Re-organize NNAPI Burst utility classes

This change:
* Renames ExecutionBurstController to Burst in 1.2/utils
* Renames ExecutionBurstUtils to BurstUtils in 1.2/utils
* Renames ExecutionBurstServer to Burst in common/adapter

Bug: N/A
Test: mma
Change-Id: Ibd460229887c8c9cd23ebc6ee61da37c7c820288
diff --git a/neuralnetworks/utils/adapter/src/Burst.cpp b/neuralnetworks/utils/adapter/src/Burst.cpp
new file mode 100644
index 0000000..8b2e1dd
--- /dev/null
+++ b/neuralnetworks/utils/adapter/src/Burst.cpp
@@ -0,0 +1,259 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Burst.h"
+
+#include <android-base/logging.h>
+#include <nnapi/IBurst.h>
+#include <nnapi/Result.h>
+#include <nnapi/TypeUtils.h>
+#include <nnapi/Types.h>
+#include <nnapi/Validation.h>
+#include <nnapi/hal/1.0/Conversions.h>
+#include <nnapi/hal/1.0/HandleError.h>
+#include <nnapi/hal/1.0/ProtectCallback.h>
+#include <nnapi/hal/1.2/BurstUtils.h>
+#include <nnapi/hal/1.2/Conversions.h>
+#include <nnapi/hal/TransferValue.h>
+
+#include <algorithm>
+#include <cstring>
+#include <limits>
+#include <map>
+#include <memory>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+#include "Tracing.h"
+
+namespace android::hardware::neuralnetworks::adapter {
+namespace {
+
+constexpr V1_2::Timing kTiming = {std::numeric_limits<uint64_t>::max(),
+                                  std::numeric_limits<uint64_t>::max()};
+
+nn::GeneralResult<std::vector<nn::SharedMemory>> getMemoriesCallback(
+        V1_0::ErrorStatus status, const hidl_vec<hidl_memory>& memories) {
+    HANDLE_STATUS_HIDL(status) << "getting burst memories failed with " << toString(status);
+    std::vector<nn::SharedMemory> canonicalMemories;
+    canonicalMemories.reserve(memories.size());
+    for (const auto& memory : memories) {
+        canonicalMemories.push_back(NN_TRY(nn::convert(memory)));
+    }
+    return canonicalMemories;
+}
+
+}  // anonymous namespace
+
+Burst::MemoryCache::MemoryCache(nn::SharedBurst burstExecutor,
+                                sp<V1_2::IBurstCallback> burstCallback)
+    : kBurstExecutor(std::move(burstExecutor)), kBurstCallback(std::move(burstCallback)) {
+    CHECK(kBurstExecutor != nullptr);
+    CHECK(kBurstCallback != nullptr);
+}
+
+nn::GeneralResult<std::vector<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>>>
+Burst::MemoryCache::getCacheEntries(const std::vector<int32_t>& slots) {
+    std::lock_guard guard(mMutex);
+    NN_TRY(ensureCacheEntriesArePresentLocked(slots));
+
+    std::vector<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>> results;
+    results.reserve(slots.size());
+    for (int32_t slot : slots) {
+        results.push_back(NN_TRY(getCacheEntryLocked(slot)));
+    }
+
+    return results;
+}
+
+nn::GeneralResult<void> Burst::MemoryCache::ensureCacheEntriesArePresentLocked(
+        const std::vector<int32_t>& slots) {
+    const auto slotIsKnown = [this](int32_t slot)
+                                     REQUIRES(mMutex) { return mCache.count(slot) > 0; };
+
+    // find unique unknown slots
+    std::vector<int32_t> unknownSlots = slots;
+    std::sort(unknownSlots.begin(), unknownSlots.end());
+    auto unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlots.end());
+    unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
+    unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
+
+    // quick-exit if all slots are known
+    if (unknownSlots.empty()) {
+        return {};
+    }
+
+    auto cb = neuralnetworks::utils::CallbackValue(getMemoriesCallback);
+
+    const auto ret = kBurstCallback->getMemories(unknownSlots, cb);
+    HANDLE_TRANSPORT_FAILURE(ret);
+
+    auto returnedMemories = NN_TRY(cb.take());
+
+    if (returnedMemories.size() != unknownSlots.size()) {
+        return NN_ERROR() << "Burst::MemoryCache::ensureCacheEntriesArePresentLocked: Error "
+                             "retrieving memories -- count mismatch between requested memories ("
+                          << unknownSlots.size() << ") and returned memories ("
+                          << returnedMemories.size() << ")";
+    }
+
+    // add memories to unknown slots
+    for (size_t i = 0; i < unknownSlots.size(); ++i) {
+        addCacheEntryLocked(unknownSlots[i], std::move(returnedMemories[i]));
+    }
+
+    return {};
+}
+
+nn::GeneralResult<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>>
+Burst::MemoryCache::getCacheEntryLocked(int32_t slot) {
+    if (const auto iter = mCache.find(slot); iter != mCache.end()) {
+        return iter->second;
+    }
+    return NN_ERROR() << "Burst::MemoryCache::getCacheEntryLocked failed because slot " << slot
+                      << " is not present in the cache";
+}
+
+void Burst::MemoryCache::addCacheEntryLocked(int32_t slot, nn::SharedMemory memory) {
+    auto hold = kBurstExecutor->cacheMemory(memory);
+    mCache.emplace(slot, std::make_pair(std::move(memory), std::move(hold)));
+}
+
+void Burst::MemoryCache::removeCacheEntry(int32_t slot) {
+    std::lock_guard guard(mMutex);
+    mCache.erase(slot);
+}
+
+// Burst methods
+
+nn::GeneralResult<sp<Burst>> Burst::create(
+        const sp<V1_2::IBurstCallback>& callback,
+        const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
+        const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel, nn::SharedBurst burstExecutor,
+        std::chrono::microseconds pollingTimeWindow) {
+    // check inputs
+    if (callback == nullptr || burstExecutor == nullptr) {
+        return NN_ERROR() << "Burst::create passed a nullptr";
+    }
+
+    // create FMQ objects
+    auto requestChannelReceiver =
+            NN_TRY(V1_2::utils::RequestChannelReceiver::create(requestChannel, pollingTimeWindow));
+    auto resultChannelSender = NN_TRY(V1_2::utils::ResultChannelSender::create(resultChannel));
+
+    // check FMQ objects
+    CHECK(requestChannelReceiver != nullptr);
+    CHECK(resultChannelSender != nullptr);
+
+    // make and return context
+    return sp<Burst>::make(PrivateConstructorTag{}, callback, std::move(requestChannelReceiver),
+                           std::move(resultChannelSender), std::move(burstExecutor));
+}
+
+Burst::Burst(PrivateConstructorTag /*tag*/, const sp<V1_2::IBurstCallback>& callback,
+             std::unique_ptr<V1_2::utils::RequestChannelReceiver> requestChannel,
+             std::unique_ptr<V1_2::utils::ResultChannelSender> resultChannel,
+             nn::SharedBurst burstExecutor)
+    : mCallback(callback),
+      mRequestChannelReceiver(std::move(requestChannel)),
+      mResultChannelSender(std::move(resultChannel)),
+      mBurstExecutor(std::move(burstExecutor)),
+      mMemoryCache(mBurstExecutor, mCallback) {
+    // TODO: highly document the threading behavior of this class
+    mWorker = std::thread([this] { task(); });
+}
+
+Burst::~Burst() {
+    // set teardown flag
+    mTeardown = true;
+    mRequestChannelReceiver->invalidate();
+
+    // wait for task thread to end
+    mWorker.join();
+}
+
+Return<void> Burst::freeMemory(int32_t slot) {
+    mMemoryCache.removeCacheEntry(slot);
+    return Void();
+}
+
+void Burst::task() {
+    // loop until the burst object is being destroyed
+    while (!mTeardown) {
+        // receive request
+        auto arguments = mRequestChannelReceiver->getBlocking();
+
+        // if the request packet was not properly received, return a generic error and skip the
+        // execution
+        //
+        // if the burst is being torn down, skip the execution so the "task" function can end
+        if (!arguments.has_value()) {
+            if (!mTeardown) {
+                mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kTiming);
+            }
+            continue;
+        }
+
+        // unpack the arguments; types are Request, std::vector<int32_t>, and V1_2::MeasureTiming,
+        // respectively
+        const auto [requestWithoutPools, slotsOfPools, measure] = std::move(arguments).value();
+
+        auto result = execute(requestWithoutPools, slotsOfPools, measure);
+
+        // return result
+        if (result.has_value()) {
+            const auto& [outputShapes, timing] = result.value();
+            mResultChannelSender->send(V1_0::ErrorStatus::NONE, outputShapes, timing);
+        } else {
+            const auto& [message, code, outputShapes] = result.error();
+            LOG(ERROR) << "IBurst::execute failed with " << code << ": " << message;
+            mResultChannelSender->send(V1_2::utils::convert(code).value(),
+                                       V1_2::utils::convert(outputShapes).value(), kTiming);
+        }
+    }
+}
+
+nn::ExecutionResult<std::pair<hidl_vec<V1_2::OutputShape>, V1_2::Timing>> Burst::execute(
+        const V1_0::Request& requestWithoutPools, const std::vector<int32_t>& slotsOfPools,
+        V1_2::MeasureTiming measure) {
+    NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
+                 "Burst getting memory, executing, and returning results");
+
+    // ensure executor with cache has required memory
+    const auto cacheEntries = NN_TRY(mMemoryCache.getCacheEntries(slotsOfPools));
+
+    // convert request, populating its pools
+    // This code performs an unvalidated convert because the request object without its pools is
+    // invalid because it is incomplete. Instead, the validation is performed after the memory pools
+    // have been added to the request.
+    auto canonicalRequest = NN_TRY(nn::unvalidatedConvert(requestWithoutPools));
+    CHECK(canonicalRequest.pools.empty());
+    std::transform(cacheEntries.begin(), cacheEntries.end(),
+                   std::back_inserter(canonicalRequest.pools),
+                   [](const auto& cacheEntry) { return cacheEntry.first; });
+    NN_TRY(validate(canonicalRequest));
+
+    nn::MeasureTiming canonicalMeasure = NN_TRY(nn::convert(measure));
+
+    const auto [outputShapes, timing] =
+            NN_TRY(mBurstExecutor->execute(canonicalRequest, canonicalMeasure, {}, {}));
+
+    return std::make_pair(NN_TRY(V1_2::utils::convert(outputShapes)),
+                          NN_TRY(V1_2::utils::convert(timing)));
+}
+
+}  // namespace android::hardware::neuralnetworks::adapter