DynamicsProcessing: Add pre and post equalizer test
This test adds gain to only one band at a time.
Compares that the magnitude at one band is less than or greater than the
other based on the gain dB values.
Bug: 305866207
Test: atest VtsHalDynamicsProcessingTargetTest
Change-Id: I7f64085cd7a767ce400c1a8bdeb6fd7ae01bd9ef
diff --git a/audio/aidl/vts/VtsHalDynamicsProcessingTest.cpp b/audio/aidl/vts/VtsHalDynamicsProcessingTest.cpp
index 95bcaf0..2bb0a72 100644
--- a/audio/aidl/vts/VtsHalDynamicsProcessingTest.cpp
+++ b/audio/aidl/vts/VtsHalDynamicsProcessingTest.cpp
@@ -120,6 +120,14 @@
float calculateDb(const std::vector<float>& input, size_t startSamplePos);
+ void getMagnitudeValue(const std::vector<float>& output, std::vector<float>& bufferMag);
+
+ void checkInputAndOutputEquality(const std::vector<float>& outputMag);
+
+ void setUpDataTest(const std::vector<int>& testFrequencies, float fullScaleSineDb);
+
+ void createChannelConfig();
+
// enqueue test parameters
void addEngineConfig(const DynamicsProcessing::EngineArchitecture& cfg);
void addPreEqChannelConfig(const std::vector<DynamicsProcessing::ChannelConfig>& cfg);
@@ -137,7 +145,24 @@
static constexpr int kFrameCount = 2048;
static constexpr int kInputFrequency = 1000;
static constexpr size_t kStartIndex = 15 * kSamplingFrequency / 1000; // skip 15ms
- static constexpr float kToleranceDb = 0.05;
+ static constexpr float kToleranceDb = 0.5;
+ static constexpr int kNPointFFT = 1024;
+ static constexpr float kBinWidth = (float)kSamplingFrequency / kNPointFFT;
+ // Full scale sine wave with 1000 Hz frequency is -3 dB
+ static constexpr float kSineFullScaleDb = -3;
+ // Full scale sine wave with 100 Hz and 1000 Hz frequency is -6 dB
+ static constexpr float kSineMultitoneFullScaleDb = -6;
+ const std::vector<int> kCutoffFreqHz = {200 /*0th band cutoff*/, 2000 /*1st band cutoff*/};
+ std::vector<int> mMultitoneTestFrequencies = {100, 1000};
+ // Calculating normalizing factor by dividing the number of FFT points by half and the number of
+ // test frequencies. The normalization accounts for the FFT splitting the signal into positive
+ // and negative frequencies. Additionally, during multi-tone input generation, sample values are
+ // normalized to the range [-1, 1] by dividing them by the number of test frequencies.
+ float mNormalizingFactor = (kNPointFFT / (2 * mMultitoneTestFrequencies.size()));
+ std::vector<int> mBinOffsets;
+ std::vector<DynamicsProcessing::ChannelConfig> mChannelConfig;
+ std::vector<float> mInput;
+ float mInputDb;
std::shared_ptr<IFactory> mFactory;
std::shared_ptr<IEffect> mEffect;
Descriptor mDescriptor;
@@ -416,6 +441,38 @@
}
}
+void DynamicsProcessingTestHelper::getMagnitudeValue(const std::vector<float>& output,
+ std::vector<float>& bufferMag) {
+ std::vector<float> subOutput(output.begin() + kStartIndex, output.end());
+ EXPECT_NO_FATAL_FAILURE(calculateMagnitudeMono(bufferMag, subOutput, mBinOffsets, kNPointFFT));
+}
+
+void DynamicsProcessingTestHelper::checkInputAndOutputEquality(
+ const std::vector<float>& outputMag) {
+ std::vector<float> inputMag(mBinOffsets.size());
+ EXPECT_NO_FATAL_FAILURE(getMagnitudeValue(mInput, inputMag));
+ for (size_t i = 0; i < inputMag.size(); i++) {
+ EXPECT_NEAR(calculateDb({inputMag[i] / mNormalizingFactor}),
+ calculateDb({outputMag[i] / mNormalizingFactor}), kToleranceDb);
+ }
+}
+
+void DynamicsProcessingTestHelper::setUpDataTest(const std::vector<int>& testFrequencies,
+ float fullScaleSineDb) {
+ ASSERT_NO_FATAL_FAILURE(SetUpDynamicsProcessingEffect());
+ SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
+ ASSERT_NO_FATAL_FAILURE(
+ generateSineWave(testFrequencies, mInput, 1.0, kSamplingFrequency, mChannelLayout));
+ mInputDb = calculateDb(mInput);
+ ASSERT_NEAR(mInputDb, fullScaleSineDb, kToleranceDb);
+}
+
+void DynamicsProcessingTestHelper::createChannelConfig() {
+ for (int i = 0; i < mChannelCount; i++) {
+ mChannelConfig.push_back(DynamicsProcessing::ChannelConfig(i, true));
+ }
+}
+
void DynamicsProcessingTestHelper::addEngineConfig(
const DynamicsProcessing::EngineArchitecture& cfg) {
DynamicsProcessing dp;
@@ -527,6 +584,15 @@
.postGainDb = postGainDb};
}
+DynamicsProcessing::EqBandConfig creatEqBandConfig(int channel, int band, float cutOffFreqHz,
+ float gainDb) {
+ return DynamicsProcessing::EqBandConfig{.channel = channel,
+ .band = band,
+ .enable = true,
+ .cutoffFrequencyHz = cutOffFreqHz,
+ .gainDb = gainDb};
+}
+
/**
* Test DynamicsProcessing Engine Configuration
*/
@@ -649,13 +715,7 @@
mInput.resize(kFrameCount * mChannelCount);
}
- void SetUp() override {
- SetUpDynamicsProcessingEffect();
- SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
- ASSERT_NO_FATAL_FAILURE(generateSineWave(kInputFrequency /*Input Frequency*/, mInput, 1.0,
- kSamplingFrequency, mChannelLayout));
- mInputDb = calculateDb(mInput);
- }
+ void SetUp() override { setUpDataTest({static_cast<int>(kInputFrequency)}, kSineFullScaleDb); }
void TearDown() override { TearDownDynamicsProcessingEffect(); }
@@ -665,8 +725,6 @@
}
std::vector<DynamicsProcessing::InputGain> mInputGain;
- std::vector<float> mInput;
- float mInputDb;
};
TEST_P(DynamicsProcessingInputGainDataTest, SetAndGetInputGain) {
@@ -785,14 +843,7 @@
mInput.resize(mBufferSize);
}
- void SetUp() override {
- SetUpDynamicsProcessingEffect();
- SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
- ASSERT_NO_FATAL_FAILURE(
- generateSineWave(kInputFrequency, mInput, 1.0, kSamplingFrequency, mChannelLayout));
- mInputDb = calculateDb(mInput);
- ASSERT_NEAR(mInputDb, kSineFullScaleDb, kToleranceDb);
- }
+ void SetUp() override { setUpDataTest({static_cast<int>(kInputFrequency)}, kSineFullScaleDb); }
void TearDown() override { TearDownDynamicsProcessingEffect(); }
@@ -825,11 +876,8 @@
static constexpr float kDefaultThreshold = -10;
static constexpr float kDefaultPostGain = 0;
static constexpr float kInputFrequency = 1000;
- // Full scale sine wave with 1000 Hz frequency is -3 dB
- static constexpr float kSineFullScaleDb = -3;
+ static constexpr float kLimiterTestToleranceDb = 0.05;
std::vector<DynamicsProcessing::LimiterConfig> mLimiterConfigList;
- std::vector<float> mInput;
- float mInputDb;
int mBufferSize;
};
@@ -849,7 +897,7 @@
}
float outputDb = calculateDb(output, kStartIndex);
if (threshold >= mInputDb || kDefaultRatio == 1) {
- EXPECT_NEAR(mInputDb, outputDb, kToleranceDb);
+ EXPECT_NEAR(mInputDb, outputDb, kLimiterTestToleranceDb);
} else {
float calculatedThreshold = 0;
ASSERT_NO_FATAL_FAILURE(computeThreshold(kDefaultRatio, outputDb, calculatedThreshold));
@@ -876,7 +924,7 @@
float outputDb = calculateDb(output, kStartIndex);
if (kDefaultThreshold >= mInputDb) {
- EXPECT_NEAR(mInputDb, outputDb, kToleranceDb);
+ EXPECT_NEAR(mInputDb, outputDb, kLimiterTestToleranceDb);
} else {
float calculatedRatio = 0;
ASSERT_NO_FATAL_FAILURE(computeRatio(kDefaultThreshold, outputDb, calculatedRatio));
@@ -894,7 +942,7 @@
ASSERT_NO_FATAL_FAILURE(generateSineWave(kInputFrequency, mInput, dBToAmplitude(postGainDb),
kSamplingFrequency, mChannelLayout));
mInputDb = calculateDb(mInput);
- EXPECT_NEAR(mInputDb, kSineFullScaleDb - postGainDb, kToleranceDb);
+ EXPECT_NEAR(mInputDb, kSineFullScaleDb - postGainDb, kLimiterTestToleranceDb);
for (int i = 0; i < mChannelCount; i++) {
fillLimiterConfig(mLimiterConfigList, i, true, kDefaultLinkerGroup, kDefaultAttackTime,
kDefaultReleaseTime, 1, kDefaultThreshold, postGainDb);
@@ -904,7 +952,7 @@
continue;
}
float outputDb = calculateDb(output, kStartIndex);
- EXPECT_NEAR(outputDb, mInputDb + postGainDb, kToleranceDb)
+ EXPECT_NEAR(outputDb, mInputDb + postGainDb, kLimiterTestToleranceDb)
<< "PostGain: " << postGainDb << ", OutputDb: " << outputDb;
}
}
@@ -927,7 +975,7 @@
if (isEnabled) {
EXPECT_NE(mInputDb, calculateDb(output, kStartIndex));
} else {
- EXPECT_NEAR(mInputDb, calculateDb(output, kStartIndex), kToleranceDb);
+ EXPECT_NEAR(mInputDb, calculateDb(output, kStartIndex), kLimiterTestToleranceDb);
}
}
}
@@ -1025,13 +1073,9 @@
const EqBandConfigTestParams& params) {
const std::vector<std::pair<int, float>> cutOffFreqs = std::get<EQ_BAND_CUT_OFF_FREQ>(params);
int bandCount = cutOffFreqs.size();
- cfgs.resize(bandCount);
for (int i = 0; i < bandCount; i++) {
- cfgs[i].channel = std::get<EQ_BAND_CHANNEL>(params);
- cfgs[i].band = cutOffFreqs[i].first;
- cfgs[i].enable = true /*Eqband Enable*/;
- cfgs[i].cutoffFrequencyHz = cutOffFreqs[i].second;
- cfgs[i].gainDb = std::get<EQ_BAND_GAIN>(params);
+ cfgs.push_back(creatEqBandConfig(std::get<EQ_BAND_CHANNEL>(params), cutOffFreqs[i].first,
+ cutOffFreqs[i].second, std::get<EQ_BAND_GAIN>(params)));
}
}
@@ -1147,6 +1191,119 @@
});
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(DynamicsProcessingTestEqBandConfig);
+class DynamicsProcessingEqBandConfigDataTest
+ : public ::testing::TestWithParam<std::pair<std::shared_ptr<IFactory>, Descriptor>>,
+ public DynamicsProcessingTestHelper {
+ public:
+ DynamicsProcessingEqBandConfigDataTest()
+ : DynamicsProcessingTestHelper(GetParam(), AudioChannelLayout::LAYOUT_MONO) {
+ mInput.resize(kFrameCount * mChannelCount);
+ mBinOffsets.resize(mMultitoneTestFrequencies.size());
+ }
+
+ void SetUp() override {
+ ASSERT_NO_FATAL_FAILURE(
+ setUpDataTest(mMultitoneTestFrequencies, kSineMultitoneFullScaleDb));
+ }
+
+ void TearDown() override { TearDownDynamicsProcessingEffect(); }
+
+ void addEqParam(bool isPreEq) {
+ createChannelConfig();
+ auto stage = isPreEq ? mEngineConfigPreset.preEqStage : mEngineConfigPreset.postEqStage;
+ stage.bandCount = mCfgs.size();
+ addEngineConfig(mEngineConfigPreset);
+ isPreEq ? addPreEqChannelConfig(mChannelConfig) : addPostEqChannelConfig(mChannelConfig);
+ isPreEq ? addPreEqBandConfigs(mCfgs) : addPostEqBandConfigs(mCfgs);
+ }
+
+ void setEqParamAndProcess(std::vector<float>& output, bool isPreEq) {
+ addEqParam(isPreEq);
+ ASSERT_NO_FATAL_FAILURE(setParamsAndProcess(mInput, output));
+ }
+
+ void fillEqBandConfig(std::vector<DynamicsProcessing::EqBandConfig>& cfgs, int channelIndex,
+ int bandIndex, int cutOffFreqHz, float gainDb) {
+ cfgs.push_back(creatEqBandConfig(channelIndex, bandIndex, static_cast<float>(cutOffFreqHz),
+ gainDb));
+ }
+
+ void validateOutput(const std::vector<float>& output, float gainDb, size_t bandIndex) {
+ std::vector<float> outputMag(mBinOffsets.size());
+ EXPECT_NO_FATAL_FAILURE(getMagnitudeValue(output, outputMag));
+ if (gainDb == 0) {
+ EXPECT_NO_FATAL_FAILURE(checkInputAndOutputEquality(outputMag));
+ } else if (gainDb > 0) {
+ // For positive gain, current band's magnitude is greater than the other band's
+ // magnitude
+ EXPECT_GT(outputMag[bandIndex], outputMag[bandIndex ^ 1]);
+ } else {
+ // For negative gain, current band's magnitude is less than the other band's magnitude
+ EXPECT_LT(outputMag[bandIndex], outputMag[bandIndex ^ 1]);
+ }
+ }
+
+ void analyseMultiBandOutput(float gainDb, bool isPreEq) {
+ std::vector<float> output(mInput.size());
+ roundToFreqCenteredToFftBin(mMultitoneTestFrequencies, mBinOffsets, kBinWidth);
+ // Set Equalizer values for two bands
+ for (size_t i = 0; i < kCutoffFreqHz.size(); i++) {
+ for (int channelIndex = 0; channelIndex < mChannelCount; channelIndex++) {
+ fillEqBandConfig(mCfgs, channelIndex, i, kCutoffFreqHz[i], gainDb);
+ fillEqBandConfig(mCfgs, channelIndex, i ^ 1, kCutoffFreqHz[i ^ 1], 0);
+ }
+ ASSERT_NO_FATAL_FAILURE(setEqParamAndProcess(output, isPreEq));
+
+ if (isAllParamsValid()) {
+ ASSERT_NO_FATAL_FAILURE(validateOutput(output, gainDb, i));
+ }
+ cleanUpEqConfig();
+ }
+ }
+
+ void cleanUpEqConfig() {
+ CleanUp();
+ mCfgs.clear();
+ mChannelConfig.clear();
+ }
+
+ const std::vector<float> kTestGainDbValues = {-200, -100, 0, 100, 200};
+ std::vector<DynamicsProcessing::EqBandConfig> mCfgs;
+};
+
+TEST_P(DynamicsProcessingEqBandConfigDataTest, IncreasingPreEqGain) {
+ for (float gainDb : kTestGainDbValues) {
+ ASSERT_NO_FATAL_FAILURE(generateSineWave(mMultitoneTestFrequencies, mInput,
+ dBToAmplitude(gainDb), kSamplingFrequency,
+ mChannelLayout));
+ cleanUpEqConfig();
+ ASSERT_NO_FATAL_FAILURE(analyseMultiBandOutput(gainDb, true /*pre-equalizer*/));
+ }
+}
+
+TEST_P(DynamicsProcessingEqBandConfigDataTest, IncreasingPostEqGain) {
+ for (float gainDb : kTestGainDbValues) {
+ ASSERT_NO_FATAL_FAILURE(generateSineWave(mMultitoneTestFrequencies, mInput,
+ dBToAmplitude(gainDb), kSamplingFrequency,
+ mChannelLayout));
+ cleanUpEqConfig();
+ ASSERT_NO_FATAL_FAILURE(analyseMultiBandOutput(gainDb, false /*post-equalizer*/));
+ }
+}
+
+INSTANTIATE_TEST_SUITE_P(DynamicsProcessingTest, DynamicsProcessingEqBandConfigDataTest,
+ testing::ValuesIn(EffectFactoryHelper::getAllEffectDescriptors(
+ IFactory::descriptor, getEffectTypeUuidDynamicsProcessing())),
+ [](const auto& info) {
+ auto descriptor = info.param;
+ std::string name = getPrefix(descriptor.second);
+ std::replace_if(
+ name.begin(), name.end(),
+ [](const char c) { return !std::isalnum(c); }, '_');
+ return name;
+ });
+GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(DynamicsProcessingEqBandConfigDataTest);
+
/**
* Test DynamicsProcessing MbcBandConfig
*/
@@ -1259,24 +1416,18 @@
DynamicsProcessingMbcBandConfigDataTest()
: DynamicsProcessingTestHelper(GetParam(), AudioChannelLayout::LAYOUT_MONO) {
mInput.resize(kFrameCount * mChannelCount);
- mBinOffsets.resize(mTestFrequencies.size());
+ mBinOffsets.resize(mMultitoneTestFrequencies.size());
}
void SetUp() override {
- SetUpDynamicsProcessingEffect();
- SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
- ASSERT_NO_FATAL_FAILURE(generateSineWave(mTestFrequencies, mInput, 1.0, kSamplingFrequency,
- mChannelLayout));
- mInputDb = calculateDb(mInput);
- ASSERT_NEAR(mInputDb, kFullScaleDb, kToleranceDb);
+ ASSERT_NO_FATAL_FAILURE(
+ setUpDataTest(mMultitoneTestFrequencies, kSineMultitoneFullScaleDb));
}
void TearDown() override { TearDownDynamicsProcessingEffect(); }
void setMbcParamsAndProcess(std::vector<float>& output) {
- for (int i = 0; i < mChannelCount; i++) {
- mChannelConfig.push_back(DynamicsProcessing::ChannelConfig(i, true));
- }
+ createChannelConfig();
mEngineConfigPreset.mbcStage.bandCount = mCfgs.size();
addEngineConfig(mEngineConfigPreset);
addMbcChannelConfig(mChannelConfig);
@@ -1293,23 +1444,12 @@
noiseGate, expanderRatio, preGain, postGain));
}
- void getMagnitudeValue(const std::vector<float>& output, std::vector<float>& bufferMag) {
- std::vector<float> subOutput(output.begin() + kStartIndex, output.end());
- EXPECT_NO_FATAL_FAILURE(
- calculateMagnitudeMono(bufferMag, subOutput, mBinOffsets, kNPointFFT));
- }
-
void validateOutput(const std::vector<float>& output, float threshold, float ratio,
size_t bandIndex) {
std::vector<float> outputMag(mBinOffsets.size());
EXPECT_NO_FATAL_FAILURE(getMagnitudeValue(output, outputMag));
if (threshold >= mInputDb || ratio == 1) {
- std::vector<float> inputMag(mBinOffsets.size());
- EXPECT_NO_FATAL_FAILURE(getMagnitudeValue(mInput, inputMag));
- for (size_t i = 0; i < inputMag.size(); i++) {
- EXPECT_NEAR(calculateDb({inputMag[i] / mNormalizingFactor}),
- calculateDb({outputMag[i] / mNormalizingFactor}), kToleranceDb);
- }
+ EXPECT_NO_FATAL_FAILURE(checkInputAndOutputEquality(outputMag));
} else {
// Current band's magnitude is less than the other band's magnitude
EXPECT_LT(outputMag[bandIndex], outputMag[bandIndex ^ 1]);
@@ -1318,17 +1458,16 @@
void analyseMultiBandOutput(float threshold, float ratio) {
std::vector<float> output(mInput.size());
- roundToFreqCenteredToFftBin(mTestFrequencies, mBinOffsets, kBinWidth);
- std::vector<int> cutoffFreqHz = {200 /*0th band cutoff*/, 2000 /*1st band cutoff*/};
+ roundToFreqCenteredToFftBin(mMultitoneTestFrequencies, mBinOffsets, kBinWidth);
// Set MBC values for two bands
- for (size_t i = 0; i < cutoffFreqHz.size(); i++) {
+ for (size_t i = 0; i < kCutoffFreqHz.size(); i++) {
for (int channelIndex = 0; channelIndex < mChannelCount; channelIndex++) {
fillMbcBandConfig(mCfgs, channelIndex, threshold, ratio, kDefaultNoiseGateDb,
- kDefaultExpanderRatio, i, cutoffFreqHz[i], kDefaultPreGainDb,
+ kDefaultExpanderRatio, i, kCutoffFreqHz[i], kDefaultPreGainDb,
kDefaultPostGainDb);
fillMbcBandConfig(mCfgs, channelIndex, kDefaultThresholdDb, kDefaultRatio,
kDefaultNoiseGateDb, kDefaultExpanderRatio, i ^ 1,
- cutoffFreqHz[i ^ 1], kDefaultPreGainDb, kDefaultPostGainDb);
+ kCutoffFreqHz[i ^ 1], kDefaultPreGainDb, kDefaultPostGainDb);
}
ASSERT_NO_FATAL_FAILURE(setMbcParamsAndProcess(output));
@@ -1345,8 +1484,6 @@
mChannelConfig.clear();
}
- static constexpr int kNPointFFT = 1024;
- static constexpr float kToleranceDb = 0.5;
static constexpr float kDefaultPostGainDb = 0;
static constexpr float kDefaultPreGainDb = 0;
static constexpr float kDefaultAttackTime = 0;
@@ -1356,20 +1493,7 @@
static constexpr float kDefaultNoiseGateDb = -10;
static constexpr float kDefaultExpanderRatio = 1;
static constexpr float kDefaultRatio = 1;
- static constexpr float kBinWidth = (float)kSamplingFrequency / kNPointFFT;
- // Full scale sine wave with 100 Hz and 1000 Hz frequency is -6 dB
- static constexpr float kFullScaleDb = -6;
- std::vector<int> mTestFrequencies = {100, 1000};
- // Calculating normalizing factor by dividing the number of FFT points by half and the number of
- // test frequencies. The normalization accounts for the FFT splitting the signal into positive
- // and negative frequencies. Additionally, during multi-tone input generation, sample values are
- // normalized to the range [-1, 1] by dividing them by the number of test frequencies.
- float mNormalizingFactor = (kNPointFFT / (2 * mTestFrequencies.size()));
std::vector<DynamicsProcessing::MbcBandConfig> mCfgs;
- std::vector<DynamicsProcessing::ChannelConfig> mChannelConfig;
- std::vector<int> mBinOffsets;
- std::vector<float> mInput;
- float mInputDb;
};
TEST_P(DynamicsProcessingMbcBandConfigDataTest, IncreasingThreshold) {
@@ -1396,11 +1520,11 @@
std::vector<float> postGainDbValues = {-55, -30, 0, 30, 55};
std::vector<float> output(mInput.size());
for (float postGainDb : postGainDbValues) {
- ASSERT_NO_FATAL_FAILURE(generateSineWave(mTestFrequencies, mInput,
+ ASSERT_NO_FATAL_FAILURE(generateSineWave(mMultitoneTestFrequencies, mInput,
dBToAmplitude(postGainDb), kSamplingFrequency,
mChannelLayout));
mInputDb = calculateDb(mInput);
- EXPECT_NEAR(mInputDb, kFullScaleDb - postGainDb, kToleranceDb);
+ EXPECT_NEAR(mInputDb, kSineMultitoneFullScaleDb - postGainDb, kToleranceDb);
cleanUpMbcConfig();
for (int i = 0; i < mChannelCount; i++) {
fillMbcBandConfig(mCfgs, i, kDefaultThresholdDb, kDefaultRatio, kDefaultNoiseGateDb,