on the input tensor element-wise.
+     *
+     * The output is calculated using this formula:
+     *
+     *     output = min(6, max(0, input))
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4.
+     *
+     * Inputs:
+     * * 0: A tensor, specifying the input.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 27.
+     */
+    RELU6 = @1.1::OperationType:RELU6,
+
+    /**
+     * Reshapes a tensor.
+     *
+     * Given tensor, this operation returns a tensor that has the same values as
+     * tensor, but with a newly specified shape.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4.
+     *
+     * Inputs:
+     * * 0: A tensor, specifying the tensor to be reshaped.
+     * * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}, defining the
+     *      shape of the output tensor. The number of elements implied by shape
+     *      must be the same as the number of elements in the input tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor, of shape specified by the input shape.
+     *
+     * Available since API level 27.
+     */
+    RESHAPE = @1.1::OperationType:RESHAPE,
+
+    /**
+     * Resizes images to given size using the bilinear interpretation.
+     *
+     * Resized images must be distorted if their output aspect ratio is not the
+     * same as input aspect ratio. The corner pixels of output may not be the
+     * same as corner pixels of input.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM} (since API level 29)
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the output
+     *      height of the output tensor.
+     * * 2: An {@link OperandType::INT32} scalar, specifying the output
+     *      width of the output tensor.
+     * * 3: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape
+     *      [batches, new_height, new_width, depth].
+     *
+     * Available since API level 27.
+     */
+    RESIZE_BILINEAR = @1.1::OperationType:RESIZE_BILINEAR,
+
+    /**
+     * A basic recurrent neural network layer.
+     *
+     * This layer implements the operation:
+     * outputs = state = activation(inputs * input_weights +
+     *                              state * recurrent_weights + bias)
+     *
+     * Where:
+     * * “input_weights” is a weight matrix that multiplies the inputs;
+     * * “recurrent_weights” is a weight matrix that multiplies the current
+     *    “state” which itself is the output from the previous time step
+     *    computation;
+     * * “bias” is a bias vector (added to each output vector in the batch);
+     * * “activation” is the function passed as the “fused_activation_function”
+     *   argument (if not “NONE”).
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * The input tensors must all be the same type.
+     *
+     * Inputs:
+     * * 0: input.
+     *      A 2-D tensor of shape [batch_size, input_size], where “batch_size”
+     *      corresponds to the batching dimension, and “input_size” is the size
+     *      of the input.
+     * * 1: weights.
+     *      A 2-D tensor of shape [num_units, input_size], where “num_units”
+     *      corresponds to the number of units.
+     * * 2: recurrent_weights.
+     *      A 2-D tensor of shape [num_units, num_units], with columns
+     *      corresponding to the weights from each unit.
+     * * 3: bias.
+     *      A 1-D tensor of shape [num_units].
+     * * 4: hidden state (in).
+     *      A 2-D tensor of shape [batch_size, num_units].
+     * * 5: fused_activation_function.
+     *      An optional {@link FusedActivationFunc} value indicating the
+     *      activation function. If “NONE” is specified then it results in a
+     *      linear activation.
+     *
+     * Outputs:
+     * * 0: hidden state (out).
+     *      A 2-D tensor of shape [batch_size, num_units].
+     *
+     * * 1: output.
+     *      A 2-D tensor of shape [batch_size, num_units]. This is effectively
+     *      the same as the current state value.
+     *
+     * Available since API level 27.
+     */
+    RNN = @1.1::OperationType:RNN,
+
+    /**
+     * Computes the softmax activation on the input tensor element-wise, per
+     * batch, by normalizing the input vector so the maximum coefficient is
+     * zero.
+     *
+     * The output is calculated using this formula:
+     *
+     *     output[batch, i] =
+     *         exp((input[batch, i] - max(input[batch, :])) * beta) /
+     *         sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)}
+     *
+     * For input tensor with rank other than 2, the activation will be applied
+     * independently on each 1-D slice along specified dimension.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4.
+     * Tensors with rank other than 2 or 4 are only supported since API level 29.
+     *
+     * Inputs:
+     * * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped.
+     * * 1: An {@link OperandType::FLOAT32} scalar, specifying the positive
+     *      scaling factor for the exponent, beta.
+     * * 2: An optional {@link OperandType::INT32} scalar, default to -1,
+     *      specifying the dimension the activation would be performed on.
+     *      Negative index is used to specify axis from the end (e.g. -1 for
+     *      the last axis). Must be in the range [-n, n).
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *      For {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the scale must be 1.f / 256 and the zeroPoint must be 0.
+     *
+     * Available since API level 27.
+     */
+    SOFTMAX = @1.1::OperationType:SOFTMAX,
+
+    /**
+     * Rearranges blocks of spatial data, into depth.
+     *
+     * More specifically, this op outputs a copy of the input tensor where
+     * values from the height and width dimensions are moved to the depth
+     * dimension. The value block_size indicates the input block size and how
+     * the data is moved.
+     *
+     * Chunks of data of size block_size * block_size from depth are rearranged
+     * into non-overlapping blocks of size block_size x block_size.
+     *
+     * The depth of the output tensor is input_depth * block_size * block_size.
+     * The input tensor's height and width must be divisible by block_size.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the block_size.
+     *      block_size must be >=1 and block_size must be a divisor of both the
+     *      input height and width.
+     * * 2: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape [batches, height/block_size,
+     *      width/block_size, depth_in*block_size*block_size].
+     *
+     * Available since API level 27.
+     */
+    SPACE_TO_DEPTH = @1.1::OperationType:SPACE_TO_DEPTH,
+
+    /**
+     * SVDF op is a kind of stateful layer derived from the notion that a
+     * densely connected layer that's processing a sequence of input frames can
+     * be approximated by using a singular value decomposition of each of its
+     * nodes. The implementation is based on:
+     *
+     * https://research.google.com/pubs/archive/43813.pdf
+     *
+     * P. Nakkiran, R. Alvarez, R. Prabhavalkar, C. Parada.
+     * “Compressing Deep Neural Networks using a Rank-Constrained Topology”.
+     * INTERSPEECH, 2015.
+     *
+     * It processes the incoming input using a 2-stage filtering mechanism:
+     * * stage 1 performs filtering on the "features" dimension, whose outputs
+     *   get pushed into a memory of fixed-size memory_size.
+     * * stage 2 performs filtering on the "time" dimension of the memory_size
+     *   memoized outputs of stage 1.
+     *
+     * Specifically, for rank 1, this layer implements the operation:
+     *
+     *     memory = push(conv1d(inputs, weights_feature, feature_dim,
+     *                          "PADDING_VALID"));
+     *     outputs = activation(memory * weights_time + bias);
+     *
+     * Where:
+     * * “weights_feature” is a weights matrix that processes the inputs (by
+     *   convolving the input with every “feature filter”), and whose outputs
+     *   get pushed, stacked in order, into the fixed-size “memory” (the oldest
+     *   entry gets dropped);
+     * * “weights_time” is a weights matrix that processes the “memory” (by a
+     *   batched matrix multiplication on the num_units);
+     * * “bias” is an optional bias vector (added to each output vector in the
+     *   batch); and
+     * * “activation” is the function passed as the “fused_activation_function”
+     *   argument (if not “NONE”).
+     *
+     * Each rank adds a dimension to the weights matrices by means of stacking
+     * the filters.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * All input tensors must be the same type.
+     *
+     * Inputs:
+     * * 0: input.
+     *      A 2-D tensor of shape [batch_size, input_size], where “batch_size”
+     *      corresponds to the batching dimension, and “input_size” is the size
+     *      of the input.
+     * * 1: weights_feature.
+     *      A 2-D tensor of shape [num_units, input_size], where “num_units”
+     *      corresponds to the number of units.
+     * * 2: weights_time.
+     *      A 2-D tensor of shape [num_units, memory_size], where “memory_size”
+     *      corresponds to the fixed-size of the memory.
+     * * 3: bias.
+     *      An optional 1-D tensor of shape [num_units].
+     * * 4: state (in).
+     *      A 2-D tensor of shape [batch_size, (memory_size - 1) * num_units * rank].
+     * * 5: rank.
+     *      The rank of the SVD approximation.
+     * * 6: fused_activation_function.
+     *      An optional {@link FusedActivationFunc} value indicating the
+     *      activation function. If “NONE” is specified then it results in a
+     *      linear activation.
+     *
+     * Outputs:
+     * * 0: state (out).
+     *      A 2-D tensor of the same {@link OperandType} as the inputs, with shape
+     *      [batch_size, (memory_size - 1) * num_units * rank].
+     * * 1: output.
+     *      A 2-D tensor of the same {@link OperandType} as the inputs, with shape
+     *      [batch_size, num_units].
+     *
+     * Available since API level 27.
+     */
+    SVDF = @1.1::OperationType:SVDF,
+
+    /**
+     * Computes hyperbolic tangent of input tensor element-wise.
+     *
+     * The output is calculated using this formula:
+     *
+     *     output = tanh(input)
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM} (since API level 29)
+     *
+     * Supported tensor rank: up to 4.
+     *
+     * Inputs:
+     * * 0: A tensor, specifying the input.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *      For {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the scale must be 1.f / 128 and the zeroPoint must be 128.
+     *
+     * Available since API level 27.
+     */
+    TANH = @1.1::OperationType:TANH,
+
+    /**
+     * BatchToSpace for N-dimensional tensors.
+     *
+     * This operation reshapes the batch dimension (dimension 0) into M + 1
+     * dimensions of shape block_shape + [batch], interleaves these blocks back
+     * into the grid defined by the spatial dimensions [1, ..., M], to obtain a
+     * result with the same rank as the input.
+     *
+     * This is the reverse of SpaceToBatch.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the tensor to be reshaped
+     * * 1: A 1-D Tensor of {@link OperandType::TENSOR_INT32}, the block
+     *      sizes for each spatial dimension of the input tensor. All values
+     *      must be >= 1.
+     * * 2: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
+     */
+    BATCH_TO_SPACE_ND = @1.1::OperationType:BATCH_TO_SPACE_ND,
+
+    /**
+     * Element-wise division of two tensors.
+     *
+     * Takes two input tensors of identical {@link OperandType} and compatible
+     * dimensions. The output is the result of dividing the first input tensor
+     * by the second, optionally modified by an activation function.
+     *
+     * Two dimensions are compatible when:
+     *     1. they are equal, or
+     *     2. one of them is 1
+     *
+     * The size of the output is the maximum size along each dimension of the
+     * input operands. It starts with the trailing dimensions, and works its way
+     * forward.
+     *
+     * Example:
+     *     input1.dimension =    {4, 1, 2}
+     *     input2.dimension = {5, 4, 3, 1}
+     *     output.dimension = {5, 4, 3, 2}
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the first input.
+     * * 1: A tensor of the same {@link OperandType}, and compatible dimensions
+     *      as input0.
+     * * 2: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
+     */
+    DIV = @1.1::OperationType:DIV,
+
+    /**
+     * Computes the mean of elements across dimensions of a tensor.
+     *
+     * Reduces the input tensor along the given dimensions to reduce. Unless
+     * keep_dims is true, the rank of the tensor is reduced by 1 for each entry
+     * in axis. If keep_dims is true, the reduced dimensions are retained with
+     * length 1.
+     *
+     * If dimensions to reduce have no entries, all dimensions are reduced, and
+     * a tensor with a single element is returned.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: A tensor, specifying the input.
+     * * 1: A 1-D Tensor of {@link OperandType::TENSOR_INT32}. The dimensions
+     *      to reduce. If None (the default), reduces all dimensions. Must be in
+     *      the range [-rank(input_tensor), rank(input_tensor)).
+     * * 2: An {@link OperandType::INT32} scalar, keep_dims. If positive,
+     *      retains reduced dimensions with length 1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
+     */
+    MEAN = @1.1::OperationType:MEAN,
+
+    /**
+     * Pads a tensor with zeros.
+     *
+     * This operation pads a tensor according to the specified paddings.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the tensor to be padded.
+     * * 1: A 2-D Tensor of {@link OperandType::TENSOR_INT32}, the paddings
+     *      for each spatial dimension of the input tensor. The shape of the
+     *      tensor must be {rank(input0), 2}.
+     *      padding[i, 0] specifies the number of elements to be padded in the
+     *      front of dimension i.
+     *      padding[i, 1] specifies the number of elements to be padded after the
+     *      end of dimension i.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0. The
+     *      output tensor has the same rank as input0, and each
+     *      dimension of the output tensor has the same size as the
+     *      corresponding dimension of the input tensor plus the size
+     *      of the padding:
+     *          output0.dimension[i] =
+     *              padding[i, 0] + input0.dimension[i] + padding[i, 1]
+     *
+     * Available since API level 28.
+     */
+    PAD = @1.1::OperationType:PAD,
+
+    /**
+     * SpaceToBatch for N-Dimensional tensors.
+     *
+     * This operation divides "spatial" dimensions [1, ..., M] of the input into
+     * a grid of blocks of shape block_shape, and interleaves these blocks with
+     * the "batch" dimension (0) such that in the output, the spatial dimensions
+     * [1, ..., M] correspond to the position within the grid, and the batch
+     * dimension combines both the position within a spatial block and the
+     * original batch position. Prior to division into blocks, the spatial
+     * dimensions of the input are optionally zero padded according to paddings.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the input.
+     * * 1: A 1-D Tensor of {@link OperandType::TENSOR_INT32}, the block
+     *      sizes for each spatial dimension of the input tensor. All values
+     *      must be >= 1.
+     * * 2: A 2-D Tensor of {@link OperandType::TENSOR_INT32}, the paddings
+     *      for each spatial dimension of the input tensor. All values must be
+     *      >= 0. The shape of the tensor must be {rank(input0), 2}.
+     *      padding[i, 0] specifies the number of element to be padded in the
+     *      front of dimension i.
+     *      padding[i, 1] specifies the number of element to be padded after the
+     *      end of dimension i.
+     * * 3: An optional {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *      Available since API level 29.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
+     */
+    SPACE_TO_BATCH_ND = @1.1::OperationType:SPACE_TO_BATCH_ND,
+
+    /**
+     * Removes dimensions of size 1 from the shape of a tensor.
+     *
+     * Given a tensor input, this operation returns a tensor of the same
+     * {@link OperandType} with all dimensions of size 1 removed. If you don't
+     * want to remove all size 1 dimensions, you can remove specific size 1
+     * dimensions by specifying the axes (input1).
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor, the tensor to be squeezed.
+     * * 1: An optional 1-D tensor of {@link OperandType::TENSOR_INT32}. The
+     *      dimensions to squeeze. If specified only squeezes the dimensions
+     *      listed. Otherwise, squeezes all dimensions. The dimension index
+     *      starts at 0. An error must be reported if squeezing a dimension that
+     *      is not 1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0. Contains the
+     *      same data as input, but has one or more dimensions of size 1
+     *      removed.
+     *
+     * Available since API level 28.
+     */
+    SQUEEZE = @1.1::OperationType:SQUEEZE,
+
+    /**
+     * Extracts a strided slice of a tensor.
+     *
+     * Roughly speaking, this op extracts a slice of size (end - begin) / stride
+     * from the given input tensor. Starting at the location specified by begin
+     * the slice continues by adding stride to the index until all dimensions
+     * are not less than end. Note that a stride can be negative, which causes a
+     * reverse slice.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the tensor to be sliced.
+     * * 1: begin, a 1-D tensor of {@link OperandType::TENSOR_INT32}. The
+     *      starts of the dimensions of the input tensor to be sliced. The
+     *      length must be of rank(input0).
+     * * 2: end, a 1-D tensor of {@link OperandType::TENSOR_INT32}. The
+     *      ends of the dimensions of the input tensor to be sliced. The length
+     *      must be of rank(input0).
+     * * 3: strides, a 1-D tensor of {@link OperandType::TENSOR_INT32}. The
+     *      strides of the dimensions of the input tensor to be sliced. The
+     *      length must be of rank(input0). The entries must be non-zero.
+     * * 4: begin_mask, an {@link OperandType::INT32} scalar. If the ith bit
+     *      of begin_mask is set, begin[i] is ignored and the fullest possible
+     *      range in that dimension is used instead.
+     * * 5: end_mask, an {@link OperandType::INT32} scalar. If the ith bit of
+     *      end_mask is set, end[i] is ignored and the fullest possible range in
+     *      that dimension is used instead.
+     * * 6: shrink_axis_mask, an {@link OperandType::INT32} scalar. If the
+     *      ith bit of shrink_axis_mask is set, the ith dimension specification
+     *      shrinks the dimensionality by 1, taking on the value at index
+     *      begin[i]. In this case, the ith specification must define a
+     *      slice of size 1, e.g. begin[i] = x, end[i] = x + 1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0 and rank (n - k),
+     *      where k is the number of bits set in shrink_axis_mask.
+     *
+     * Available since API level 28.
+     */
+    STRIDED_SLICE = @1.1::OperationType:STRIDED_SLICE,
+
+    /**
+     * Element-wise subtraction of two tensors.
+     *
+     * Takes two input tensors of identical {@link OperandType} and compatible
+     * dimensions. The output is the result of subtracting the second input
+     * tensor from the first one, optionally modified by an activation function.
+     *
+     * Two dimensions are compatible when:
+     *     1. they are equal, or
+     *     2. one of them is 1
+     *
+     * The size of the output is the maximum size along each dimension of the
+     * input operands. It starts with the trailing dimensions, and works its way
+     * forward.
+     *
+     * Example:
+     *     input1.dimension =    {4, 1, 2}
+     *     input2.dimension = {5, 4, 3, 1}
+     *     output.dimension = {5, 4, 3, 2}
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM} (since API level 29)
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the first input.
+     * * 1: A tensor of the same {@link OperandType}, and compatible dimensions
+     *      as input0.
+     * * 2: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
+     */
+    SUB = @1.1::OperationType:SUB,
+
+    /**
+     * Transposes the input tensor, permuting the dimensions according to the
+     * perm tensor.
+     *
+     * The returned tensor's dimension i corresponds to the input dimension
+     * perm[i]. If perm is not given, it is set to (n-1...0), where n is the
+     * rank of the input tensor. Hence by default, this operation performs a
+     * regular matrix transpose on 2-D input Tensors.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the tensor to be transposed.
+     * * 1: An optional 1-D Tensor of {@link OperandType::TENSOR_INT32},
+     *      the permutation of the dimensions of the input tensor.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
+     */
+    TRANSPOSE = @1.1::OperationType:TRANSPOSE,
+
+    /**
+     * Computes the absolute value of a tensor, element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: from 1.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 29.
+     */
     ABS = 38,
+
+    /**
+     * Returns the index of the largest element along an axis.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: An n-D tensor specifying the input. Must be non-empty.
+     * * 1: An {@link OperandType::INT32} scalar specifying the axis to
+     *      reduce across. Negative index is used to specify axis from the
+     *      end (e.g. -1 for the last axis). Must be in the range [-n, n).
+     *
+     * Outputs:
+     * * 0: An (n - 1)-D {@link OperandType::TENSOR_INT32} tensor.
+     *
+     * Available since API level 29.
+     */
+    // There is no underscore in ARG_MAX to avoid name conflict with
+    // the macro defined in libc/kernel/uapi/linux/limits.h.
     ARGMAX = 39,
-    ARGMIN = 40,
+
+    /**
+     * Returns the index of the smallest element along an axis.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: An n-D tensor specifying the input. Must be non-empty.
+     * * 1: An {@link OperandType::INT32} scalar specifying the axis to
+     *      reduce across. Negative index is used to specify axis from the
+     *      end (e.g. -1 for the last axis). Must be in the range [-n, n).
+     *
+     * Outputs:
+     * * 0: An (n - 1)-D {@link OperandType::TENSOR_INT32} tensor.
+     *
+     * Available since API level 29.
+     */
+    ARGMIN = 40,  // See ARGMAX for naming discussion.
+
+    /**
+     * Transform axis-aligned bounding box proposals using bounding box deltas.
+     *
+     * Given the positions of bounding box proposals and the corresponding
+     * bounding box deltas for each class, return the refined bounding box
+     * regions. The resulting bounding boxes are cliped against the edges of
+     * the image.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT16_ASYMM}
+     *
+     * Inputs:
+     * * 0: A 2-D Tensor of shape [num_rois, 4], specifying the locations of the
+     *      bounding box proposals, each line with format [x1, y1, x2, y2].
+     *      For tensor of type {@link OperandType::TENSOR_QUANT16_ASYMM},
+     *      the zeroPoint must be 0 and the scale must be 0.125.
+     * * 1: A 2-D Tensor of shape [num_rois, num_classes * 4], specifying the
+     *      bounding box delta for each region of interest and each class. The
+     *      bounding box deltas are organized in the following order
+     *      [dx, dy, dw, dh], where dx and dy is the relative correction factor
+     *      for the center position of the bounding box with respect to the width
+     *      and height, dw and dh is the log-scale relative correction factor
+     *      for the width and height. For input0 of type
+     *      {@link OperandType::TENSOR_QUANT16_ASYMM}, this tensor should be
+     *      of {@link OperandType::TENSOR_QUANT8_ASYMM}.
+     * * 2: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
+     *      [num_rois], specifying the batch index of each box. Boxes with
+     *      the same batch index are grouped together.
+     * * 3: A 2-D Tensor of shape [batches, 2], specifying the information of
+     *      each image in the batch, each line with format
+     *      [image_height, image_width].
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0, with shape
+     *      [num_rois, num_classes * 4], specifying the coordinates of each
+     *      output bounding box for each class, with format [x1, y1, x2, y2].
+     *
+     * Available since API level 29.
+     */
     AXIS_ALIGNED_BBOX_TRANSFORM = 41,
+
+    /**
+     * Performs a forward LSTM on the input followed by a backward LSTM.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: 3, either time-major or batch-major.
+     *
+     * All input and output tensors must be of the same type.
+     *
+     *
+     * Inputs:
+     * * 0: The input.
+     *      A 3-D tensor of shape:
+     *        If time-major: [max_time, batch_size, output_size]
+     *        If batch-major: [batch_size, max_time, output_size]
+     *      where "max_time" is the number of timesteps (sequence length),
+     *      "batch_size" corresponds to the batching dimension, and
+     *      "input_size" is the size of the input.
+     * * 1: The forward input-to-input weights. Optional.
+     *      A 2-D tensor of shape [num_units, input_size], where “num_units”
+     *      corresponds to the number of cell units.
+     * * 2: The forward input-to-forget weights.
+     *      A 2-D tensor of shape [num_units, input_size].
+     * * 3: The forward input-to-cell weights.
+     *      A 2-D tensor of shape [num_units, input_size].
+     * * 4: The forward input-to-output weights.
+     *      A 2-D tensor of shape [num_units, input_size].
+     * * 5: The forward recurrent-to-input weights. Optional.
+     *      A 2-D tensor of shape [num_units, output_size], where “output_size”
+     *      corresponds to either the number of cell units (i.e., “num_units”),
+     *      or the second dimension of the “projection_weights”, if defined.
+     * * 6: The forward recurrent-to-forget weights.
+     *      A 2-D tensor of shape [num_units, output_size].
+     * * 7: The forward recurrent-to-cell weights.
+     *      A 2-D tensor of shape [num_units, output_size].
+     * * 8: The forward recurrent-to-output weights.
+     *      A 2-D tensor of shape [num_units, output_size].
+     * * 9: The forward cell-to-input weights. Optional.
+     *      A 1-D tensor of shape [num_units].
+     * * 10: The forward cell-to-forget weights. Optional.
+     *       A 1-D tensor of shape [num_units].
+     * * 11: The forward cell-to-output weights. Optional.
+     *       A 1-D tensor of shape [num_units].
+     * * 12: The forward input gate bias. Optional.
+     *       A 1-D tensor of shape [num_units].
+     * * 13: The forward forget gate bias.
+     *       A 1-D tensor of shape [num_units].
+     * * 14: The forward cell gate bias.
+     *       A 1-D tensor of shape [num_units].
+     * * 15: The forward output gate bias.
+     *       A 1-D tensor of shape [num_units].
+     * * 16: The forward projection weights. Optional.
+     *       A 2-D tensor of shape [output_size, num_units].
+     * * 17: The forward projection bias. Optional.
+     *       A 1-D tensor of shape [output_size].
+     * * 18: The backward input-to-input weights. Optional.
+     *       A 2-D tensor of shape [num_units, input_size], where “num_units”
+     *       corresponds to the number of cell units.
+     * * 19: The backward input-to-forget weights.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 20: The backward input-to-cell weights.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 21: The backward input-to-output weights.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 22: The backward recurrent-to-input weights. Optional.
+     *       A 2-D tensor of shape [num_units, output_size], where “output_size”
+     *       corresponds to either the number of cell units (i.e., “num_units”),
+     *       or the second dimension of the “projection_weights”, if defined.
+     * * 23: The backward recurrent-to-forget weights.
+     *       A 2-D tensor of shape [num_units, output_size].
+     * * 24: The backward recurrent-to-cell weights.
+     *       A 2-D tensor of shape [num_units, output_size].
+     * * 25: The backward recurrent-to-output weights.
+     *       A 2-D tensor of shape [num_units, output_size].
+     * * 26: The backward cell-to-input weights. Optional.
+     *       A 1-D tensor of shape [num_units].
+     * * 27: The backward cell-to-forget weights. Optional.
+     *       A 1-D tensor of shape [num_units].
+     * * 28: The backward cell-to-output weights. Optional.
+     *       A 1-D tensor of shape [num_units].
+     * * 29: The backward input gate bias. Optional.
+     *       A 1-D tensor of shape [num_units].
+     * * 30: The backward forget gate bias.
+     *       A 1-D tensor of shape [num_units].
+     * * 31: The backward cell gate bias.
+     *       A 1-D tensor of shape [num_units].
+     * * 32: The backward output gate bias.
+     *       A 1-D tensor of shape [num_units].
+     * * 33: The backward projection weights. Optional.
+     *       A 2-D tensor of shape [output_size, num_units].
+     * * 34: The backward projection bias. Optional.
+     *       A 1-D tensor of shape [output_size].
+     * * 35: The forward input activation state.
+     *       A 2-D tensor of shape [batch_size, output_size].
+     * * 36: The forward input cell state.
+     *       A 2-D tensor of shape [batch_size, num_units].
+     * * 37: The backward input activation state.
+     *       A 2-D tensor of shape [batch_size, output_size].
+     * * 38: The backward input cell state.
+     *       A 2-D tensor of shape [batch_size, num_units].
+     * * 39: The auxiliary input. Optional.
+     *       A 3-D tensor of shape [max_time, batch_size, input_size], where “batch_size”
+     *       corresponds to the batching dimension, and “input_size” is the size
+     *       of the input.
+     * * 40: The forward auxiliary input-to-input weights. Optional.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 41: The forward auxiliary input-to-forget weights. Optional.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 42: The forward auxiliary input-to-cell weights. Optional.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 43: The forward auxiliary input-to-output weights. Optional.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 44: The backward auxiliary input-to-input weights. Optional.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 45: The backward auxiliary input-to-forget weights. Optional.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 46: The backward auxiliary input-to-cell weights. Optional.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 47: The backward auxiliary input-to-output weights. Optional.
+     *       A 2-D tensor of shape [num_units, input_size].
+     * * 48: The activation function.
+     *       A value indicating the activation function:
+     *       <ul>
+     *       <li>0: None;
+     *       <li>1: Relu;
+     *       <li>3: Relu6;
+     *       <li>4: Tanh;
+     *       <li>6: Sigmoid.
+     *       </ul>
+     * * 49: The clipping threshold for the cell state, such
+     *       that values are bound within [-cell_clip, cell_clip]. If set to 0.0
+     *       then clipping is disabled.
+     *       If all the input tensors have type {@link OperandType::TENSOR_FLOAT32},
+     *       this scalar must be of the type {@link OperandType::FLOAT32},
+     *       otherwise if all the input tensors have the type {@link
+     *       TENSOR_FLOAT16}, this scalar must be of type {@link
+     *       FLOAT16}.
+     * * 50: The clipping threshold for the output from the
+     *       projection layer, such that values are bound within
+     *       [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
+     *       If all the input tensors have type {@link OperandType::TENSOR_FLOAT32},
+     *       this scalar must be of the type {@link OperandType::FLOAT32},
+     *       otherwise if all the input tensors have the type {@link
+     *       TENSOR_FLOAT16}, this scalar must be of type {@link
+     *       FLOAT16}.
+     * * 51: merge_outputs
+     *       An {@link OperandType::BOOL} scalar specifying if the outputs
+     *       from forward and backward cells should be merged.
+     * * 52: time_major
+     *       An {@link OperandType::BOOL} scalar specifying the shape format
+     *       of input and output tensors.
+     *
+     * Outputs:
+     * * 0: The forward output.
+     *      A 3-D tensor of shape:
+     *        If time-major: [max_time, batch_size, output_size]
+     *        If batch-major: [batch_size, max_time, output_size]
+     * * 1: The backward output.  Unused if merge_outputs is true.
+     *      A 3-D tensor of shape:
+     *        If time-major: [max_time, batch_size, output_size]
+     *        If batch-major: [batch_size, max_time, output_size]
+     *
+     * Available since API level 29.
+     */
     BIDIRECTIONAL_SEQUENCE_LSTM = 42,
+
+    /**
+     * A recurrent neural network layer that applies a basic RNN cell to a
+     * sequence of inputs in forward and backward directions.
+     *
+     * This Op unrolls the input along the sequence dimension, and implements
+     * the following operation for each element in the sequence s =
+     * 1...sequence_length:
+     *   fw_outputs[s] = fw_state = activation(inputs[s] * fw_input_weights’ +
+     *          fw_state * fw_recurrent_weights’ + fw_bias)
+     *
+     * And for each element in sequence t = sequence_length : 1
+     *   bw_outputs[t] = bw_state = activation(inputs[t] * bw_input_weights’ +
+     *          bw_state * bw_recurrent_weights’ + bw_bias)
+     *
+     * Where:
+     * * “{fw,bw}_input_weights” is a weight matrix that multiplies the inputs;
+     * * “{fw,bw}_recurrent_weights” is a weight matrix that multiplies the
+     *    current “state” which itself is the output from the previous time step
+     *    computation;
+     * * “{fw,bw}_bias” is a bias vector (added to each output vector in the
+     *    batch);
+     * * “activation” is the function passed as the “fused_activation_function”
+     *   argument (if not “NONE”).
+     *
+     * The op also supports an auxiliary input. Regular cell feeds one input
+     * into the two RNN cells in the following way:
+     *
+     *       INPUT  (INPUT_REVERSED)
+     *         |         |
+     *    ---------------------
+     *    | FW_RNN     BW_RNN |
+     *    ---------------------
+     *         |         |
+     *      FW_OUT     BW_OUT
+     *
+     * An op with an auxiliary input takes two inputs and feeds them into the
+     * RNN cells in the following way:
+     *
+     *       AUX_INPUT   (AUX_INPUT_REVERSED)
+     *           |             |
+     *     INPUT | (INPUT_R'D.)|
+     *       |   |       |     |
+     *    -----------------------
+     *    |  \  /        \    / |
+     *    | FW_RNN       BW_RNN |
+     *    -----------------------
+     *         |           |
+     *      FW_OUT      BW_OUT
+     *
+     * While stacking this op on top of itself, this allows to connect both
+     * forward and backward outputs from previous cell to the next cell's
+     * inputs.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * The input tensors must all be the same type.
+     *
+     * Inputs:
+     * * 0: input.
+     *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
+     *      it is set to true, then the input has a shape [maxTime, batchSize,
+     *      inputSize], otherwise the input has a shape [batchSize, maxTime,
+     *      inputSize].
+     * * 1: fwWeights.
+     *      A 2-D tensor of shape [fwNumUnits, inputSize].
+     * * 2: fwRecurrentWeights.
+     *      A 2-D tensor of shape [fwNumUnits, fwNumUnits].
+     * * 3: fwBias.
+     *      A 1-D tensor of shape [fwNumUnits].
+     * * 4: fwHiddenState.
+     *      A 2-D tensor of shape [batchSize, fwNumUnits]. Specifies a hidden
+     *      state input for the first time step of the computation.
+     * * 5: bwWeights.
+     *      A 2-D tensor of shape [bwNumUnits, inputSize].
+     * * 6: bwRecurrentWeights.
+     *      A 2-D tensor of shape [bwNumUnits, bwNumUnits].
+     * * 7: bwBias.
+     *      A 1-D tensor of shape [bwNumUnits].
+     * * 8: bwHiddenState
+     *      A 2-D tensor of shape [batchSize, bwNumUnits]. Specifies a hidden
+     *      state input for the first time step of the computation.
+     * * 9: auxInput.
+     *      A 3-D tensor. The shape is the same as of the input 0.
+     * * 10:fwAuxWeights.
+     *      A 2-D tensor of shape [fwNumUnits, inputSize].
+     * * 11:bwAuxWeights.
+     *      A 2-D tensor of shape [bwNumUnits, inputSize].
+     * * 12:fusedActivationFunction.
+     *      A {@link FusedActivationFunc} value indicating the activation function. If
+     *      “NONE” is specified then it results in a linear activation.
+     * * 13:timeMajor
+     *      An {@link OperandType::BOOL} scalar specifying the shape format
+     *      of input and output tensors.
+     * * 14:mergeOutputs
+     *      An {@link OperandType::BOOL} scalar specifying if the outputs
+     *      from forward and backward cells are separate (if set to false) or
+     *      concatenated (if set to true).
+     * Outputs:
+     * * 0: fwOutput.
+     *      A 3-D tensor. The first two dimensions of the shape are defined by
+     *      the input 6 (timeMajor) and the third dimension is defined by the
+     *      input 14 (mergeOutputs). If timeMajor is set to true, then the first
+     *      two dimensions are [maxTime, batchSize], otherwise they are set to
+     *      [batchSize, maxTime]. If mergeOutputs is set to true, then the third
+     *      dimension is equal to (fwNumUnits + bwNumUnits), otherwise it is set
+     *      to fwNumUnits.
+     * * 1: bwOutput.
+     *      A 3-D tensor. If the input 14 (mergeOutputs) is set to true, then
+     *      this tensor is not produced. The shape is defined by the input 6
+     *      (timeMajor). If it is set to true, then the shape is set to
+     *      [maxTime, batchSize, bwNumUnits], otherwise the shape is set to
+     *      [batchSize, maxTime, bwNumUnits].
+     *
+     * Available since API level 29.
+     */
     BIDIRECTIONAL_SEQUENCE_RNN = 43,
+
+    /**
+     * Greedily selects a subset of bounding boxes in descending order of score.
+     *
+     * This op applies hard NMS algorithm to each class. In each loop of
+     * execution, the box with maximum score gets selected, and any boxes with
+     * the intersection-over-union (IOU) greater than a threshold are removed
+     * from the pending set.
+     *
+     * Axis-aligned bounding boxes are represented by its upper-left corner
+     * coordinate (x1,y1) and lower-right corner coordinate (x2,y2). A valid
+     * bounding box should satisfy x1 <= x2 and y1 <= y2.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Inputs:
+     * * 0: A 2-D Tensor of shape [num_rois, num_classes], specifying the score
+     *      of each bounding box proposal. The boxes are grouped by batches in the
+     *      first dimension.
+     * * 1: A 2-D Tensor specifying the bounding boxes of shape
+     *      [num_rois, num_classes * 4], organized in the order [x1, y1, x2, y2].
+     *      The boxes are grouped by batches in the first dimension. The sequential
+     *      order of the boxes corresponds with input0. For input0 of type
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, this tensor should be of
+     *      {@link OperandType::TENSOR_QUANT16_ASYMM}, with zeroPoint of 0 and
+     *      scale of 0.125.
+     * * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
+     *      [num_rois], specifying the batch index of each box. Boxes with
+     *      the same batch index are grouped together.
+     * * 3: An {@link OperandType::FLOAT32} scalar, score_threshold. Boxes
+     *      with scores lower than the threshold are filtered before sending
+     *      to the NMS algorithm.
+     * * 4: An {@link OperandType::FLOAT32} scalar, specifying the IoU
+     *      threshold.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the maximum
+     *      number of selected bounding boxes for each image. Set to a negative
+     *      value for unlimited number of output bounding boxes.
+     *
+     * Outputs:
+     * * 0: A 1-D Tensor of the same {@link OperandType} as input0, with shape
+     *      [num_output_rois], specifying the score of each output box. The boxes
+     *      are grouped by batches, but the sequential order in each batch is not
+     *      guaranteed. For type of {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the scale and zero point must be the same as input0.
+     * * 1: A 2-D Tensor of the same {@link OperandType} as input1, with shape
+     *      [num_output_rois, 4], specifying the coordinates of each
+     *      output bounding box with the same format as input1. The sequential
+     *      order of the boxes corresponds with output0. For type of
+     *      {@link OperandType::TENSOR_QUANT16_ASYMM}, the scale must be
+     *      0.125 and the zero point must be 0.
+     * * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
+     *      [num_output_rois], specifying the class of each output box. The
+     *      sequential order of the boxes corresponds with output0.
+     * * 3: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
+     *      [num_rois], specifying the batch index of each box. Boxes with
+     *      the same batch index are grouped together.
+     *
+     * Available since API level 29.
+     */
     BOX_WITH_NMS_LIMIT = 44,
+
+    /**
+     * Casts a tensor to a new type.
+     *
+     * This operation ignores the scale and zeroPoint of quanized tensors,
+     * e.g. it treats a {@link OperandType::TENSOR_QUANT8_ASYMM} input
+     * as a tensor of uint8 values.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: A tensor with the same shape as input0.
+     *
+     * Available since API level 29.
+     */
     CAST = 45,
+
+    /**
+     * Shuffle the channels of the input tensor.
+     *
+     * Given an input tensor and a integer value of num_groups, CHANNEL_SHUFFLE
+     * divide the channel dimension into num_groups groups, and reorganize the
+     * channels by grouping channels with the same index in each group.
+     *
+     * Along the channel dimension, the output is calculated using this formula:
+     *
+     *     output_channel[k * num_groups + g] = input_channel[g * group_size + k]
+     *
+     * where group_size = num_channels / num_groups
+     *
+     * The number of channels must be divisible by num_groups.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the tensor to be shuffled.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the number of
+     *      groups.
+     * * 2: An {@link OperandType::INT32} scalar, specifying the dimension
+     *      channel shuffle would be performed on. Negative index is used to
+     *      specify axis from the end (e.g. -1 for the last axis). Must be in
+     *      the range [-n, n).
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} and same shape as input0.
+     *
+     * Available since API level 29.
+     */
     CHANNEL_SHUFFLE = 46,
+
+    /**
+     * Apply postprocessing steps to bounding box detections.
+     *
+     * Bounding box detections are generated by applying transformation on a set
+     * of predefined anchors with the bounding box deltas from bounding box
+     * regression. A final step of hard NMS is applied to limit the number of
+     * returned boxes.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Inputs:
+     * * 0: A 3-D Tensor of shape [batches, num_anchors, num_classes], specifying
+     *      the score of each anchor with each class. Class 0 for each
+     *      [batches, num_anchors, 0] is background and will be ignored.
+     * * 1: A 3-D Tensor of shape [batches, num_anchors, length_box_encoding], with
+     *      the first four values in length_box_encoding specifying the bounding
+     *      box deltas. The box deltas are encoded in the order of [dy, dx, dh, dw],
+     *      where dy and dx is the linear-scale relative correction factor for the
+     *      center position of the bounding box with respect to the width and height,
+     *      dh and dw is the log-scale relative correction factor for the width and
+     *      height. All the entries in length_box_encoding beyond the first four
+     *      values are ignored in this operation.
+     * * 2: A 2-D Tensor of shape [num_anchors, 4], specifying the shape of each
+     *      predefined anchor, with format [ctr_y, ctr_x, h, w], where ctr_y and
+     *      ctr_x are the center position of the box, and h and w are the height
+     *      and the width.
+     * * 3: An {@link OperandType::FLOAT32} scalar, specifying the scaling
+     *      factor for dy in bounding box deltas.
+     * * 4: An {@link OperandType::FLOAT32} scalar, specifying the scaling
+     *      factor for dx in bounding box deltas.
+     * * 5: An {@link OperandType::FLOAT32} scalar, specifying the scaling
+     *      factor for dh in bounding box deltas.
+     * * 6: An {@link OperandType::FLOAT32} scalar, specifying the scaling
+     *      factor for dw in bounding box deltas.
+     * * 7: An {@link OperandType::BOOL} scalar, set to true to use regular
+     *      multi-class NMS algorithm that do NMS separately for each class,
+     *      set to false for a faster algorithm that only do one single NMS
+     *      using the highest class score..
+     * * 8: An {@link OperandType::INT32} scalar, max_num_detections, specifying
+     *      the maximum number of boxes for the output. Boxes with the lowest
+     *      scores are discarded to meet the limit.
+     * * 9: An {@link OperandType::INT32} scalar, only used when input7 is
+     *      set to false, specifying the maximum number of classes per detection.
+     * * 10: An {@link OperandType::INT32} scalar, only used when input7 is
+     *       set to true, specifying the maximum number of detections when
+     *       applying NMS algorithm for each single class.
+     * * 11: An {@link OperandType::FLOAT32} scalar, score_threshold. Boxes
+     *       with scores lower than the threshold are filtered before sending
+     *       to the NMS algorithm.
+     * * 12: An {@link OperandType::FLOAT32} scalar, specifying the IoU
+     *       threshold for hard NMS.
+     * * 13: An {@link OperandType::BOOL} scalar, set to true to include
+     *       background class in the list of label map for the output, set
+     *       to false to not include the background. When the background
+     *       class is included, it has label 0 and the output classes start
+     *       at 1 in the label map, otherwise, the output classes start at 0.
+     *
+     * Outputs:
+     * * 0: A 2-D tensor of the same {@link OperandType} as input0, with shape
+     *      [batches, max_num_detections], specifying the score of each output
+     *      detections.
+     * * 1: A 3-D tensor of shape [batches, max_num_detections, 4], specifying the
+     *      coordinates of each output bounding box, with format
+     *      [y1, x1, y2, x2].
+     * * 2: A 2-D {@link OperandType::TENSOR_INT32} tensor, of shape
+     *      [batches, max_num_detections], specifying the class label for each
+     *      output detection.
+     * * 3: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape [batches],
+     *      specifying the number of valid output detections for each batch.
+     *
+     * Available since API level 29.
+     */
     DETECTION_POSTPROCESSING = 47,
+
+    /**
+     * For input tensors x and y, computes x == y elementwise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * This operation supports broadcasting.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType} and dimensions compatible
+     *      with input0.
+     *
+     * Outputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     *
+     * Available since API level 29.
+     */
     EQUAL = 48,
+
+    /**
+     * Computes exponential of x element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: from 1.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 29.
+     */
     EXP = 49,
+
+    /**
+     * Inserts a dimension of 1 into a tensor's shape.
+     *
+     * Given a tensor input, this operation inserts a dimension of 1 at the
+     * given dimension index of input's shape. The dimension index starts at
+     * zero; if you specify a negative dimension index, it is counted backward
+     * from the end.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: An n-D tensor.
+     * * 1: An {@link OperandType::INT32} scalar specifying the dimension
+     *      index to expand. Must be in the range [-(n + 1), (n + 1)).
+     *
+     * Outputs:
+     * * 0: An (n + 1)-D tensor with the same {@link OperandType} and data as
+     *      input0.
+     *
+     * Available since API level 29.
+     */
     EXPAND_DIMS = 50,
+
+    /**
+     * Gathers values along an axis.
+     *
+     * Produces an output tensor with shape
+     *     input0.dimension[:axis] + indices.dimension + input0.dimension[axis + 1:]
+     * where:
+     *     # Vector indices (output is rank(input0)).
+     *     output[a_0, ..., a_n, i, b_0, ..., b_n] =
+     *       input0[a_0, ..., a_n, indices[i], b_0, ..., b_n]
+     *
+     *     # Higher rank indices (output is rank(input0) + rank(indices) - 1).
+     *     output[a_0, ..., a_n, i, ..., j, b_0, ... b_n] =
+     *       input0[a_0, ..., a_n, indices[i, ..., j], b_0, ..., b_n]
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: An n-D tensor from which to gather values.
+     * * 1: An {@link OperandType::INT32} scalar specifying the axis.
+     *      Negative index is used to specify axis from the end
+     *      (e.g. -1 for the last axis). Must be in the range [-n, n).
+     * * 2: A k-D tensor {@link OperandType::TENSOR_INT32} of indices.
+     *      The values must be in the bounds of the corresponding dimensions
+     *      of input0.
+     *
+     * Outputs:
+     * * 0: An (n + k - 1)-D tensor with the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     GATHER = 51,
+
+    /**
+     * Generate aixs-aligned bounding box proposals.
+     *
+     * Bounding box proposals are generated by applying transformation on a set
+     * of predefined anchors with the bounding box deltas from bounding box
+     * regression. A final step of hard NMS is applied to limit the number of
+     * returned boxes.
+     *
+     * Axis-aligned bounding boxes are represented by its upper-left corner
+     * coordinate (x1,y1) and lower-right corner coordinate (x2,y2). A valid
+     * bounding box should satisfy x1 <= x2 and y1 <= y2.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Inputs:
+     * * 0: A 4-D Tensor specifying the score of each anchor at each
+     *      location. With "NHWC" data layout, the tensor shape is
+     *      [batches, height, width, num_anchors]. With "NCHW" data layout,
+     *      the tensor shape is [batches, num_anchors, height, width].
+     * * 1: A 4-D Tensor specifying the bounding box deltas. With "NHWC" data
+     *      layout, the tensor shape is [batches, height, width, num_anchors * 4].
+     *      With "NCHW" data layout, the tensor shape is
+     *      [batches, num_anchors * 4, height, width]. The box deltas are encoded
+     *      in the order of [dx, dy, dw, dh], where dx and dy is the linear-scale
+     *      relative correction factor for the center position of the bounding box
+     *      with respect to the width and height, dw and dh is the log-scale
+     *      relative correction factor for the width and height. The last
+     *      dimensions is the channel dimension.
+     * * 2: A 2-D Tensor of shape [num_anchors, 4], specifying the shape of each
+     *      predefined anchor, with format [x1, y1, x2, y2]. For input0 of type
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, this tensor should be of
+     *      {@link OperandType::TENSOR_QUANT16_SYMM}, with scale of 0.125.
+     * * 3: A 2-D Tensor of shape [batches, 2], specifying the size of
+     *      each image in the batch, with format [image_height, image_width].
+     *      For input0 of type {@link OperandType::TENSOR_QUANT8_ASYMM}, this
+     *      tensor should be of {@link OperandType::TENSOR_QUANT16_SYMM}, with
+     *      scale of 0.125.
+     * * 4: An {@link OperandType::FLOAT32} scalar, specifying the ratio
+     *      from the height of original image to the height of feature map.
+     * * 5: An {@link OperandType::FLOAT32} scalar, specifying the ratio
+     *      from the width of original image to the width of feature map.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the maximum
+     *      number of boxes before going into the hard NMS algorithm. Boxes
+     *      with the lowest scores are discarded to meet the limit. Set to
+     *      a non-positive value for unlimited number.
+     * * 7: An {@link OperandType::INT32} scalar, specifying the maximum
+     *      number of boxes returning from the hard NMS algorithm. Boxes
+     *      with the lowest scores are discarded to meet the limit. Set to
+     *      a non-positive value for unlimited number.
+     * * 8: An {@link OperandType::FLOAT32} scalar, specifying the IoU
+     *      threshold for hard NMS.
+     * * 9: An {@link OperandType::FLOAT32} scalar, min_size. Boxes with
+     *      height or width lower than the absolute threshold are filtered out.
+     * * 10: An {@link OperandType::BOOL} scalar, set to true to specify
+     *       NCHW data layout for input0 and input1. Set to false for NHWC.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0, of shape
+     *      [num_output_rois], specifying the score of each output box.
+     *      The boxes are grouped by batches, but the sequential order in
+     *      each batch is not guaranteed. For type of
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the scale and zero
+     *      point must be the same as input0.
+     * * 1: A tensor of the same {@link OperandType} as input3, of shape
+     *      [num_output_rois, 4], specifying the coordinates of each output
+     *      bounding box for each class, with format [x1, y1, x2, y2].
+     *      The sequential order of the boxes corresponds with output0.
+     *      For type of {@link OperandType::TENSOR_QUANT16_ASYMM}, the
+     *      scale must be 0.125 and the zero point must be 0.
+     * * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
+     *      [num_rois], specifying the batch index of each box. Boxes with
+     *      the same batch index are grouped together.
+     *
+     * Available since API level 29.
+     */
     GENERATE_PROPOSALS = 52,
+
+    /**
+     * For input tensors x and y, computes x > y elementwise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * This operation supports broadcasting.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType} and dimensions compatible
+     *      with input0.
+     *
+     * Outputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     *
+     * Available since API level 29.
+     */
     GREATER = 53,
+    /**
+     * For input tensors x and y, computes x >= y elementwise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * This operation supports broadcasting.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType} and dimensions compatible
+     *      with input0.
+     *
+     * Outputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     *
+     * Available since API level 29.
+     */
     GREATER_EQUAL = 54,
+
+    /**
+     * Performs a grouped 2-D convolution operation.
+     *
+     * Given an input tensor of shape [batches, height, width, depth_in] and a
+     * filter tensor of shape [depth_out, filter_height, filter_width, depth_group]
+     * containing depth_out convolutional filters of depth depth_group, GROUPED_CONV
+     * applies a group of different filters to each input channel group, then
+     * concatenates the results together.
+     *
+     * Specifically, the input channels are divided into num_groups groups, each with
+     * depth depth_group, i.e. depth_in = num_groups * depth_group. The convolutional
+     * filters are also divided into num_groups groups, i.e. depth_out is divisible
+     * by num_groups. GROUPED_CONV applies each group of filters to the corresponding
+     * input channel group, and the result are concatenated together.
+     *
+     * The output dimensions are functions of the filter dimensions, stride, and
+     * padding.
+     *
+     * The values in the output tensor are computed as:
+     *
+     *     output[b, i, j, g * channel_multiplier + q] =
+     *         sum_{di, dj, dk} (
+     *             input[b, strides[1] * i + di, strides[2] * j + dj,
+     *                   g * depth_group + dk] *
+     *             filter[g * channel_multiplier + q, di, dj, dk]
+     *         ) + bias[channel]
+     *
+     * where channel_multiplier = depth_out / num_groups
+     *
+     * Supported tensor {@link OperandType} configurations:
+     * * 32 bit Floating point :
+     * * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
+     *
+     * * 16 bit Floating point:
+     * * {@link OperandType::TENSOR_FLOAT16} for input, filter, output, and bias.
+     *
+     * * Quantized:
+     * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
+     * * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
+     * * * input.scale * filter.scale).
+     *
+     * * Quantized with symetric per channel quantization for the filter:
+     * * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
+     * * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
+     * * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
+     * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Both explicit padding and implicit padding are supported.
+     *
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input, where depth_in = num_groups * depth_group.
+     * * 1: A 4-D tensor, of shape
+     *      [depth_out, filter_height, filter_width, depth_group], specifying
+     *      the filter, where depth_out must be divisible by num_groups.  For
+     *      tensor of type {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
+     *      the channel dimension must be set to 0.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
+     *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
+     *      {@link OperandType::TENSOR_FLOAT16}, the bias must be of the same
+     *      type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
+     *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
+     *      of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
+     *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
+     *      bias_scale[i] = input_scale * filter_scale[i].
+     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the left, in the ‘width’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the right, in the ‘width’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the top, in the ‘height’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the bottom, in the ‘height’ dimension.
+     * * 7: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 8: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 9: An {@link OperandType::INT32} scalar, specifying the number of
+            groups.
+     * * 10: An {@link OperandType::INT32} scalar, and has to be one of the
+     *       {@link FusedActivationFunc} values. Specifies the activation to
+     *       invoke on the result.
+     * * 11: An {@link OperandType::BOOL} scalar, set to true to specify
+     *       NCHW data layout for input0 and output0. Set to false for NHWC.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input, where depth_in = num_groups * depth_group.
+     * * 1: A 4-D tensor, of shape
+     *      [depth_out, filter_height, filter_width, depth_group], specifying
+     *      the filter, where depth_out must be divisible by num_groups.  For
+     *      tensor of type {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
+     *      the channel dimension must be set to 0.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
+     *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
+     *      {@link OperandType::TENSOR_FLOAT16}, the bias must be of the same
+     *      type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
+     *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
+     *      of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
+     *      should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
+     *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
+     *      bias_scale[i] = input_scale * filter_scale[i].
+     * * 3: An {@link OperandType::INT32} scalar, specifying the implicit
+     *      padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the number of
+     *      groups.
+     * * 7: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 8: An {@link OperandType::BOOL} scalar, set to true to specify
+     *      NCHW data layout for input0 and output0. Set to false for NHWC.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape
+     *      [batches, out_height, out_width, depth_out]. For output tensor of
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
+     *      must be satisfied: output_scale > input_scale * filter_scale (for
+     *      filter tensor of type {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
+     *      this condition must be true for all filter scales).
+     *
+     * Available since API level 29.
+     */
     GROUPED_CONV_2D = 55,
+
+    /**
+     * Localize the maximum keypoints from heatmaps.
+     *
+     * This operation approximates the accurate maximum keypoint scores and
+     * indices after bicubic upscaling by using Taylor expansion up to the
+     * quadratic term.
+     *
+     * The bounding box is represented by its upper-left corner coordinate
+     * (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
+     * A valid bounding box should satisfy x1 <= x2 and y1 <= y2.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: A 4-D Tensor of shape
+     *      [num_boxes, heatmap_size, heatmap_size, num_keypoints],
+     *      specifying the heatmaps, the height and width of heatmaps should
+     *      be the same, and must be greater than or equal to 2.
+     * * 1: A 2-D Tensor of shape [num_boxes, 4], specifying the bounding boxes,
+     *      each with format [x1, y1, x2, y2]. For input0 of type
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, this tensor should
+     *      be of {@link OperandType::TENSOR_QUANT16_ASYMM}, with zeroPoint
+     *      of 0 and scale of 0.125.
+     * * 2: An {@link OperandType::BOOL} scalar, set to true to specify
+     *      NCHW data layout for input0. Set to false for NHWC.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0, with shape
+     *      [num_boxes, num_keypoints], specifying score of the keypoints.
+     * * 1: A tensor of the same {@link OperandType} as input1, with shape
+     *      [num_boxes, num_keypoints, 2], specifying the location of
+     *      the keypoints, the second dimension is organized as
+     *      [keypoint_x, keypoint_y].
+     *
+     * Available since API level 29.
+     */
     HEATMAP_MAX_KEYPOINT = 56,
+
+    /**
+     * Applies instance normalization to the input tensor.
+     *
+     * The values in the output tensor are computed as:
+     *
+     *     output[b, h, w, c] =
+     *         (input[b, h, w, c] - mean[b, c]) * gamma /
+     *         sqrt(var[b, c] + epsilon) + beta
+     *
+     * Where the mean and variance are computed across the spatial dimensions:
+     *
+     *     mean[b, c] =
+     *         sum_{h, w}(input[b, h, w, c]) / sum(1)
+     *
+     *     var[b, c] =
+     *         sum_{h, w}(pow(input[b, h, w, c] - mean[b, c], 2)) / sum(1)
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the tensor to be normalized.
+     * * 1: An {@link OperandType::FLOAT32} scalar, specifying gamma, the
+     *      scale applied to the normalized tensor.
+     * * 2: An {@link OperandType::FLOAT32} scalar, specifying beta, the
+     *      offset applied to the normalized tensor.
+     * * 3: An {@link OperandType::FLOAT32} scalar, specifying epsilon, the
+     *      small value added to variance to avoid dividing by zero.
+     * * 4: An {@link OperandType::BOOL} scalar, set to true to specify
+     *      NCHW data layout for input0 and output0. Set to false for NHWC.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} and same shape as input0.
+     *
+     * Available since API level 29.
+     */
     INSTANCE_NORMALIZATION = 57,
+
+    /**
+     * For input tensors x and y, computes x < y elementwise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * This operation supports broadcasting.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType} and dimensions compatible
+     *      with input0.
+     *
+     * Outputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     *
+     * Available since API level 29.
+     */
     LESS = 58,
+
+    /**
+     * For input tensors x and y, computes x <= y elementwise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * This operation supports broadcasting.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType} and dimensions compatible
+     *      with input0.
+     *
+     * Outputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     *
+     * Available since API level 29.
+     */
     LESS_EQUAL = 59,
+
+    /**
+     * Computes natural logarithm of x element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: from 1.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 29.
+     */
     LOG = 60,
+
+    /**
+     * Returns the truth value of x AND y element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     *
+     * Supported tensor rank: from 1
+     *
+     * This operation supports broadcasting.
+     *
+     * Inputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     * * 1: A tensor of {@link OperandType::TENSOR_BOOL8} and dimensions
+     *      compatible with input0.
+     *
+     * Outputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     *
+     * Available since API level 29.
+     */
     LOGICAL_AND = 61,
+
+    /**
+     * Computes the truth value of NOT x element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     *
+     * Supported tensor rank: from 1.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 29.
+     */
     LOGICAL_NOT = 62,
+
+    /**
+     * Returns the truth value of x OR y element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     *
+     * Supported tensor rank: from 1
+     *
+     * This operation supports broadcasting.
+     *
+     * Inputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     * * 1: A tensor of {@link OperandType::TENSOR_BOOL8} and dimensions
+     *      compatible with input0.
+     *
+     * Outputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     *
+     * Available since API level 29.
+     */
     LOGICAL_OR = 63,
+
+    /**
+     * Computes the log softmax activations given logits.
+     *
+     * The output is calculated using this formula:
+     *
+     *     output = logits * beta - log(reduce_sum(exp(logits * beta), axis))
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: from 1.
+     *
+     * Inputs:
+     * * 0: A tensor specifying the input logits.
+     * * 1: An {@link OperandType::FLOAT32} scalar, specifying the positive
+     *      scaling factor for the exponent, beta.
+     * * 2: An {@link OperandType::INT32} scalar specifying the axis to
+     *      reduce across. Negative index is used to specify axis from the
+     *      end (e.g. -1 for the last axis). Must be in the range [-n, n).
+     *
+     * Outputs:
+     * * 0: The output tensor of the same {@link OperandType} and shape as
+     *      input0.
+     *
+     * Available since API level 29.
+     */
     LOG_SOFTMAX = 64,
+
+    /**
+     * Returns the element-wise maximum of two tensors.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType} and compatible dimensions
+     *      with input0.
+     *
+     * Outputs:
+     * * 0: The sum, a tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     MAXIMUM = 65,
+
+    /**
+     * Returns the element-wise minimum of two tensors.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType} and compatible dimensions
+     *      with input0.
+     *
+     * Outputs:
+     * * 0: The sum, a tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     MINIMUM = 66,
+
+    /**
+     * Computes numerical negative value element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     *
+     * Supported tensor rank: from 1.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 29.
+     */
     NEG = 67,
+
+    /**
+     * For input tensors x and y, computes x != y elementwise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * This operation supports broadcasting.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     * * 1: A tensor of the same {@link OperandType} and dimensions compatible
+     *      with input0.
+     *
+     * Outputs:
+     * * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
+     *
+     * Available since API level 29.
+     */
     NOT_EQUAL = 68,
+
+    /**
+     * Pads a tensor with the given constant value according to the specified
+     * paddings.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor, specifying the tensor to be padded.
+     * * 1: A 2-D Tensor of {@link OperandType::TENSOR_INT32}, the paddings
+     *      for each spatial dimension of the input tensor. The shape of the
+     *      tensor must be {rank(input0), 2}.
+     *      padding[i, 0] specifies the number of elements to be padded in the
+     *      front of dimension i.
+     *      padding[i, 1] specifies the number of elements to be padded after
+     *      the end of dimension i.
+     * * 2: An scalar specifying the value to use for padding input0.
+     *      For input tensor of {@link OperandType::TENSOR_FLOAT32}, the
+     *      pad value should be of {@link OperandType::FLOAT32}.
+     *      For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      the pad value should be of {@link OperandType::INT32}. The
+     *      scale and zeroPoint are assumed to be the same as in input0.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0. The
+     *      output tensor has the same rank as input0, and each
+     *      dimension of the output tensor has the same size as the
+     *      corresponding dimension of the input tensor plus the size
+     *      of the padding:
+     *          output0.dimension[i] =
+     *              padding[i, 0] + input0.dimension[i] + padding[i, 1]
+     *
+     * Available since API level 29.
+     */
     PAD_V2 = 69,
+
+    /**
+     * Computes the power of one value to another.
+     *
+     * Given a tensor base and a tensor exponent, this operation computes
+     * base^exponent elementwise.
+     *
+     * This operations supports broadcasting. The size of the output is the
+     * maximum size along each dimension of the input operands. It starts with
+     * the trailing dimensions, and works its way forward.
+     *
+     * For example:
+     *     base.dimension     =    {4, 1, 2}
+     *     exponent.dimension = {5, 4, 3, 1}
+     *     output.dimension   = {5, 4, 3, 2}
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: A tensor specifying the base.
+     * * 1: A tensor specifying the exponent.
+     *
+     * Outputs:
+     * * 0: An output tensor.
+     *
+     * Available since API level 29.
+     */
     POW = 70,
+
+    /**
+     * Parametric Rectified Linear Unit.
+     *
+     * It follows: f(x) = alpha * x for x < 0, f(x) = x for x >= 0, where alpha
+     * is a learned array with the same {@link OperandType} and compatible
+     * dimensions as input x.
+     *
+     * Two dimensions are compatible when:
+     *     1. they are equal, or
+     *     2. one of them is 1
+     *
+     * The size of the output is the maximum size along each dimension of the
+     * input operands. It starts with the trailing dimensions, and works its way
+     * forward.
+     *
+     * Example:
+     *     input.dimension  =    {4, 1, 2}
+     *     alpha.dimension  = {5, 4, 3, 1}
+     *     output.dimension = {5, 4, 3, 2}
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: A tensor, specifying the input.
+     * * 1: A tensor of the same {@link OperandType}, and compatible dimensions
+     *      as input0, specifying the alpha.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     PRELU = 71,
+
+    /**
+     * Quantizes the input tensor.
+     *
+     * The formula is:
+     *
+     *     output = max(0, min(255, round(input / scale) + zeroPoint)
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0, but with
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}.
+     *
+     * Available since API level 29.
+     */
     QUANTIZE = 72,
+
+    /**
+     * A version of quantized LSTM, using 16 bit quantization for internal
+     * state.
+     *
+     * There is no projection layer, so cell state size is equal to the output
+     * size.
+     *
+     * Inputs:
+     * * 0: A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [numBatches, inputSize] specifying the input to the LSTM
+     *      cell. Tensor is quantized with a fixed quantization range of
+     *      [-1, 127/128] (scale = 1/128, zeroPoint = 128).
+     * * 1: The input-to-input weights.
+     *      A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [outputSize, inputSize] specifying input-to-input part of
+     *      weights for fully-connected layer inside the LSTM cell.
+     *      Quantization zero point and scale must be the same across all the
+     *      weights.
+     * * 2: The input-to-forget weights.
+     *      A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [outputSize, inputSize] specifying input-to-forget part of
+     *      weights for fully-connected layer inside the LSTM cell.
+     *      Quantization zero point and scale must be the same across all the
+     *      weights.
+     * * 3: The input-to-cell weights.
+     *      A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [outputSize, inputSize] specifying input-to-cell part of
+     *      weights for fully-connected layer inside the LSTM cell.
+     *      Quantization zero point and scale must be the same across all the
+     *      weights.
+     * * 4: The input-to-output weights.
+     *      A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [outputSize, inputSize] specifying input-to-output part of
+     *      weights for fully-connected layer inside the LSTM cell.
+     *      Quantization zero point and scale must be the same across all the
+     *      weights.
+     * * 5: The recurrent-to-input weights.
+     *      A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [outputSize, inputSize] specifying recurrent-to-input part
+     *      of weights for fully-connected layer inside the LSTM cell.
+     *      Quantization zero point and scale must be the same across all the
+     *      weights.
+     * * 6: The recurrent-to-forget weights.
+     *      A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [outputSize, inputSize] specifying recurrent-to-forget
+     *      part of weights for fully-connected layer inside the LSTM cell.
+     *      Quantization zero point and scale must be the same across all the
+     *      weights.
+     * * 7: The recurrent-to-cell weights.
+     *      A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [outputSize, inputSize] specifying recurrent-to-cell part
+     *      of weights for fully-connected layer inside the LSTM cell.
+     *      Quantization zero point and scale must be the same across all the
+     *      weights.
+     * * 8: The recurrent-to-output weights.
+     *      A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [outputSize, inputSize] specifying recurrent-to-output
+     *      part of weights for fully-connected layer inside the LSTM cell.
+     *      Quantization zero point and scale must be the same across all the
+     *      weights.
+     * * 9: The input gate bias.
+     *      A 1-D tensor of type {@link OperandType::TENSOR_INT32} and shape
+     *      [outputSize] specifying the bias for the fully-connected layer
+     *      inside the LSTM cell. Bias is quantized with scale being a product
+     *      of input and weights scales and zeroPoint equal to 0.
+     * * 10:The forget gate bias.
+     *      A 1-D tensor of type {@link OperandType::TENSOR_INT32} and shape
+     *      [outputSize] specifying the bias for the fully-connected layer
+     *      inside the LSTM cell. Bias is quantized with scale being a product
+     *      of input and weights scales and zeroPoint equal to 0.
+     * * 11:The cell bias.
+     *      A 1-D tensor of type {@link OperandType::TENSOR_INT32} and shape
+     *      [outputSize] specifying the bias for the fully-connected layer
+     *      inside the LSTM cell. Bias is quantized with scale being a product
+     *      of input and weights scales and zeroPoint equal to 0.
+     * * 12:The output gate bias.
+     *      A 1-D tensor of type {@link OperandType::TENSOR_INT32} and shape
+     *      [outputSize] specifying the bias for the fully-connected layer
+     *      inside the LSTM cell. Bias is quantized with scale being a product
+     *      of input and weights scales and zeroPoint equal to 0.
+     * * 13: A 2-D tensor of type {@link OperandType::TENSOR_QUANT16_SYMM}
+     *       and shape [numBatches, outputSize] specifying the cell state from the
+     *       previous time step of the LSTM cell. It is quantized using a
+     *       quantization range of [-2^4, 2^4 * 32767/32768] (scale = 2^4 /
+     *       32768, zeroPoint = 0).
+     * * 14: A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *       and shape [numBathes, outputSize] specifying the output of the LSTM
+     *       cell from previous time-step. Tensor is quantized with a fixed
+     *       quantization range of [-1, 127/128] (scale = 1/128, zeroPoint =
+     *       128).
+     *
+     *
+     * Outputs:
+     * * 0: A 2-D tensor of type {@link OperandType::TENSOR_QUANT16_SYMM}
+     *      and shape [numBatches, outputSize] which contains a cell state from
+     *      the current time step. Tensor is quantized using a quantization
+     *      range of [-2^4, 2^4 * 32767/32768] (scale = 2^4 / 32768, zeroPoint =
+     *      0).
+     * * 1: A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *      and shape [numBathes, outputSize] which contains the output value.
+     *      Tensor is quantized with a fixed quantization range of [-1, 127/128]
+     *      (scale = 1/128, zeroPoint = 128).
+     */
     QUANTIZED_16BIT_LSTM = 73,
+
+    /**
+     * Draws samples from a multinomial distribution.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Inputs:
+     * * 0: A 2-D tensor with shape [batches, classes], specifying the
+     *      unnormalized log-probabilities for all classes.
+     * * 1: A scalar {@link OperandType::INT32}, specifying the number of
+     *      independent samples to draw for each row slice.
+     * * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [2],
+     *      specifying seeds used to initialize the random distribution.
+     * Outputs:
+     * * 0: A 2-D {@link OperandType::TENSOR_INT32} tensor with shape
+     *      [batches, samples], containing the drawn samples.
+     *
+     * Available since API level 29.
+     */
     RANDOM_MULTINOMIAL = 74,
+
+    /**
+     * Reduces a tensor by computing the "logical and" of elements along given
+     * dimensions.
+     *
+     * If keep_dims is true, the reduced dimensions are
+     * retained with length 1. Otherwise, the rank of the tensor is reduced by
+     * 1 for each entry in dimensions.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor.
+     * * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
+     *      to reduce. Dimension values must be in the range [-n, n).
+     * * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
+     *      retains reduced dimensions with length 1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     REDUCE_ALL = 75,
+
+    /**
+     * Reduces a tensor by computing the "logical or" of elements along given
+     * dimensions.
+     *
+     * If keep_dims is true, the reduced dimensions are
+     * retained with length 1. Otherwise, the rank of the tensor is reduced by
+     * 1 for each entry in dimensions.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_BOOL8}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor.
+     * * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
+     *      to reduce. Dimension values must be in the range [-n, n).
+     * * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
+     *      retains reduced dimensions with length 1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     REDUCE_ANY = 76,
+
+    /**
+     * Reduces a tensor by computing the maximum of elements along given
+     * dimensions.
+     *
+     * If keep_dims is true, the reduced dimensions are
+     * retained with length 1. Otherwise, the rank of the tensor is reduced by
+     * 1 for each entry in dimensions.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor.
+     * * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
+     *      to reduce. Dimension values must be in the range [-n, n).
+     * * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
+     *      retains reduced dimensions with length 1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     REDUCE_MAX = 77,
+
+    /**
+     * Reduces a tensor by computing the minimum of elements along given
+     * dimensions.
+     *
+     * If keep_dims is true, the reduced dimensions are
+     * retained with length 1. Otherwise, the rank of the tensor is reduced by
+     * 1 for each entry in dimensions.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor.
+     * * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
+     *      to reduce. Dimension values must be in the range [-n, n).
+     * * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
+     *      retains reduced dimensions with length 1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     REDUCE_MIN = 78,
+
+    /**
+     * Reduces a tensor by multiplying elements along given dimensions.
+     *
+     * If keep_dims is true, the reduced dimensions are
+     * retained with length 1. Otherwise, the rank of the tensor is reduced by
+     * 1 for each entry in dimensions.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor.
+     * * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
+     *      to reduce. Dimension values must be in the range [-n, n).
+     * * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
+     *      retains reduced dimensions with length 1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     REDUCE_PROD = 79,
+
+    /**
+     * Reduces a tensor by summing elements along given dimensions.
+     *
+     * If keep_dims is true, the reduced dimensions are
+     * retained with length 1. Otherwise, the rank of the tensor is reduced by
+     * 1 for each entry in dimensions.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: up to 4
+     *
+     * Inputs:
+     * * 0: An n-D tensor.
+     * * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
+     *      to reduce. Dimension values must be in the range [-n, n).
+     * * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
+     *      retains reduced dimensions with length 1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 29.
+     */
     REDUCE_SUM = 80,
+
+    /**
+     * Select and scale the feature map of each region of interest to a unified
+     * output size by average pooling sampling points from bilinear interpolation.
+     *
+     * The region of interest is represented by its upper-left corner coordinate
+     * (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
+     * A spatial scaling factor is applied to map into feature map coordinate.
+     * A valid region of interest should satisfy x1 <= x2 and y1 <= y2.
+     *
+     * No rounding is applied in this operation. The sampling points are unified
+     * distributed in the pooling bin and their values are calculated by bilinear
+     * interpolation.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16} (since API level 29)
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: A 4-D tensor, specifying the feature map.
+     * * 1: A 2-D Tensor of shape [num_rois, 4], specifying the locations of
+     *      the regions of interest, each line with format [x1, y1, x2, y2].
+     *      For input0 of type {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      this tensor should be of {@link OperandType::TENSOR_QUANT16_ASYMM},
+     *      with zeroPoint of 0 and scale of 0.125.
+     * * 2: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
+     *      [num_rois], specifying the batch index of each box. Boxes with
+     *      the same batch index are grouped together.
+     * * 3: An {@link OperandType::INT32} scalar, specifying the output
+     *      height of the output tensor.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the output
+     *      width of the output tensor.
+     * * 5: An {@link OperandType::FLOAT32} scalar, specifying the ratio
+     *      from the height of original image to the height of feature map.
+     * * 6: An {@link OperandType::FLOAT32} scalar, specifying the ratio
+     *      from the width of original image to the width of feature map.
+     * * 7: An {@link OperandType::INT32} scalar, specifying the number of
+     *      sampling points in height dimension used to compute the output.
+     *      Set to 0 for adaptive value of ceil(roi_height/out_height).
+     * * 8: An {@link OperandType::INT32} scalar, specifying the number of
+     *      sampling points in width dimension used to compute the output.
+     *      Set to 0 for adaptive value of ceil(roi_width/out_width).
+     * * 9: An {@link OperandType::BOOL} scalar, set to true to specify
+     *      NCHW data layout for input0 and output0. Set to false for NHWC.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0. The output
+     *      shape is [num_rois, out_height, out_width, depth].
+     *
+     * Available since API level 29.
+     */
     ROI_ALIGN = 81,
+
+    /**
+     * Select and scale the feature map of each region of interest to a unified
+     * output size by max-pooling.
+     *
+     * The region of interest is represented by its upper-left corner coordinate
+     * (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
+     * A spatial scaling factor is applied to map into feature map coordinate.
+     * A valid region of interest should satisfy x1 <= x2 and y1 <= y2.
+     *
+     * Rounding is applied in this operation to ensure integer boundary for
+     * regions of interest and pooling bins.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: A 4-D tensor, specifying the feature map.
+     * * 1: A 2-D Tensor of shape [num_rois, 4], specifying the locations of
+     *      the regions of interest, each line with format [x1, y1, x2, y2].
+     *      For input0 of type {@link OperandType::TENSOR_QUANT8_ASYMM},
+     *      this tensor should be of {@link OperandType::TENSOR_QUANT16_ASYMM},
+     *      with zeroPoint of 0 and scale of 0.125.
+     * * 2: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
+     *      [num_rois], specifying the batch index of each box. Boxes with
+     *      the same batch index are grouped together.
+     * * 3: An {@link OperandType::INT32} scalar, specifying the output
+     *      height of the output tensor.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the output
+     *      width of the output tensor.
+     * * 5: An {@link OperandType::FLOAT32} scalar, specifying the ratio
+     *      from the height of original image to the height of feature map.
+     * * 6: An {@link OperandType::FLOAT32} scalar, specifying the ratio
+     *      from the width of original image to the width of feature map.
+     * * 7: An {@link OperandType::BOOL} scalar, set to true to specify
+     *      NCHW data layout for input0 and output0. Set to false for NHWC.
+     *
+     * Outputs:
+     * * 0: A tensor of the same {@link OperandType} as input0. The output
+     *      shape is [num_rois, out_height, out_width, depth].
+     *
+     * Available since API level 29.
+     */
     ROI_POOLING = 82,
+
+    /**
+     * Computes reciprocal of square root of x element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: from 1.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 29.
+     */
     RSQRT = 83,
+
+    /**
+     * Using a tensor of booleans c and input tensors x and y select values
+     * elementwise from both input tensors:
+     *
+     * O[i] = C[i] ? x[i] : y[i].
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: A tensor of type {@link OperandType::TENSOR_BOOL8} acting as a
+     *      mask that chooses, based on the value at each element, whether the
+     *      corresponding element in the output should be taken from input1 (if
+     *      true) or input2 (if false).
+     * * 1: An input tensor of the same shape as input0.
+     * * 2: An input tensor of the same shape and type as input1.
+     *
+     * Outputs:
+     * * 0: A tensor of the same type and shape as input1 and input2.
+     *
+     */
     SELECT = 84,
+
+    /**
+     * Computes sin of x element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: from 1.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 29.
+     */
     SIN = 85,
+
+    /**
+     * Extracts a slice of specified size from the input tensor starting at a
+     * specified location.
+     *
+     * The starting location is specified as a 1-D tensor containing offsets
+     * for each dimension. The size is specified as a 1-D tensor containing
+     * either size of a slice along corresponding dimension or -1. In the latter
+     * case, all the remaining elements in dimension are included in the slice.
+     * Slice size in each dimension cannot be zero.
+     *
+     * A sum of begin offset and a size of a slice must not exceed size of a
+     * corresponding dimension.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: An n-D tensor to take slice from.
+     * * 1: A 1-D tensor of type {@link OperandType::TENSOR_INT32} specifying
+     *      the beginning indices of the slice in each dimension.
+     * * 2: A 1-D tensor of type {@link OperandType::TENSOR_INT32} specifying
+     *      the size of the slice in each dimension.
+     *
+     * Outputs:
+     * * 0: An n-D tensor of the same type as the input containing the slice.
+     *
+     * Available since API level 29.
+     */
     SLICE = 86,
+
+    /**
+     * Splits a tensor along a given axis into num_splits subtensors.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: An n-D tensor to split.
+     * * 1: An {@link OperandType::INT32} scalar specifying the axis along
+     *      which to split.
+     * * 2: An {@link OperandType::INT32} scalar indicating the number of
+     *      splits along given axis. Must evenly divide axis size.
+     *
+     * Outputs:
+     * * 0 ~ (num_splits - 1): Resulting subtensors.
+     *
+     * Available since API level 29.
+     */
     SPLIT = 87,
+
+    /**
+     * Computes square root of x element-wise.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: from 1.
+     *
+     * Inputs:
+     * * 0: A tensor.
+     *
+     * Outputs:
+     * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 29.
+     */
     SQRT = 88,
+
+    /**
+     * Constructs a tensor by tiling a given tensor.
+     *
+     * This operation creates a new tensor by replicating `input` `multiples`
+     * times. The output tensor's i-th dimension has `input.dims(i) * multiples[i]`
+     * elements, and the values of `input` are replicated `multiples[i]` times
+     * along the i-th dimension.
+     * For example, tiling `[a b c d]` by `[2]` produces `[a b c d a b c d]`.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: input, an n-D tensor specifying the input.
+     * * 1: multiples, a 1-D tensor of {@link OperandType::TENSOR_INT32}.
+     *      The length of multiples must be n.
+     *
+     * Outputs:
+     * * 0: A tiled tensor of the same {@link OperandType} and rank as `input`.
+     *
+     * Available since API level 29.
+     */
     TILE = 89,
+
+    /**
+     * Finds values and indices of the k largest entries for the last dimension.
+     *
+     * Resulting values in each dimensions are sorted in descending order. If
+     * two values are equal, the one with larger index appears first.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_INT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: from 1
+     *
+     * Inputs:
+     * * 0: input, an n-D tensor specifying the input.
+     * * 1: k, an {@link OperandType::INT32} scalar, specifying the number of
+     *      top elements to look for along the last dimension.
+     *
+     * Outputs:
+     * * 0: An n-D tensor of the same type as the input, containing the k
+     *      largest elements along each last dimensional slice.
+     * * 1: An n-D tensor of type {@link OperandType::TENSOR_INT32}
+     *      containing the indices of values within the last dimension of input.
+     *
+     * Available since API level 29.
+     */
     TOPK_V2 = 90,
+
+    /**
+     * Performs the tranpose of 2-D convolution operation.
+     *
+     * This operation is sometimes called "deconvolution" after Deconvolutional
+     * Networks, but is actually the transpose (gradient) of
+     * {@link OperandType::CONV_2D} rather than an actual deconvolution.
+     *
+     * The output dimensions are functions of the filter dimensions, stride, and
+     * padding.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Both explicit padding and implicit padding are supported.
+     *
+     * Inputs (explicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input.
+     * * 1: A 4-D tensor, of shape
+     *      [depth_out, filter_height, filter_width, depth_in], specifying the
+     *      filter.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
+     *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
+     *      {@link OperandType::TENSOR_FLOAT16}, the bias should be of the
+     *      same type. For input tensor of type
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
+     *      of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
+     *      bias_scale == input_scale * filter_scale.
+     * * 3: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the left, in the ‘width’ dimension.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the right, in the ‘width’ dimension.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the top, in the ‘height’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the padding on
+     *      the bottom, in the ‘height’ dimension.
+     * * 7: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 8: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 9: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 10: An {@link OperandType::BOOL} scalar, set to true to specify
+     *       NCHW data layout for input0 and output0. Set to false for NHWC.
+     *
+     * Inputs (implicit padding):
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
+     *      specifying the input.
+     * * 1: A 4-D tensor, of shape
+     *      [depth_out, filter_height, filter_width, depth_in], specifying the
+     *      filter.
+     * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
+     *      tensor of type {@link OperandType::TENSOR_FLOAT32} or
+     *      {@link OperandType::TENSOR_FLOAT16}, the bias should be of the
+     *      same type. For input tensor of type
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
+     *      of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
+     *      bias_scale == input_scale * filter_scale.
+     * * 3: An {@link OperandType::TENSOR_INT32} tensor, specifying the output
+     *      tensor shape.
+     * * 4: An {@link OperandType::INT32} scalar, specifying the implicit
+     *      padding scheme, has to be one of the
+     *      following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
+     * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘width’ dimension.
+     * * 6: An {@link OperandType::INT32} scalar, specifying the stride when
+     *      walking through input in the ‘height’ dimension.
+     * * 7: An {@link OperandType::INT32} scalar, and has to be one of the
+     *      {@link FusedActivationFunc} values. Specifies the activation to
+     *      invoke on the result.
+     * * 8: An {@link OperandType::BOOL} scalar, set to true to specify
+     *      NCHW data layout for input0 and output0. Set to false for NHWC.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape
+     *      [batches, out_height, out_width, depth_out]. For output tensor of
+     *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
+     *      must be satisfied: output_scale > input_scale * filter_scale.
+     *
+     * Available since API level 29.
+     */
     TRANSPOSE_CONV_2D = 91,
+
+    /**
+     * A recurrent neural network specified by an LSTM cell.
+     *
+     * Performs (fully) dynamic unrolling of input.
+     *
+     * This Op unrolls the input along the time dimension, and implements the
+     * following operation for each element in the sequence
+     * s = 1...sequence_length:
+     *   outputs[s] = projection(state = activation(LSTMOp(inputs[s])))
+     *
+     * Where LSTMOp is the LSTM op as in {@link OperandType::LSTM},
+     * the "projection" is an optional projection layer from state and output
+     * and the “activation” is the function passed as the
+     * “fused_activation_function” argument (if not “NONE”).
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * Supported tensor rank: 3, either time-major or batch-major.
+     *
+     * All input and output tensors must be of the same type.
+     *
+     * Inputs:
+     * * 0: The input (\f$x_t\f$).
+     *      A 3-D tensor of shape:
+     *        If time-major: [max_time, batch_size, output_size]
+     *        If batch-major: [batch_size, max_time, output_size]
+     *      where “max_size” is the number of timesteps (sequence length),
+     *      “batch_size” corresponds to the batching dimension, and
+     *      “input_size” is the size of the input.
+     * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
+     *      A 2-D tensor of shape [num_units, input_size], where “num_units”
+     *      corresponds to the number of cell units.
+     * * 2: The input-to-forget weights (\f$W_{xf}\f$).
+     *      A 2-D tensor of shape [num_units, input_size].
+     * * 3: The input-to-cell weights (\f$W_{xc}\f$).
+     *      A 2-D tensor of shape [num_units, input_size].
+     * * 4: The input-to-output weights (\f$W_{xo}\f$).
+     *      A 2-D tensor of shape [num_units, input_size].
+     * * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
+     *      A 2-D tensor of shape [num_units, output_size], where “output_size”
+     *      corresponds to either the number of cell units (i.e., “num_units”),
+     *      or the second dimension of the “projection_weights”, if defined.
+     * * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
+     *      A 2-D tensor of shape [num_units, output_size].
+     * * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
+     *      A 2-D tensor of shape [num_units, output_size].
+     * * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
+     *      A 2-D tensor of shape [num_units, output_size].
+     * * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
+     *      A 1-D tensor of shape [num_units].
+     * * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
+     *      A 1-D tensor of shape [num_units].
+     * * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
+     *      A 1-D tensor of shape [num_units].
+     * * 12:The input gate bias (\f$b_i\f$). Optional.
+     *      A 1-D tensor of shape [num_units].
+     * * 13:The forget gate bias (\f$b_f\f$).
+     *      A 1-D tensor of shape [num_units].
+     * * 14:The cell bias (\f$b_c\f$).
+     *      A 1-D tensor of shape [num_units].
+     * * 15:The output gate bias (\f$b_o\f$).
+     *      A 1-D tensor of shape [num_units].
+     * * 16:The projection weights (\f$W_{proj}\f$). Optional.
+     *      A 2-D tensor of shape [output_size, num_units].
+     * * 17:The projection bias (\f$b_{proj}\f$). Optional.
+     *      A 1-D tensor of shape [output_size].
+     * * 18:The output state (in) (\f$h_{t-1}\f$).
+     *      A 2-D tensor of shape [batch_size, output_size].
+     * * 19:The cell state (in) (\f$C_{t-1}\f$).
+     *      A 2-D tensor of shape [batch_size, num_units].
+     * * 20:The activation function (\f$g\f$).
+     *      A value indicating the activation function:
+     *      <ul>
+     *      <li>0: None;
+     *      <li>1: Relu;
+     *      <li>3: Relu6;
+     *      <li>4: Tanh;
+     *      <li>6: Sigmoid.
+     *      </ul>
+     * * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
+     *      that values are bound within [-cell_clip, cell_clip]. If set to 0.0
+     *      then clipping is disabled.
+     * * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
+     *      projection layer, such that values are bound within
+     *      [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
+     * * 23:Time-major if true, batch-major if false.
+     * * 24:The input layer normalization weights.
+     *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
+     *      to activation at input gate.
+     * * 25:The forget layer normalization weights.
+     *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
+     *      to activation at forget gate.
+     * * 26:The cell layer normalization weights.
+     *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
+     *      to activation at cell gate.
+     * * 27:The output layer normalization weights.
+     *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
+     *      to activation at output gate.
+     *
+     * Outputs:
+     * * 0: The output (\f$o_t\f$).
+     *      A 3-D tensor of shape:
+     *        If time-major: [max_time, batch_size, output_size]
+     *        If batch-major: [batch_size, max_time, output_size]
+     *
+     * Available since API level 29.
+     */
     UNIDIRECTIONAL_SEQUENCE_LSTM = 92,
+
+    /**
+     * A recurrent neural network layer that applies a basic RNN cell to a
+     * sequence of inputs.
+     *
+     * This layer unrolls the input along the sequence dimension, and implements
+     * the following operation
+     * for each element in the sequence s = 1...sequence_length:
+     *   outputs[s] = state = activation(inputs[s] * input_weights’ + state *
+     *   recurrent_weights’ + bias)
+     *
+     * Where:
+     * * “input_weights” is a weight matrix that multiplies the inputs;
+     * * “recurrent_weights” is a weight matrix that multiplies the current
+     *    “state” which itself is the output from the previous time step
+     *    computation;
+     * * “bias” is a bias vector (added to each output vector in the batch);
+     * * “activation” is the function passed as the “fused_activation_function”
+     *   argument (if not “NONE”).
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     *
+     * The input tensors must all be the same type.
+     *
+     * Inputs:
+     * * 0: input.
+     *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
+     *      it is set to 1, then the input has a shape [maxTime, batchSize,
+     *      inputSize], otherwise the input has a shape [batchSize, maxTime,
+     *      inputSize].
+     * * 1: weights.
+     *      A 2-D tensor of shape [numUnits, inputSize].
+     * * 2: recurrent_weights.
+     *      A 2-D tensor of shape [numUnits, numUnits].
+     * * 3: bias.
+     *      A 1-D tensor of shape [numUnits].
+     * * 4: hidden state
+     *      A 2-D tensor of shape [batchSize, numUnits]. Specifies a hidden
+     *      state input for the first time step of the computation.
+     * * 5: fusedActivationFunction.
+     *      A {@link FusedActivationFunc} value indicating the activation function. If
+     *      “NONE” is specified then it results in a linear activation.
+     * * 6: timeMajor
+     *      An {@link OperandType::INT32} scalar specifying the shape format
+     *      of input and output tensors. Must be set to either 0 or 1.
+     * Outputs:
+     * * 0: output.
+     *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
+     *      it is set to 1, then the output has a shape [maxTime, batchSize,
+     *      numUnits], otherwise the output has a shape [batchSize, maxTime,
+     *      numUnits].
+     *
+     * Available since API level 29.
+     */
     UNIDIRECTIONAL_SEQUENCE_RNN = 93,
+
+    /**
+     * Resizes images to given size using the nearest neighbor interpretation.
+     *
+     * Resized images must be distorted if their output aspect ratio is not the
+     * same as input aspect ratio. The corner pixels of output may not be the
+     * same as corner pixels of input.
+     *
+     * Supported tensor {@link OperandType}:
+     * * {@link OperandType::TENSOR_FLOAT16}
+     * * {@link OperandType::TENSOR_FLOAT32}
+     * * {@link OperandType::TENSOR_QUANT8_ASYMM}
+     *
+     * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
+     * With the default data layout NHWC, the data is stored in the order of:
+     * [batch, height, width, channels]. Alternatively, the data layout could
+     * be NCHW, the data storage order of: [batch, channels, height, width].
+     *
+     * Inputs:
+     * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
+     *      the input.
+     * * 1: An {@link OperandType::INT32} scalar, specifying the output
+     *      height of the output tensor.
+     * * 2: An {@link OperandType::INT32} scalar, specifying the output
+     *      width of the output tensor.
+     * * 3: An {@link OperandType::BOOL} scalar, default to false.
+     *      Set to true to specify NCHW data layout for input0 and output0.
+     *
+     * Outputs:
+     * * 0: The output 4-D tensor, of shape
+     *      [batches, new_height, new_width, depth].
+     *
+     * Available since API level 29.
+     */
+    RESIZE_NEAREST_NEIGHBOR = 94,
+
+    /**
+     * DEPRECATED. Since NNAPI 1.2, extensions are the preferred alternative to
+     * OEM operation and data types.
+     *
+     * This operation is OEM specific. It should only be used for OEM
+     * applications.
+     */
+    OEM_OPERATION = @1.1::OperationType:OEM_OPERATION,
     /* ADDING A NEW FUNDAMENTAL OPERATION REQUIRES UPDATING THE VALUE OF
      * OperationTypeRange::FUNDAMENTAL_MAX.
      */
@@ -204,7 +4510,7 @@
 enum OperationTypeRange : uint32_t {
     BASE_MIN        = 0,
     FUNDAMENTAL_MIN = 0,
-    FUNDAMENTAL_MAX = 93,
+    FUNDAMENTAL_MAX = 94,
     OEM_MIN         = 10000,
     OEM_MAX         = 10000,
     BASE_MAX        = 0xFFFF,
diff --git a/neuralnetworks/1.2/vts/functional/CompilationCachingTests.cpp b/neuralnetworks/1.2/vts/functional/CompilationCachingTests.cpp
index 454aa1f..00989e5 100644
--- a/neuralnetworks/1.2/vts/functional/CompilationCachingTests.cpp
+++ b/neuralnetworks/1.2/vts/functional/CompilationCachingTests.cpp
@@ -86,14 +86,22 @@
   protected:
     void SetUp() override {
         NeuralnetworksHidlTest::SetUp();
+        ASSERT_NE(device.get(), nullptr);
 
-        // Create cache directory.
+        // Create cache directory. The cache directory and cache files are always created to test
+        // the behavior of prepareModelFromCache, even when caching is not supported.
         char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX";
         char* cacheDir = mkdtemp(cacheDirTemp);
         ASSERT_NE(cacheDir, nullptr);
-        mCache1 = cacheDir + mCache1;
-        mCache2 = cacheDir + mCache2;
-        mCache3 = cacheDir + mCache3;
+        mCacheDir = cacheDir;
+
+        // Create empty cache files.
+        mCache1 = mCacheDir + "/cache1";
+        mCache2 = mCacheDir + "/cache2";
+        mCache3 = mCacheDir + "/cache3";
+        // A dummy handle, use AccessMode::WRITE_ONLY for createCacheHandle to create files.
+        hidl_handle handle;
+        createCacheHandle({mCache1, mCache2, mCache3}, AccessMode::WRITE_ONLY, &handle);
 
         // Check if caching is supported.
         bool isCachingSupported;
@@ -113,10 +121,18 @@
                       << std::endl;
             mIsCachingSupported = false;
         }
+    }
 
-        // Create empty cache files.
-        hidl_handle handle;
-        createCacheHandle({mCache1, mCache2, mCache3}, AccessMode::WRITE_ONLY, &handle);
+    void TearDown() override {
+        // The tmp directory is only removed when the driver reports caching not supported,
+        // otherwise it is kept for debugging purpose.
+        if (!mIsCachingSupported) {
+            remove(mCache1.c_str());
+            remove(mCache2.c_str());
+            remove(mCache3.c_str());
+            rmdir(mCacheDir.c_str());
+        }
+        NeuralnetworksHidlTest::TearDown();
     }
 
     void saveModelToCache(sp<IPreparedModel> preparedModel, const hidl_handle& cache1,
@@ -163,9 +179,10 @@
                                  .withDefault(nullptr);
     }
 
-    std::string mCache1 = "/cache1";
-    std::string mCache2 = "/cache2";
-    std::string mCache3 = "/cache3";
+    std::string mCacheDir;
+    std::string mCache1;
+    std::string mCache2;
+    std::string mCache3;
     uint8_t mToken[static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)] = {};
     bool mIsCachingSupported;
 };
diff --git a/neuralnetworks/1.2/vts/functional/ValidateModel.cpp b/neuralnetworks/1.2/vts/functional/ValidateModel.cpp
index 590116e..7f4d385 100644
--- a/neuralnetworks/1.2/vts/functional/ValidateModel.cpp
+++ b/neuralnetworks/1.2/vts/functional/ValidateModel.cpp
@@ -157,6 +157,7 @@
         case OperandType::UINT32:
         case OperandType::BOOL:
             return 1;
+        case OperandType::TENSOR_BOOL8:
         case OperandType::TENSOR_FLOAT16:
         case OperandType::TENSOR_FLOAT32:
         case OperandType::TENSOR_INT32:
@@ -194,6 +195,7 @@
         case OperandType::INT32:
         case OperandType::UINT32:
         case OperandType::BOOL:
+        case OperandType::TENSOR_BOOL8:
         case OperandType::TENSOR_FLOAT16:
         case OperandType::TENSOR_FLOAT32:
         case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
@@ -230,6 +232,7 @@
         case OperandType::INT32:
         case OperandType::UINT32:
         case OperandType::BOOL:
+        case OperandType::TENSOR_BOOL8:
         case OperandType::TENSOR_FLOAT16:
         case OperandType::TENSOR_FLOAT32:
         case OperandType::TENSOR_INT32:
@@ -283,6 +286,7 @@
             newOperand.scale = 0.0f;
             newOperand.zeroPoint = 0;
             break;
+        case OperandType::TENSOR_BOOL8:
         case OperandType::TENSOR_FLOAT16:
         case OperandType::TENSOR_FLOAT32:
             newOperand.dimensions =
@@ -339,6 +343,10 @@
         // TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
         // - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
         // - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
+        // - DEQUANTIZE input can be any of
+        // TENSOR_(QUANT8_ASYMM|QUANT8_SYMM|QUANT8_SYMM_PER_CHANNEL), output can
+        // be of either TENSOR_FLOAT16 or TENSOR_FLOAT32.
+        // - QUANTIZE input can be either TENSOR_FLOAT16 or TENSOR_FLOAT32
         // - CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
         // - DEPTHWISE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
         // - GROUPED_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
@@ -357,8 +365,22 @@
                     return true;
                 }
             } break;
+            case OperationType::QUANTIZE:
             case OperationType::RANDOM_MULTINOMIAL: {
-                if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32) {
+                if (operand == operation.inputs[0] &&
+                    (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
+                    return true;
+                }
+            } break;
+            case OperationType::DEQUANTIZE: {
+                if (operand == operation.inputs[0] &&
+                    (type == OperandType::TENSOR_QUANT8_ASYMM ||
+                     type == OperandType::TENSOR_QUANT8_SYMM ||
+                     type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
+                    return true;
+                }
+                if (operand == operation.outputs[0] &&
+                    (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
                     return true;
                 }
             } break;
@@ -397,7 +419,6 @@
 ///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
 
 static const uint32_t invalidOperationTypes[] = {
-        static_cast<uint32_t>(OperationTypeRange::FUNDAMENTAL_MIN) - 1,
         static_cast<uint32_t>(OperationTypeRange::FUNDAMENTAL_MAX) + 1,
         static_cast<uint32_t>(OperationTypeRange::OEM_MIN) - 1,
         static_cast<uint32_t>(OperationTypeRange::OEM_MAX) + 1,
@@ -484,6 +505,15 @@
                 }
             }
         }
+        // BIDIRECTIONAL_SEQUENCE_RNN can have either on or two outputs
+        // depending on a mergeOutputs parameter
+        if (operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_RNN) {
+            for (const size_t outOprand : operation.outputs) {
+                if (operand == outOprand) {
+                    return true;
+                }
+            }
+        }
     }
     return false;
 }
diff --git a/radio/1.4/IRadio.hal b/radio/1.4/IRadio.hal
index 8ef1f96..f7ae39f 100644
--- a/radio/1.4/IRadio.hal
+++ b/radio/1.4/IRadio.hal
@@ -128,9 +128,11 @@
      * does not support the emergency service category or emergency uniform resource names, the
      * field 'categories' or 'urns' may be ignored.
      *
-     * 'fromEmergencyDialer' indicates if this request originated from emergency dialer/shortcut,
-     * which means an explicit intent from the user to dial an emergency number. The modem must
-     * treat this as an actual emergency dial and not try to disambiguate.
+     * In the scenarios that the 'address' in the 'dialInfo' field has other functions besides the
+     * emergency number function, if the 'hasKnownUserIntentEmergency' field is true, the user's
+     * intent for this dial request is emergency call, and the modem must treat this as an actual
+     * emergency dial; if the 'hasKnownUserIntentEmergency' field is false, Android does not know
+     * user's intent for this call.
      *
      * If 'isTesting' is true, this request is for testing purpose, and must not be sent to a real
      * emergency service; otherwise it's for a real emergency call request.
@@ -146,14 +148,15 @@
      *     of the call.
      * @param urns the emergency Uniform Resource Names (URN)
      * @param routing @1.4::EmergencyCallRouting the emergency call routing information.
-     * @param fromEmergencyDialer Flag indicating if this request originated from emergency dialer.
+     * @param hasKnownUserIntentEmergency Flag indicating if user's intent for the emergency call
+     *     is known.
      * @param isTesting Flag indicating if this request is for testing purpose.
      *
      * Response function is IRadioResponse.emergencyDialResponse()
      */
     oneway emergencyDial(int32_t serial, Dial dialInfo,
             bitfield<EmergencyServiceCategory> categories, vec<string> urns,
-            EmergencyCallRouting routing, bool fromEmergencyDialer, bool isTesting);
+            EmergencyCallRouting routing, bool hasKnownUserIntentEmergency, bool isTesting);
 
     /**
      * Starts a network scan
diff --git a/radio/1.4/types.hal b/radio/1.4/types.hal
index 2747732..dc3bba0 100644
--- a/radio/1.4/types.hal
+++ b/radio/1.4/types.hal
@@ -1789,15 +1789,25 @@
 };
 
 struct CellIdentityNr {
-    /** 3-digit Mobile Country Code, in range[0, 999], INT_MAX means invalid/unreported. */
+    /** 3-digit Mobile Country Code, in range[0, 999]; This value must be valid for registered or
+     *  camped cells; INT_MAX means invalid/unreported.
+     */
     string mcc;
 
     /**
-     * 2 or 3-digit Mobile Network Code, in range [0, 999], INT_MAX means invalid/unreported.
+     * 2 or 3-digit Mobile Network Code, in range [0, 999], This value must be valid for
+     * registered or camped cells; INT_MAX means invalid/unreported.
      */
     string mnc;
 
     /**
+     * NR Cell Identity in range [0, 68719476735] (36 bits) described in 3GPP TS 38.331, which
+     * unambiguously identifies a cell within a PLMN. This value must be valid for registered or
+     * camped cells; LONG_MAX (2^63-1) means invalid/unreported.
+     */
+    uint64_t nci;
+
+    /**
      * Physical cell id in range [0, 1007] described in 3GPP TS 38.331. This value must be valid.
      */
     uint32_t pci;
diff --git a/radio/1.4/vts/functional/radio_hidl_hal_api.cpp b/radio/1.4/vts/functional/radio_hidl_hal_api.cpp
index 6b1f85e..9237799 100644
--- a/radio/1.4/vts/functional/radio_hidl_hal_api.cpp
+++ b/radio/1.4/vts/functional/radio_hidl_hal_api.cpp
@@ -16,4 +16,81 @@
 
 #include <radio_hidl_hal_utils_v1_4.h>
 
-#define ASSERT_OK(ret) ASSERT_TRUE(ret.isOk())
\ No newline at end of file
+#define ASSERT_OK(ret) ASSERT_TRUE(ret.isOk())
+
+/*
+ * Test IRadio.emergencyDial() for the response returned.
+ */
+TEST_F(RadioHidlTest_v1_4, emergencyDial) {
+    serial = GetRandomSerialNumber();
+
+    ::android::hardware::radio::V1_0::Dial dialInfo;
+    dialInfo.address = hidl_string("911");
+    int categories = static_cast<int>(
+            ::android::hardware::radio::V1_4::EmergencyServiceCategory::UNSPECIFIED);
+    std::vector<hidl_string> urns = {""};
+    ::android::hardware::radio::V1_4::EmergencyCallRouting routing =
+            ::android::hardware::radio::V1_4::EmergencyCallRouting::UNKNOWN;
+
+    Return<void> res =
+            radio_v1_4->emergencyDial(serial, dialInfo, categories, urns, routing, true, true);
+    ASSERT_OK(res);
+    EXPECT_EQ(std::cv_status::no_timeout, wait());
+    EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_4->rspInfo.type);
+    EXPECT_EQ(serial, radioRsp_v1_4->rspInfo.serial);
+
+    ALOGI("emergencyDial, rspInfo.error = %s\n", toString(radioRsp_v1_4->rspInfo.error).c_str());
+    EXPECT_EQ(RadioError::NONE, radioRsp_v1_4->rspInfo.error);
+}
+
+/*
+ * Test IRadio.emergencyDial() with specified service and its response returned.
+ */
+TEST_F(RadioHidlTest_v1_4, emergencyDial_withServices) {
+    serial = GetRandomSerialNumber();
+
+    ::android::hardware::radio::V1_0::Dial dialInfo;
+    dialInfo.address = hidl_string("911");
+    int categories =
+            static_cast<int>(::android::hardware::radio::V1_4::EmergencyServiceCategory::AMBULANCE);
+    std::vector<hidl_string> urns = {"urn:service:sos.ambulance"};
+    ::android::hardware::radio::V1_4::EmergencyCallRouting routing =
+            ::android::hardware::radio::V1_4::EmergencyCallRouting::UNKNOWN;
+
+    Return<void> res =
+            radio_v1_4->emergencyDial(serial, dialInfo, categories, urns, routing, true, true);
+    ASSERT_OK(res);
+    EXPECT_EQ(std::cv_status::no_timeout, wait());
+    EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_4->rspInfo.type);
+    EXPECT_EQ(serial, radioRsp_v1_4->rspInfo.serial);
+
+    ALOGI("emergencyDial_withServices, rspInfo.error = %s\n",
+          toString(radioRsp_v1_4->rspInfo.error).c_str());
+    EXPECT_EQ(RadioError::NONE, radioRsp_v1_4->rspInfo.error);
+}
+
+/*
+ * Test IRadio.emergencyDial() with known emergency call routing and its response returned.
+ */
+TEST_F(RadioHidlTest_v1_4, emergencyDial_withEmergencyRouting) {
+    serial = GetRandomSerialNumber();
+
+    ::android::hardware::radio::V1_0::Dial dialInfo;
+    dialInfo.address = hidl_string("911");
+    int categories = static_cast<int>(
+            ::android::hardware::radio::V1_4::EmergencyServiceCategory::UNSPECIFIED);
+    std::vector<hidl_string> urns = {""};
+    ::android::hardware::radio::V1_4::EmergencyCallRouting routing =
+            ::android::hardware::radio::V1_4::EmergencyCallRouting::EMERGENCY;
+
+    Return<void> res =
+            radio_v1_4->emergencyDial(serial, dialInfo, categories, urns, routing, true, true);
+    ASSERT_OK(res);
+    EXPECT_EQ(std::cv_status::no_timeout, wait());
+    EXPECT_EQ(RadioResponseType::SOLICITED, radioRsp_v1_4->rspInfo.type);
+    EXPECT_EQ(serial, radioRsp_v1_4->rspInfo.serial);
+
+    ALOGI("emergencyDial_withEmergencyRouting, rspInfo.error = %s\n",
+          toString(radioRsp_v1_4->rspInfo.error).c_str());
+    EXPECT_EQ(RadioError::NONE, radioRsp_v1_4->rspInfo.error);
+}
\ No newline at end of file