Merge changes from topic "current-on-aosp"

* changes:
  Add health filesystem HAL to compatibility matrix
  Update power hidl to version 1.3 in compatibility_matrix.current.xml.
  Add configstore@1.1 to current matrix.
  Add compatibility_matrix.current.xml for Android Q.
diff --git a/current.txt b/current.txt
index 909732f..e26e239 100644
--- a/current.txt
+++ b/current.txt
@@ -387,8 +387,8 @@
 # ABI preserving changes to HALs during Android Q
 da33234403ff5d60f3473711917b9948e6484a4260b5247acdafb111193a9de2 android.hardware.configstore@1.0::ISurfaceFlingerConfigs
 574e8f1499436fb4075894dcae0b36682427956ecb114f17f1fe22d116a83c6b android.hardware.neuralnetworks@1.0::IPreparedModel
-1a5ae9793223658174258b523763c557abad6fb917df0b8e3cc097fc89035811 android.hardware.neuralnetworks@1.0::types
-4310eb8272f085914952f3bfb73a8f8bb477a80e8b93596f0ea5acb58546b66d android.hardware.neuralnetworks@1.1::types
+1fb32361286b938d48a55c2539c846732afce0b99fe08590f556643125bc13d3 android.hardware.neuralnetworks@1.0::types
+e22e8135d061d0e9c4c1a70c25c19fdba10f4d3cda9795ef25b6392fc520317c android.hardware.neuralnetworks@1.1::types
 1d4a5776614c08b5d794a5ec5ab04697260cbd4b3441d5935cd53ee71d19da02 android.hardware.radio@1.0::IRadioResponse
 271187e261b30c01a33011aea257c07a2d2f05b72943ebee89e973e997849973 android.hardware.radio@1.0::types
 1d19720d4fd38b1095f0f555a4bd92b3b12c9b1d0f560b0e9a474cd6dcc20db6 android.hardware.radio@1.2::IRadio
diff --git a/fastboot/1.0/IFastboot.hal b/fastboot/1.0/IFastboot.hal
index 5e42c17..653fd79 100644
--- a/fastboot/1.0/IFastboot.hal
+++ b/fastboot/1.0/IFastboot.hal
@@ -29,14 +29,4 @@
      *     reformatting.
      */
     getPartitionType(string partitionName) generates (FileSystemType type, Result result);
-
-    /**
-     * Executes a fastboot OEM command.
-     *
-     * @param oemCmdArgs The oem command that is passed to the fastboot HAL.
-     * @response result Returns the status SUCCESS if the operation is successful,
-     *     INVALID_ARGUMENT for bad arguments,
-     *     FAILURE_UNKNOWN for an invalid/unsupported command.
-     */
-    doOemCommand(string oemCmd) generates (Result result);
 };
diff --git a/fastboot/1.0/types.hal b/fastboot/1.0/types.hal
index 3fbe639..8453deb 100644
--- a/fastboot/1.0/types.hal
+++ b/fastboot/1.0/types.hal
@@ -53,9 +53,9 @@
 struct Result {
     Status status;
     /**
-     * Message pertaining to the status. It must be a failure message for
+     * Error message pertaining to the status. It must be a failure message for
      * Status FAILURE_UNKNOWN/NOT_SUPPORTED or an informative message for
      * Status SUCCESS.
      */
-    string message;
+    string error;
 };
diff --git a/health/storage/1.0/default/Android.bp b/health/storage/1.0/default/Android.bp
new file mode 100644
index 0000000..4723443
--- /dev/null
+++ b/health/storage/1.0/default/Android.bp
@@ -0,0 +1,48 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+cc_binary {
+    name: "android.hardware.health.storage@1.0-service",
+    vendor: true,
+    defaults: ["hidl_defaults"],
+    relative_install_path: "hw",
+    init_rc: ["android.hardware.health.storage@1.0-service.rc"],
+    srcs: [
+        "Storage.cpp",
+        "service.cpp",
+    ],
+
+    cflags: [
+        "-Wall",
+        "-Werror",
+    ],
+
+    shared_libs: [
+        "libbase",
+        "libhidlbase",
+        "libhidltransport",
+        "libutils",
+        "android.hardware.health.storage@1.0",
+    ],
+
+    static_libs: [
+        "libfstab",
+    ],
+
+    vintf_fragments: [
+        "manifest_android.hardware.health.storage@1.0.xml",
+    ],
+}
diff --git a/health/storage/1.0/default/Storage.cpp b/health/storage/1.0/default/Storage.cpp
new file mode 100644
index 0000000..2e53c50
--- /dev/null
+++ b/health/storage/1.0/default/Storage.cpp
@@ -0,0 +1,151 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Storage.h"
+
+#include <sstream>
+
+#include <android-base/chrono_utils.h>
+#include <android-base/file.h>
+#include <android-base/logging.h>
+#include <android-base/strings.h>
+#include <fstab/fstab.h>
+
+namespace android {
+namespace hardware {
+namespace health {
+namespace storage {
+namespace V1_0 {
+namespace implementation {
+
+using base::ReadFileToString;
+using base::Timer;
+using base::Trim;
+using base::WriteStringToFd;
+using base::WriteStringToFile;
+
+std::string getGarbageCollectPath() {
+    std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> fstab(fs_mgr_read_fstab_default(),
+                                                               fs_mgr_free_fstab);
+    struct fstab_rec* rec = NULL;
+
+    for (int i = 0; i < fstab->num_entries; i++) {
+        if (fs_mgr_has_sysfs_path(&fstab->recs[i])) {
+            rec = &fstab->recs[i];
+            break;
+        }
+    }
+    if (!rec) {
+        return "";
+    }
+
+    std::string path;
+    path.append(rec->sysfs_path);
+    path = path + "/manual_gc";
+
+    return path;
+}
+
+Return<void> Storage::garbageCollect(uint64_t timeoutSeconds,
+                                     const sp<IGarbageCollectCallback>& cb) {
+    Result result = Result::SUCCESS;
+    std::string path = getGarbageCollectPath();
+
+    if (path.empty()) {
+        LOG(WARNING) << "Cannot find Dev GC path";
+        result = Result::UNKNOWN_ERROR;
+    } else {
+        Timer timer;
+        LOG(INFO) << "Start Dev GC on " << path;
+        while (1) {
+            std::string require;
+            if (!ReadFileToString(path, &require)) {
+                PLOG(WARNING) << "Reading manual_gc failed in " << path;
+                result = Result::IO_ERROR;
+                break;
+            }
+            require = Trim(require);
+            if (require == "" || require == "off" || require == "disabled") {
+                LOG(DEBUG) << "No more to do Dev GC";
+                break;
+            }
+            LOG(DEBUG) << "Trigger Dev GC on " << path;
+            if (!WriteStringToFile("1", path)) {
+                PLOG(WARNING) << "Start Dev GC failed on " << path;
+                result = Result::IO_ERROR;
+                break;
+            }
+            if (timer.duration() >= std::chrono::seconds(timeoutSeconds)) {
+                LOG(WARNING) << "Dev GC timeout";
+                // Timeout is not treated as an error. Try next time.
+                break;
+            }
+            sleep(2);
+        }
+        LOG(INFO) << "Stop Dev GC on " << path;
+        if (!WriteStringToFile("0", path)) {
+            PLOG(WARNING) << "Stop Dev GC failed on " << path;
+            result = Result::IO_ERROR;
+        }
+    }
+
+    if (cb != nullptr) {
+        auto ret = cb->onFinish(result);
+        if (!ret.isOk()) {
+            LOG(WARNING) << "Cannot return result to callback: " << ret.description();
+        }
+    }
+    return Void();
+}
+
+Return<void> Storage::debug(const hidl_handle& handle, const hidl_vec<hidl_string>&) {
+    if (handle == nullptr || handle->numFds < 1) {
+        return Void();
+    }
+
+    int fd = handle->data[0];
+    std::stringstream output;
+
+    std::string path = getGarbageCollectPath();
+    if (path.empty()) {
+        output << "Cannot find Dev GC path";
+    } else {
+        std::string require;
+
+        if (ReadFileToString(path, &require)) {
+            output << path << ":" << require << std::endl;
+        }
+
+        if (WriteStringToFile("0", path)) {
+            output << "stop success" << std::endl;
+        }
+    }
+
+    if (!WriteStringToFd(output.str(), fd)) {
+        PLOG(WARNING) << "debug: cannot write to fd";
+    }
+
+    fsync(fd);
+
+    return Void();
+}
+
+}  // namespace implementation
+}  // namespace V1_0
+}  // namespace storage
+}  // namespace health
+}  // namespace hardware
+}  // namespace android
diff --git a/health/storage/1.0/default/Storage.h b/health/storage/1.0/default/Storage.h
new file mode 100644
index 0000000..8c57ddb
--- /dev/null
+++ b/health/storage/1.0/default/Storage.h
@@ -0,0 +1,49 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_HEALTH_FILESYSTEM_V1_0_FILESYSTEM_H
+#define ANDROID_HARDWARE_HEALTH_FILESYSTEM_V1_0_FILESYSTEM_H
+
+#include <android/hardware/health/storage/1.0/IStorage.h>
+#include <hidl/Status.h>
+
+namespace android {
+namespace hardware {
+namespace health {
+namespace storage {
+namespace V1_0 {
+namespace implementation {
+
+using ::android::sp;
+using ::android::hardware::hidl_handle;
+using ::android::hardware::hidl_string;
+using ::android::hardware::hidl_vec;
+using ::android::hardware::Return;
+
+struct Storage : public IStorage {
+    Return<void> garbageCollect(uint64_t timeoutSeconds,
+                                const sp<IGarbageCollectCallback>& cb) override;
+    Return<void> debug(const hidl_handle& handle, const hidl_vec<hidl_string>&) override;
+};
+
+}  // namespace implementation
+}  // namespace V1_0
+}  // namespace storage
+}  // namespace health
+}  // namespace hardware
+}  // namespace android
+
+#endif  // ANDROID_HARDWARE_HEALTH_FILESYSTEM_V1_0_FILESYSTEM_H
diff --git a/health/storage/1.0/default/android.hardware.health.storage@1.0-service.rc b/health/storage/1.0/default/android.hardware.health.storage@1.0-service.rc
new file mode 100644
index 0000000..c6a1425
--- /dev/null
+++ b/health/storage/1.0/default/android.hardware.health.storage@1.0-service.rc
@@ -0,0 +1,5 @@
+service vendor.health-storage-hal-1-0 /vendor/bin/hw/android.hardware.health.storage@1.0-service
+    interface android.hardware.health.storage@1.0::IStorage default
+    class hal
+    user system
+    group system
diff --git a/health/storage/1.0/default/manifest_android.hardware.health.storage@1.0.xml b/health/storage/1.0/default/manifest_android.hardware.health.storage@1.0.xml
new file mode 100644
index 0000000..ffe854e
--- /dev/null
+++ b/health/storage/1.0/default/manifest_android.hardware.health.storage@1.0.xml
@@ -0,0 +1,11 @@
+<manifest version="1.0" type="device">
+    <hal>
+        <name>android.hardware.health.storage</name>
+        <transport>hwbinder</transport>
+        <version>1.0</version>
+        <interface>
+            <name>IStorage</name>
+            <instance>default</instance>
+        </interface>
+    </hal>
+</manifest>
diff --git a/health/storage/1.0/default/service.cpp b/health/storage/1.0/default/service.cpp
new file mode 100644
index 0000000..a945033
--- /dev/null
+++ b/health/storage/1.0/default/service.cpp
@@ -0,0 +1,41 @@
+/*
+ * Copyright 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <hidl/HidlTransportSupport.h>
+#include "Storage.h"
+
+using android::OK;
+using android::sp;
+using android::status_t;
+using android::UNKNOWN_ERROR;
+using android::hardware::configureRpcThreadpool;
+using android::hardware::joinRpcThreadpool;
+using android::hardware::health::storage::V1_0::IStorage;
+using android::hardware::health::storage::V1_0::implementation::Storage;
+
+int main() {
+    configureRpcThreadpool(1, true);
+
+    sp<IStorage> service = new Storage();
+    status_t result = service->registerAsService();
+
+    if (result != OK) {
+        return result;
+    }
+
+    joinRpcThreadpool();
+    return UNKNOWN_ERROR;
+}
diff --git a/health/storage/1.0/vts/functional/Android.bp b/health/storage/1.0/vts/functional/Android.bp
new file mode 100644
index 0000000..63591cf
--- /dev/null
+++ b/health/storage/1.0/vts/functional/Android.bp
@@ -0,0 +1,26 @@
+//
+// Copyright (C) 2018 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_test {
+    name: "VtsHalHealthStorageV1_0TargetTest",
+    defaults: ["VtsHalTargetTestDefaults"],
+    srcs: ["VtsHalHealthStorageV1_0TargetTest.cpp"],
+    static_libs: ["android.hardware.health.storage@1.0"],
+    shared_libs: [
+        "libhidltransport"
+    ],
+}
+
diff --git a/health/storage/1.0/vts/functional/VtsHalHealthStorageV1_0TargetTest.cpp b/health/storage/1.0/vts/functional/VtsHalHealthStorageV1_0TargetTest.cpp
new file mode 100644
index 0000000..5ad561c
--- /dev/null
+++ b/health/storage/1.0/vts/functional/VtsHalHealthStorageV1_0TargetTest.cpp
@@ -0,0 +1,193 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <VtsHalHidlTargetTestBase.h>
+#include <VtsHalHidlTargetTestEnvBase.h>
+#include <android-base/logging.h>
+#include <android/hardware/health/storage/1.0/IStorage.h>
+#include <hidl/HidlTransportSupport.h>
+#include <unistd.h>
+#include <thread>
+
+namespace android {
+namespace hardware {
+namespace health {
+namespace storage {
+namespace V1_0 {
+
+using ::std::literals::chrono_literals::operator""ms;
+
+#define ASSERT_OK(ret) ASSERT_TRUE(ret.isOk()) << ret.description()
+
+// Dev GC timeout. This is the timeout used by vold.
+const uint64_t kDevGcTimeoutSec = 120;
+const std::chrono::seconds kDevGcTimeout{kDevGcTimeoutSec};
+// Time accounted for RPC calls.
+const std::chrono::milliseconds kRpcTime{100};
+
+template <typename R>
+std::string toString(std::chrono::duration<R, std::milli> time) {
+    return std::to_string(time.count()) + "ms";
+}
+
+/** An atomic boolean flag that indicates whether a task has finished. */
+class Flag {
+   public:
+    void onFinish() {
+        std::unique_lock<std::mutex> lock(mMutex);
+        onFinishLocked(&lock);
+    }
+    template <typename R, typename P>
+    bool wait(std::chrono::duration<R, P> duration) {
+        std::unique_lock<std::mutex> lock(mMutex);
+        return waitLocked(&lock, duration);
+    }
+
+   protected:
+    /** Will unlock. */
+    void onFinishLocked(std::unique_lock<std::mutex>* lock) {
+        mFinished = true;
+        lock->unlock();
+        mCv.notify_all();
+    }
+    template <typename R, typename P>
+    bool waitLocked(std::unique_lock<std::mutex>* lock, std::chrono::duration<R, P> duration) {
+        mCv.wait_for(*lock, duration, [this] { return mFinished; });
+        return mFinished;
+    }
+
+    bool mFinished{false};
+    std::mutex mMutex;
+    std::condition_variable mCv;
+};
+
+class GcCallback : public IGarbageCollectCallback, public Flag {
+   public:
+    Return<void> onFinish(Result result) override {
+        std::unique_lock<std::mutex> lock(mMutex);
+        mResult = result;
+        Flag::onFinishLocked(&lock);
+        return Void();
+    }
+
+    /**
+     * Wait for a specific "timeout". If GC has finished, test that the result
+     * is equal to the "expected" value.
+     */
+    template <typename R, typename P>
+    void waitForResult(std::chrono::duration<R, P> timeout, Result expected) {
+        std::unique_lock<std::mutex> lock(mMutex);
+        if (waitLocked(&lock, timeout)) {
+            EXPECT_EQ(expected, mResult);
+        } else {
+            LOG(INFO) << "timeout after " << toString(timeout);
+        }
+    }
+
+   private:
+    Result mResult{Result::UNKNOWN_ERROR};
+};
+
+/** Test environment for Health Storage HIDL HAL. */
+class HealthStorageHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
+   public:
+    /** get the test environment singleton */
+    static HealthStorageHidlEnvironment* Instance() {
+        static HealthStorageHidlEnvironment* instance = new HealthStorageHidlEnvironment();
+        return instance;
+    }
+    virtual void registerTestServices() override { registerTestService<IStorage>(); }
+
+   private:
+    HealthStorageHidlEnvironment() {}
+};
+
+class HealthStorageHidlTest : public ::testing::VtsHalHidlTargetTestBase {
+   public:
+    virtual void SetUp() override {
+        fs = ::testing::VtsHalHidlTargetTestBase::getService<IStorage>(
+            HealthStorageHidlEnvironment::Instance()->getServiceName<IStorage>());
+
+        ASSERT_NE(fs, nullptr);
+        LOG(INFO) << "Service is remote " << fs->isRemote();
+    }
+
+    virtual void TearDown() override {
+        EXPECT_TRUE(ping(kRpcTime))
+            << "Service is not responsive; expect subsequent tests to fail.";
+    }
+
+    /**
+     * Ping the service and expect it to return after "timeout". Return true
+     * iff the service is responsive within "timeout".
+     */
+    template <typename R, typename P>
+    bool ping(std::chrono::duration<R, P> timeout) {
+        // Ensure the service is responsive after the test.
+        sp<IStorage> service = fs;
+        auto pingFlag = std::make_shared<Flag>();
+        std::thread([service, pingFlag] {
+            service->ping();
+            pingFlag->onFinish();
+        })
+            .detach();
+        return pingFlag->wait(timeout);
+    }
+
+    sp<IStorage> fs;
+};
+
+/**
+ * Ensure garbage collection works on null callback.
+ */
+TEST_F(HealthStorageHidlTest, GcNullCallback) {
+    auto ret = fs->garbageCollect(kDevGcTimeoutSec, nullptr);
+
+    ASSERT_OK(ret);
+
+    // Hold test process because HAL can be single-threaded and doing GC.
+    ASSERT_TRUE(ping(kDevGcTimeout + kRpcTime))
+        << "Service must be available after " << toString(kDevGcTimeout + kRpcTime);
+}
+
+/**
+ * Ensure garbage collection works on non-null callback.
+ */
+TEST_F(HealthStorageHidlTest, GcNonNullCallback) {
+    sp<GcCallback> cb = new GcCallback();
+    auto ret = fs->garbageCollect(kDevGcTimeoutSec, cb);
+    ASSERT_OK(ret);
+    cb->waitForResult(kDevGcTimeout + kRpcTime, Result::SUCCESS);
+}
+
+}  // namespace V1_0
+}  // namespace storage
+}  // namespace health
+}  // namespace hardware
+}  // namespace android
+
+int main(int argc, char** argv) {
+    using ::android::hardware::configureRpcThreadpool;
+    using ::android::hardware::health::storage::V1_0::HealthStorageHidlEnvironment;
+
+    configureRpcThreadpool(1, false /* callerWillJoin*/);
+    ::testing::AddGlobalTestEnvironment(HealthStorageHidlEnvironment::Instance());
+    ::testing::InitGoogleTest(&argc, argv);
+    HealthStorageHidlEnvironment::Instance()->init(&argc, argv);
+    int status = RUN_ALL_TESTS();
+    LOG(INFO) << "Test result = " << status;
+    return status;
+}
diff --git a/keymaster/4.0/support/authorization_set.cpp b/keymaster/4.0/support/authorization_set.cpp
index bf77420..afbcdac 100644
--- a/keymaster/4.0/support/authorization_set.cpp
+++ b/keymaster/4.0/support/authorization_set.cpp
@@ -523,8 +523,7 @@
     return *this;
 }
 
-AuthorizationSetBuilder& AuthorizationSetBuilder::Digest(
-    std::initializer_list<V4_0::Digest> digests) {
+AuthorizationSetBuilder& AuthorizationSetBuilder::Digest(std::vector<V4_0::Digest> digests) {
     for (auto digest : digests) {
         push_back(TAG_DIGEST, digest);
     }
diff --git a/keymaster/4.0/support/include/keymasterV4_0/authorization_set.h b/keymaster/4.0/support/include/keymasterV4_0/authorization_set.h
index 6c7fd35..1869682 100644
--- a/keymaster/4.0/support/include/keymasterV4_0/authorization_set.h
+++ b/keymaster/4.0/support/include/keymasterV4_0/authorization_set.h
@@ -278,7 +278,7 @@
     AuthorizationSetBuilder& GcmModeMacLen(uint32_t macLength);
 
     AuthorizationSetBuilder& BlockMode(std::initializer_list<BlockMode> blockModes);
-    AuthorizationSetBuilder& Digest(std::initializer_list<Digest> digests);
+    AuthorizationSetBuilder& Digest(std::vector<Digest> digests);
     AuthorizationSetBuilder& Padding(std::initializer_list<PaddingMode> paddings);
 
     template <typename... T>
diff --git a/keymaster/4.0/vts/functional/KeymasterHidlTest.cpp b/keymaster/4.0/vts/functional/KeymasterHidlTest.cpp
index 6ed61da..995ae4f 100644
--- a/keymaster/4.0/vts/functional/KeymasterHidlTest.cpp
+++ b/keymaster/4.0/vts/functional/KeymasterHidlTest.cpp
@@ -672,8 +672,7 @@
     return {EcCurve::P_224, EcCurve::P_384, EcCurve::P_521};
 }
 
-std::initializer_list<Digest> KeymasterHidlTest::ValidDigests(bool withNone, bool withMD5) {
-    std::vector<Digest> result;
+std::vector<Digest> KeymasterHidlTest::ValidDigests(bool withNone, bool withMD5) {
     switch (SecLevel()) {
         case SecurityLevel::TRUSTED_ENVIRONMENT:
             if (withNone) {
diff --git a/keymaster/4.0/vts/functional/KeymasterHidlTest.h b/keymaster/4.0/vts/functional/KeymasterHidlTest.h
index 94beb21..4cd6a5b 100644
--- a/keymaster/4.0/vts/functional/KeymasterHidlTest.h
+++ b/keymaster/4.0/vts/functional/KeymasterHidlTest.h
@@ -214,7 +214,7 @@
     std::vector<EcCurve> ValidCurves();
     std::vector<EcCurve> InvalidCurves();
 
-    std::initializer_list<Digest> ValidDigests(bool withNone, bool withMD5);
+    std::vector<Digest> ValidDigests(bool withNone, bool withMD5);
     std::vector<Digest> InvalidDigests();
 
     HidlBuf key_blob_;
diff --git a/neuralnetworks/1.0/types.hal b/neuralnetworks/1.0/types.hal
index 887fdf1..0880b2f 100644
--- a/neuralnetworks/1.0/types.hal
+++ b/neuralnetworks/1.0/types.hal
@@ -68,6 +68,7 @@
  * The type of an operation in a model.
  */
 enum OperationType : int32_t {
+
     /**
      * Adds two tensors, element-wise.
      *
@@ -105,6 +106,8 @@
      *
      * Outputs:
      * * 0: The sum, a tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 27.
      */
     ADD = 0,
 
@@ -116,8 +119,10 @@
      *
      * The values in the output tensor are computed as:
      *
-     *     output[batch, row, col, channel] =
-     *         sum_{i, j}(input[batch, row + i, col + j, channel]) / sum(1)
+     *     output[b, i, j, channel] =
+     *         sum_{di, dj}(
+     *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
+     *         ) / sum(1)
      *
      * Supported tensor {@link OperandType}:
      * * {@link OperandType::TENSOR_FLOAT32}
@@ -171,7 +176,9 @@
      *
      * Outputs:
      * * 0: The output 4-D tensor, of shape
-            [batches, out_height, out_width, depth].
+     *      [batches, out_height, out_width, depth].
+     *
+     * Available since API level 27.
      */
     AVERAGE_POOL_2D = 1,
 
@@ -198,6 +205,8 @@
      * Outputs:
      * * 0: The output, a tensor of the same {@link OperandType} as the input
      *      tensors. The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
+     *
+     * Available since API level 27.
      */
     CONCATENATION = 2,
 
@@ -213,12 +222,11 @@
      *
      * The values in the output tensor are computed as:
      *
-     *     output[batch, row, col, channel] =
-     *         sum_{i, j} (
-     *             input[batch, row + i, col + j, k] *
-     *             filter[channel, row + i, col + j, k] +
-     *             bias[channel]
-     *         )
+     *     output[b, i, j, channel] =
+     *         sum_{di, dj, k} (
+     *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
+     *             filter[channel, di, dj, k]
+     *         ) + bias[channel]
      *
      * Supported tensor {@link OperandType}:
      * * {@link OperandType::TENSOR_FLOAT32}
@@ -274,7 +282,7 @@
      * * 4: An {@link OperandType::INT32} scalar, specifying the stride when
      *      walking through input in the ‘width’ dimension.
      * * 5: An {@link OperandType::INT32} scalar, specifying the stride when
-    *       walking through input in the ‘height’ dimension.
+     *      walking through input in the ‘height’ dimension.
      * * 6: An {@link OperandType::INT32} scalar, and has to be one of the
      *      {@link FusedActivationFunc} values. Specifies the activation to
      *      invoke on the result.
@@ -284,6 +292,8 @@
      *      [batches, out_height, out_width, depth_out]. For output tensor of
      *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
      *      must be satisfied: output_scale > input_scale * filter_scale.
+     *
+     * Available since API level 27.
      */
     CONV_2D = 3,
 
@@ -307,7 +317,7 @@
      *         sum_{di, dj} (
      *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
      *             filter[1, di, dj, k * channel_multiplier + q]
-     *         )
+     *         ) + bias[k * channel_multiplier + q]
      *
      * Supported tensor {@link OperandType}:
      * * {@link OperandType::TENSOR_FLOAT32}
@@ -375,6 +385,8 @@
      *      [batches, out_height, out_width, depth_out]. For output tensor of
      *      {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
      *      must be satisfied: output_scale > input_scale * filter_scale.
+     *
+     * Available since API level 27.
      */
     DEPTHWISE_CONV_2D = 4,
 
@@ -409,6 +421,8 @@
      * Outputs:
      * * 0: The output 4-D tensor, of shape [batch, height*block_size,
      *      width*block_size, depth/(block_size*block_size)].
+     *
+     * Available since API level 27.
      */
     DEPTH_TO_SPACE = 5,
 
@@ -430,6 +444,8 @@
      * Outputs:
      * * 0: The output tensor of same shape as input0, but with
      *      {@link OperandType::TENSOR_FLOAT32}.
+     *
+     * Available since API level 27.
      */
     DEQUANTIZE = 6,
 
@@ -463,6 +479,8 @@
      * * 0: A n-D tensor with the same rank and shape as the Values
      *      tensor, except for the first dimension which has the same size
      *      as Lookups' only dimension.
+     *
+     * Available since API level 27.
      */
     EMBEDDING_LOOKUP = 7,
 
@@ -480,6 +498,8 @@
      * Outputs:
      * * 0: The output tensor, of the same {@link OperandType} and dimensions as
      *      the input tensor.
+     *
+     * Available since API level 27.
      */
     FLOOR = 8,
 
@@ -523,6 +543,8 @@
      *      tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the following
      *      condition must be satisfied:
      *      output_scale > input_scale * filter_scale.
+     *
+     * Available since API level 27.
      */
     FULLY_CONNECTED = 9,
 
@@ -571,6 +593,8 @@
      *      Stored as {@link OperandType::TENSOR_QUANT8_ASYMM} with offset 0
      *      and scale 1.0f.
      *      A non-zero byte represents True, a hit. A zero indicates otherwise.
+     *
+     * Available since API level 27.
      */
     HASHTABLE_LOOKUP = 10,
 
@@ -598,6 +622,8 @@
      * Outputs:
      * * 0: The output 4-D tensor, of the same shape as input
      *      [batches, height, width, depth].
+     *
+     * Available since API level 27.
      */
     L2_NORMALIZATION = 11,
 
@@ -609,8 +635,8 @@
      *
      * The values in the output tensor are computed as:
      *
-     *     output[batch, row, col, channel] =
-     *         sqrt(sum_{i, j} pow(input[batch, row + i, col + j, channel], 2) /
+     *     output[b, i, j, c] =
+     *         sqrt(sum_{di, dj} pow(input[b, strides[1] * i + di, strides[2] * j + dj, c], 2) /
      *              sum(1))
      *
      * Supported tensor {@link OperandType}:
@@ -664,6 +690,8 @@
      * Outputs:
      * * 0: The output 4-D tensor, of shape
      *      [batches, out_height, out_width, depth].
+     *
+     * Available since API level 27.
      */
     L2_POOL_2D = 12,
 
@@ -700,6 +728,8 @@
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 27.
      */
     LOCAL_RESPONSE_NORMALIZATION = 13,
 
@@ -723,6 +753,8 @@
      * * 0: The output tensor of same shape as input0.
      *      For {@link OperandType::TENSOR_QUANT8_ASYMM},
      *      the scale must be 1.f / 256 and the zeroPoint must be 0.
+     *
+     * Available since API level 27.
      */
     LOGISTIC = 14,
 
@@ -758,6 +790,8 @@
      *      If the projection type is Dense:
      *        Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
      *        A flattened tensor that represents projected bit vectors.
+     *
+     * Available since API level 27.
      */
     LSH_PROJECTION = 15,
 
@@ -952,6 +986,8 @@
      *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
      *      [batch_size, output_size]. This is effectively the same as the
      *      current “output state (out)” value.
+     *
+     * Available since API level 27.
      */
     LSTM = 16,
 
@@ -963,8 +999,10 @@
      *
      * The values in the output tensor are computed as:
      *
-     *     output[batch, row, col, channel] =
-     *         max_{i, j} (input[batch, row + i, col + j, channel])
+     *     output[b, i, j, channel] =
+     *         max_{di, dj} (
+     *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
+     *         )
      *
      * Supported tensor {@link OperandType}:
      * * {@link OperandType::TENSOR_FLOAT32}
@@ -1018,6 +1056,8 @@
      * Outputs:
      * * 0: The output 4-D tensor, of shape
      *      [batches, out_height, out_width, depth].
+     *
+     * Available since API level 27.
      */
     MAX_POOL_2D = 17,
 
@@ -1055,6 +1095,8 @@
      *      For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
      *      the following condition must be satisfied:
      *      output_scale > input1_scale * input2_scale.
+     *
+     * Available since API level 27.
      */
     MUL = 18,
 
@@ -1076,6 +1118,8 @@
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 27.
      */
     RELU = 19,
 
@@ -1097,6 +1141,8 @@
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 27.
      */
     RELU1 = 20,
 
@@ -1118,6 +1164,8 @@
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 27.
      */
     RELU6 = 21,
 
@@ -1141,6 +1189,8 @@
      *
      * Outputs:
      * * 0: The output tensor, of shape specified by the input shape.
+     *
+     * Available since API level 27.
      */
     RESHAPE = 22,
 
@@ -1167,6 +1217,8 @@
      * Outputs:
      * * 0: The output 4-D tensor, of shape
      *      [batches, new_height, new_width, depth].
+     *
+     * Available since API level 27.
      */
     RESIZE_BILINEAR = 23,
 
@@ -1222,6 +1274,8 @@
      *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
      *      [batch_size, num_units]. This is effectively the same as the
      *      current state value.
+     *
+     * Available since API level 27.
      */
     RNN = 24,
 
@@ -1251,6 +1305,8 @@
      * * 0: The output tensor of same shape as input0.
      *      For {@link OperandType::TENSOR_QUANT8_ASYMM},
      *      the scale must be 1.f / 256 and the zeroPoint must be 0.
+     *
+     * Available since API level 27.
      */
     SOFTMAX = 25,
 
@@ -1284,6 +1340,8 @@
      * Outputs:
      * * 0: The output 4-D tensor, of shape [batches, height/block_size,
      *      width/block_size, depth_in*block_size*block_size].
+     *
+     * Available since API level 27.
      */
     SPACE_TO_DEPTH = 26,
 
@@ -1361,7 +1419,9 @@
      *      [batch_size, (memory_size - 1) * num_units * rank].
      * * 1: output.
      *      A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
-         *      [batch_size, num_units].
+     *      [batch_size, num_units].
+     *
+     * Available since API level 27.
      */
     SVDF = 27,
 
@@ -1382,6 +1442,8 @@
      *
      * Outputs:
      * * 0: The output tensor of same shape as input0.
+     *
+     * Available since API level 27.
      */
     TANH = 28,
 
diff --git a/neuralnetworks/1.0/vts/functional/Android.bp b/neuralnetworks/1.0/vts/functional/Android.bp
index e28113b..18f35c1 100644
--- a/neuralnetworks/1.0/vts/functional/Android.bp
+++ b/neuralnetworks/1.0/vts/functional/Android.bp
@@ -25,6 +25,7 @@
     static_libs: [
         "android.hardware.neuralnetworks@1.0",
         "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
         "android.hidl.allocator@1.0",
         "android.hidl.memory@1.0",
         "libhidlmemory",
@@ -49,8 +50,9 @@
     ],
     defaults: ["VtsHalTargetTestDefaults"],
     static_libs: [
-        "android.hardware.neuralnetworks@1.1",
         "android.hardware.neuralnetworks@1.0",
+        "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
         "android.hidl.allocator@1.0",
         "android.hidl.memory@1.0",
         "libhidlmemory",
diff --git a/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp b/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
index 64495cf..b8046c7 100644
--- a/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
+++ b/neuralnetworks/1.0/vts/functional/GeneratedTestHarness.cpp
@@ -275,6 +275,58 @@
     EvaluatePreparedModel(preparedModel, is_ignored, examples, fpAtol, fpRtol);
 }
 
+// TODO: Reduce code duplication.
+void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
+             std::function<bool(int)> is_ignored,
+             const std::vector<MixedTypedExampleType>& examples) {
+    V1_2::Model model = create_model();
+
+    // see if service can handle model
+    bool fullySupportsModel = false;
+    Return<void> supportedCall = device->getSupportedOperations_1_2(
+        model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
+            ASSERT_EQ(ErrorStatus::NONE, status);
+            ASSERT_NE(0ul, supported.size());
+            fullySupportsModel =
+                std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
+        });
+    ASSERT_TRUE(supportedCall.isOk());
+
+    // launch prepare model
+    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+    ASSERT_NE(nullptr, preparedModelCallback.get());
+    Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
+        model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
+    ASSERT_TRUE(prepareLaunchStatus.isOk());
+    ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+    // retrieve prepared model
+    preparedModelCallback->wait();
+    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+    sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
+
+    // early termination if vendor service cannot fully prepare model
+    if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
+        ASSERT_EQ(nullptr, preparedModel.get());
+        LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
+                     "prepare model that it does not support.";
+        std::cout << "[          ]   Early termination of test because vendor service cannot "
+                     "prepare model that it does not support."
+                  << std::endl;
+        return;
+    }
+    EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
+    ASSERT_NE(nullptr, preparedModel.get());
+
+    // TODO: Adjust the error limit based on testing.
+    // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
+    float fpAtol = !model.relaxComputationFloat32toFloat16 ? 1e-5f : 5.0f * 0.0009765625f;
+    // Set the relative tolerance to be 5ULP of the corresponding FP precision.
+    float fpRtol = !model.relaxComputationFloat32toFloat16 ? 5.0f * 1.1920928955078125e-7f
+                                                           : 5.0f * 0.0009765625f;
+    EvaluatePreparedModel(preparedModel, is_ignored, examples, fpAtol, fpRtol);
+}
+
 }  // namespace generated_tests
 
 }  // namespace neuralnetworks
diff --git a/neuralnetworks/1.1/types.hal b/neuralnetworks/1.1/types.hal
index 7b2a21a..c9de76b 100644
--- a/neuralnetworks/1.1/types.hal
+++ b/neuralnetworks/1.1/types.hal
@@ -26,6 +26,7 @@
  * The type of an operation in a model.
  */
 enum OperationType : @1.0::OperationType {
+
     /**
      * BatchToSpace for N-dimensional tensors.
      *
@@ -50,6 +51,8 @@
      *
      * Outputs:
      * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
      */
     BATCH_TO_SPACE_ND = 29,
 
@@ -88,6 +91,8 @@
      *
      * Outputs:
      * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
      */
     DIV = 30,
 
@@ -118,6 +123,8 @@
      *
      * Outputs:
      * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
      */
     MEAN = 31,
 
@@ -150,6 +157,8 @@
      *      of the padding:
      *          output0.dimension[i] =
      *              padding[i, 0] + input0.dimension[i] + padding[i, 1]
+     *
+     * Available since API level 28.
      */
     PAD = 32,
 
@@ -185,6 +194,8 @@
      *
      * Outputs:
      * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
      */
     SPACE_TO_BATCH_ND = 33,
 
@@ -214,6 +225,8 @@
      * * 0: A tensor of the same {@link OperandType} as input0. Contains the
      *      same data as input, but has one or more dimensions of size 1
      *      removed.
+     *
+     * Available since API level 28.
      */
     SQUEEZE = 34,
 
@@ -234,28 +247,32 @@
      *
      * Inputs:
      * * 0: An n-D tensor, specifying the tensor to be sliced.
-     * * 1: A 1-D Tensor of {@link OperandType::TENSOR_INT32}, the starts of
-     *      the dimensions of the input tensor to be sliced. The length must be
-     *      of rank(input0).
-     * * 2: A 1-D Tensor of {@link OperandType::TENSOR_INT32}, the ends of
-     *      the dimensions of the input tensor to be sliced. The length must be
-     *      of rank(input0).
-     * * 3: A 1-D Tensor of {@link OperandType::TENSOR_INT32}, the strides of
-     *      the dimensions of the input tensor to be sliced. The length must be
-     *      of rank(input0).
-     * * 4: An {@link OperandType::INT32} scalar, begin_mask. If the ith bit
+     * * 1: begin, a 1-D tensor of {@link OperandType::TENSOR_INT32}. The
+     *      starts of the dimensions of the input tensor to be sliced. The
+     *      length must be of rank(input0).
+     * * 2: end, a 1-D tensor of {@link OperandType::TENSOR_INT32}. The
+     *      ends of the dimensions of the input tensor to be sliced. The length
+     *      must be of rank(input0).
+     * * 3: strides, a 1-D tensor of {@link OperandType::TENSOR_INT32}. The
+     *      strides of the dimensions of the input tensor to be sliced. The
+     *      length must be of rank(input0). The entries must be non-zero.
+     * * 4: begin_mask, an {@link OperandType::INT32} scalar. If the ith bit
      *      of begin_mask is set, begin[i] is ignored and the fullest possible
      *      range in that dimension is used instead.
-     * * 5: An {@link OperandType::INT32} scalar, end_mask. If the ith bit of
+     * * 5: end_mask, an {@link OperandType::INT32} scalar. If the ith bit of
      *      end_mask is set, end[i] is ignored and the fullest possible range in
      *      that dimension is used instead.
-     * * 6: An {@link OperandType::INT32} scalar, shrink_axis_mask. An int32
-     *      mask. If the ith bit of shrink_axis_mask is set, it implies that the
-     *      ith specification shrinks the dimensionality by 1. A slice of size 1
-     *      starting from begin[i] in the dimension must be preserved.
+     * * 6: shrink_axis_mask, an {@link OperandType::INT32} scalar. If the
+     *      ith bit of shrink_axis_mask is set, the ith dimension specification
+     *      shrinks the dimensionality by 1, taking on the value at index
+     *      begin[i]. In this case, the ith specification must define a
+     *      slice of size 1, e.g. begin[i] = x, end[i] = x + 1.
      *
      * Outputs:
-     * * 0: A tensor of the same {@link OperandType} as input0.
+     * * 0: A tensor of the same {@link OperandType} as input0 and rank (n - k),
+     *      where k is the number of bits set in shrink_axis_mask.
+     *
+     * Available since API level 28.
      */
     STRIDED_SLICE = 35,
 
@@ -294,6 +311,8 @@
      *
      * Outputs:
      * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
      */
     SUB = 36,
 
@@ -319,8 +338,11 @@
      *
      * Outputs:
      * * 0: A tensor of the same {@link OperandType} as input0.
+     *
+     * Available since API level 28.
      */
     TRANSPOSE = 37,
+
 };
 
 /**
diff --git a/neuralnetworks/1.1/vts/functional/Android.bp b/neuralnetworks/1.1/vts/functional/Android.bp
index f755c20..52a804a 100644
--- a/neuralnetworks/1.1/vts/functional/Android.bp
+++ b/neuralnetworks/1.1/vts/functional/Android.bp
@@ -28,6 +28,7 @@
     static_libs: [
         "android.hardware.neuralnetworks@1.0",
         "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
         "android.hidl.allocator@1.0",
         "android.hidl.memory@1.0",
         "libhidlmemory",
diff --git a/neuralnetworks/1.2/Android.bp b/neuralnetworks/1.2/Android.bp
new file mode 100644
index 0000000..e183a26
--- /dev/null
+++ b/neuralnetworks/1.2/Android.bp
@@ -0,0 +1,24 @@
+// This file is autogenerated by hidl-gen -Landroidbp.
+
+hidl_interface {
+    name: "android.hardware.neuralnetworks@1.2",
+    root: "android.hardware",
+    vndk: {
+        enabled: true,
+    },
+    srcs: [
+        "types.hal",
+        "IDevice.hal",
+    ],
+    interfaces: [
+        "android.hardware.neuralnetworks@1.0",
+        "android.hardware.neuralnetworks@1.1",
+        "android.hidl.base@1.0",
+    ],
+    types: [
+        "Model",
+        "Operation",
+        "OperationType",
+    ],
+    gen_java: false,
+}
diff --git a/neuralnetworks/1.2/IDevice.hal b/neuralnetworks/1.2/IDevice.hal
new file mode 100644
index 0000000..9cc23a2
--- /dev/null
+++ b/neuralnetworks/1.2/IDevice.hal
@@ -0,0 +1,106 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package android.hardware.neuralnetworks@1.2;
+
+import @1.0::ErrorStatus;
+import @1.0::IPreparedModelCallback;
+import @1.1::ExecutionPreference;
+import @1.1::IDevice;
+
+/**
+ * This interface represents a device driver.
+ */
+interface IDevice extends @1.1::IDevice {
+    /**
+     * Gets the supported operations in a model.
+     *
+     * getSupportedOperations indicates which operations of a model are fully
+     * supported by the vendor driver. If an operation may not be supported for
+     * any reason, getSupportedOperations must return false for that operation.
+     *
+     * @param model A model whose operations--and their corresponding operands--
+     *     are to be verified by the driver.
+     * @return status Error status of the call, must be:
+     *     - NONE if successful
+     *     - DEVICE_UNAVAILABLE if driver is offline or busy
+     *     - GENERAL_FAILURE if there is an unspecified error
+     *     - INVALID_ARGUMENT if provided model is invalid
+     * @return supportedOperations A list of supported operations, where true
+     *     indicates the operation is supported and false indicates the
+     *     operation is not supported. The index of "supported" corresponds with
+     *     the index of the operation it is describing.
+     */
+    getSupportedOperations_1_2(Model model)
+            generates (ErrorStatus status, vec<bool> supportedOperations);
+
+    /**
+     * Creates a prepared model for execution.
+     *
+     * prepareModel is used to make any necessary transformations or alternative
+     * representations to a model for execution, possibly including
+     * transformations on the constant data, optimization on the model's graph,
+     * or compilation into the device's native binary format. The model itself
+     * is not changed.
+     *
+     * The model is prepared asynchronously with respect to the caller. The
+     * prepareModel function must verify the inputs to the prepareModel function
+     * are correct. If there is an error, prepareModel must immediately invoke
+     * the callback with the appropriate ErrorStatus value and nullptr for the
+     * IPreparedModel, then return with the same ErrorStatus. If the inputs to
+     * the prepareModel function are valid and there is no error, prepareModel
+     * must launch an asynchronous task to prepare the model in the background,
+     * and immediately return from prepareModel with ErrorStatus::NONE. If the
+     * asynchronous task fails to launch, prepareModel must immediately invoke
+     * the callback with ErrorStatus::GENERAL_FAILURE and nullptr for the
+     * IPreparedModel, then return with ErrorStatus::GENERAL_FAILURE.
+     *
+     * When the asynchronous task has finished preparing the model, it must
+     * immediately invoke the callback function provided as an input to
+     * prepareModel. If the model was prepared successfully, the callback object
+     * must be invoked with an error status of ErrorStatus::NONE and the
+     * produced IPreparedModel object. If an error occurred preparing the model,
+     * the callback object must be invoked with the appropriate ErrorStatus
+     * value and nullptr for the IPreparedModel.
+     *
+     * The only information that may be unknown to the model at this stage is
+     * the shape of the tensors, which may only be known at execution time. As
+     * such, some driver services may return partially prepared models, where
+     * the prepared model may only be finished when it is paired with a set of
+     * inputs to the model. Note that the same prepared model object may be
+     * used with different shapes of inputs on different (possibly concurrent)
+     * executions.
+     *
+     * Multiple threads may call prepareModel on the same model concurrently.
+     *
+     * @param model The model to be prepared for execution.
+     * @param preference Indicates the intended execution behavior of a prepared
+     *     model.
+     * @param callback A callback object used to return the error status of
+     *     preparing the model for execution and the prepared model if
+     *     successful, nullptr otherwise. The callback object's notify function
+     *     must be called exactly once, even if the model could not be prepared.
+     * @return status Error status of launching a task which prepares the model
+     *     in the background; must be:
+     *     - NONE if preparation task is successfully launched
+     *     - DEVICE_UNAVAILABLE if driver is offline or busy
+     *     - GENERAL_FAILURE if there is an unspecified error
+     *     - INVALID_ARGUMENT if one of the input arguments is invalid
+     */
+    prepareModel_1_2(Model model, ExecutionPreference preference,
+                     IPreparedModelCallback callback)
+          generates (ErrorStatus status);
+};
diff --git a/neuralnetworks/1.2/types.hal b/neuralnetworks/1.2/types.hal
new file mode 100644
index 0000000..61970f0
--- /dev/null
+++ b/neuralnetworks/1.2/types.hal
@@ -0,0 +1,113 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package android.hardware.neuralnetworks@1.2;
+
+import @1.0::Operand;
+import @1.0::PerformanceInfo;
+import @1.1::OperationType;
+
+/**
+ * Operation types.
+ *
+ * The type of an operation in a model.
+ */
+enum OperationType : @1.1::OperationType {
+
+};
+
+/**
+ * Describes one operation of the model's graph.
+ */
+struct Operation {
+    /**
+     * The operation type.
+     */
+    OperationType type;
+
+    /**
+     * Describes the table that contains the indexes of the inputs of the
+     * operation. The offset is the index in the operandIndexes table.
+     */
+    vec<uint32_t> inputs;
+
+    /**
+     * Describes the table that contains the indexes of the outputs of the
+     * operation. The offset is the index in the operandIndexes table.
+     */
+    vec<uint32_t> outputs;
+};
+
+/**
+ * A Neural Network Model.
+ *
+ * This includes not only the execution graph, but also constant data such as
+ * weights or scalars added at construction time. The only information that
+ * may not be known is the shape of the input tensors.
+ */
+struct Model {
+    /**
+     * All operands included in the model.
+     */
+    vec<Operand> operands;
+
+    /**
+     * All operations included in the model.
+     *
+     * The operations are sorted into execution order. Every operand
+     * with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
+     * written before it is read.
+     */
+    vec<Operation> operations;
+
+    /**
+     * Input indexes of the model. There must be at least one.
+     *
+     * Each value corresponds to the index of the operand in "operands".
+     */
+    vec<uint32_t> inputIndexes;
+
+    /**
+     * Output indexes of the model. There must be at least one.
+     *
+     * Each value corresponds to the index of the operand in "operands".
+     */
+    vec<uint32_t> outputIndexes;
+
+    /**
+     * A byte buffer containing operand data that were copied into the model.
+     *
+     * An operand's value must be located here if and only if Operand::lifetime
+     * equals OperandLifeTime::CONSTANT_COPY.
+     */
+    vec<uint8_t> operandValues;
+
+    /**
+     * A collection of shared memory pools containing operand values.
+     *
+     * An operand's value must be located here if and only if Operand::lifetime
+     * equals OperandLifeTime::CONSTANT_REFERENCE.
+     */
+    vec<memory> pools;
+
+    /**
+     * 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
+     * precision as low as that of the IEEE 754 16-bit floating-point format.
+     * 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
+     * range and precision of the IEEE 754 32-bit floating-point format.
+     */
+    bool relaxComputationFloat32toFloat16;
+};
diff --git a/neuralnetworks/1.2/vts/OWNERS b/neuralnetworks/1.2/vts/OWNERS
new file mode 100644
index 0000000..8f25436
--- /dev/null
+++ b/neuralnetworks/1.2/vts/OWNERS
@@ -0,0 +1,14 @@
+# Neuralnetworks team
+butlermichael@google.com
+dgross@google.com
+jeanluc@google.com
+levp@google.com
+miaowang@google.com
+mikie@google.com
+mks@google.com
+pszczepaniak@google.com
+slavash@google.com
+
+# VTS team
+yim@google.com
+yuexima@google.com
diff --git a/neuralnetworks/1.2/vts/functional/Android.bp b/neuralnetworks/1.2/vts/functional/Android.bp
new file mode 100644
index 0000000..2dc19cc
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/Android.bp
@@ -0,0 +1,52 @@
+//
+// Copyright (C) 2018 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_test {
+    name: "VtsHalNeuralnetworksV1_2TargetTest",
+    srcs: [
+        "BasicTests.cpp",
+        "GeneratedTests.cpp",
+        "ValidateModel.cpp",
+        "ValidateRequest.cpp",
+        "ValidationTests.cpp",
+        "VtsHalNeuralnetworks.cpp",
+    ],
+    defaults: ["VtsHalTargetTestDefaults"],
+    static_libs: [
+        "android.hardware.neuralnetworks@1.0",
+        "android.hardware.neuralnetworks@1.1",
+        "android.hardware.neuralnetworks@1.2",
+        "android.hidl.allocator@1.0",
+        "android.hidl.memory@1.0",
+        "libhidlmemory",
+        "libneuralnetworks_utils",
+        "VtsHalNeuralnetworksTest_utils",
+    ],
+    header_libs: [
+        "libneuralnetworks_headers",
+        "libneuralnetworks_generated_test_harness_headers",
+        "libneuralnetworks_generated_tests",
+    ],
+    // Bug: http://b/74200014 - Disable arm32 asan since it triggers internal
+    // error in ld.gold.
+    arch: {
+        arm: {
+            sanitize: {
+                never: true,
+            },
+        },
+    },
+}
diff --git a/neuralnetworks/1.2/vts/functional/BasicTests.cpp b/neuralnetworks/1.2/vts/functional/BasicTests.cpp
new file mode 100644
index 0000000..d2dea1d
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/BasicTests.cpp
@@ -0,0 +1,45 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+using V1_1::Capabilities;
+
+// create device test
+TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
+
+// status test
+TEST_F(NeuralnetworksHidlTest, StatusTest) {
+    Return<DeviceStatus> status = device->getStatus();
+    ASSERT_TRUE(status.isOk());
+    EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
+}
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/GeneratedTests.cpp b/neuralnetworks/1.2/vts/functional/GeneratedTests.cpp
new file mode 100644
index 0000000..662c531
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/GeneratedTests.cpp
@@ -0,0 +1,60 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+#include "TestHarness.h"
+#include "Utils.h"
+
+#include <android-base/logging.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+#include <hidlmemory/mapping.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+
+namespace generated_tests {
+using ::test_helper::MixedTypedExampleType;
+extern void Execute(const sp<V1_2::IDevice>&, std::function<V1_2::Model(void)>,
+                    std::function<bool(int)>, const std::vector<MixedTypedExampleType>&);
+}  // namespace generated_tests
+
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+using ::android::nn::allocateSharedMemory;
+
+// Mixed-typed examples
+typedef generated_tests::MixedTypedExampleType MixedTypedExample;
+
+// in frameworks/ml/nn/runtime/tests/generated/
+#include "all_generated_V1_0_vts_tests.cpp"
+#include "all_generated_V1_1_vts_tests.cpp"
+#include "all_generated_V1_2_vts_tests.cpp"
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/Models.h b/neuralnetworks/1.2/vts/functional/Models.h
new file mode 100644
index 0000000..f3769bc
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/Models.h
@@ -0,0 +1,378 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef VTS_HAL_NEURALNETWORKS_V1_2_VTS_FUNCTIONAL_MODELS_H
+#define VTS_HAL_NEURALNETWORKS_V1_2_VTS_FUNCTIONAL_MODELS_H
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "TestHarness.h"
+
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <android/hardware/neuralnetworks/1.1/types.h>
+#include <android/hardware/neuralnetworks/1.2/types.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+using MixedTypedExample = test_helper::MixedTypedExampleType;
+
+#define FOR_EACH_TEST_MODEL(FN)                                  \
+    FN(add)                                                      \
+    FN(add_broadcast_quant8)                                     \
+    FN(add_quant8)                                               \
+    FN(add_relaxed)                                              \
+    FN(avg_pool_float_1)                                         \
+    FN(avg_pool_float_1_relaxed)                                 \
+    FN(avg_pool_float_2)                                         \
+    FN(avg_pool_float_2_relaxed)                                 \
+    FN(avg_pool_float_3)                                         \
+    FN(avg_pool_float_3_relaxed)                                 \
+    FN(avg_pool_float_4)                                         \
+    FN(avg_pool_float_4_relaxed)                                 \
+    FN(avg_pool_float_5)                                         \
+    FN(avg_pool_float_5_relaxed)                                 \
+    FN(avg_pool_quant8_1)                                        \
+    FN(avg_pool_quant8_2)                                        \
+    FN(avg_pool_quant8_3)                                        \
+    FN(avg_pool_quant8_4)                                        \
+    FN(avg_pool_quant8_5)                                        \
+    FN(batch_to_space)                                           \
+    FN(batch_to_space_float_1)                                   \
+    FN(batch_to_space_float_1_relaxed)                           \
+    FN(batch_to_space_quant8_1)                                  \
+    FN(batch_to_space_relaxed)                                   \
+    FN(concat_float_1)                                           \
+    FN(concat_float_1_relaxed)                                   \
+    FN(concat_float_2)                                           \
+    FN(concat_float_2_relaxed)                                   \
+    FN(concat_float_3)                                           \
+    FN(concat_float_3_relaxed)                                   \
+    FN(concat_quant8_1)                                          \
+    FN(concat_quant8_2)                                          \
+    FN(concat_quant8_3)                                          \
+    FN(conv_1_h3_w2_SAME)                                        \
+    FN(conv_1_h3_w2_SAME_relaxed)                                \
+    FN(conv_1_h3_w2_VALID)                                       \
+    FN(conv_1_h3_w2_VALID_relaxed)                               \
+    FN(conv_3_h3_w2_SAME)                                        \
+    FN(conv_3_h3_w2_SAME_relaxed)                                \
+    FN(conv_3_h3_w2_VALID)                                       \
+    FN(conv_3_h3_w2_VALID_relaxed)                               \
+    FN(conv_float)                                               \
+    FN(conv_float_2)                                             \
+    FN(conv_float_2_relaxed)                                     \
+    FN(conv_float_channels)                                      \
+    FN(conv_float_channels_relaxed)                              \
+    FN(conv_float_channels_weights_as_inputs)                    \
+    FN(conv_float_channels_weights_as_inputs_relaxed)            \
+    FN(conv_float_large)                                         \
+    FN(conv_float_large_relaxed)                                 \
+    FN(conv_float_large_weights_as_inputs)                       \
+    FN(conv_float_large_weights_as_inputs_relaxed)               \
+    FN(conv_float_relaxed)                                       \
+    FN(conv_float_weights_as_inputs)                             \
+    FN(conv_float_weights_as_inputs_relaxed)                     \
+    FN(conv_quant8)                                              \
+    FN(conv_quant8_2)                                            \
+    FN(conv_quant8_channels)                                     \
+    FN(conv_quant8_channels_weights_as_inputs)                   \
+    FN(conv_quant8_large)                                        \
+    FN(conv_quant8_large_weights_as_inputs)                      \
+    FN(conv_quant8_overflow)                                     \
+    FN(conv_quant8_overflow_weights_as_inputs)                   \
+    FN(conv_quant8_weights_as_inputs)                            \
+    FN(depth_to_space_float_1)                                   \
+    FN(depth_to_space_float_1_relaxed)                           \
+    FN(depth_to_space_float_2)                                   \
+    FN(depth_to_space_float_2_relaxed)                           \
+    FN(depth_to_space_float_3)                                   \
+    FN(depth_to_space_float_3_relaxed)                           \
+    FN(depth_to_space_quant8_1)                                  \
+    FN(depth_to_space_quant8_2)                                  \
+    FN(depthwise_conv)                                           \
+    FN(depthwise_conv2d_float)                                   \
+    FN(depthwise_conv2d_float_2)                                 \
+    FN(depthwise_conv2d_float_2_relaxed)                         \
+    FN(depthwise_conv2d_float_large)                             \
+    FN(depthwise_conv2d_float_large_2)                           \
+    FN(depthwise_conv2d_float_large_2_relaxed)                   \
+    FN(depthwise_conv2d_float_large_2_weights_as_inputs)         \
+    FN(depthwise_conv2d_float_large_2_weights_as_inputs_relaxed) \
+    FN(depthwise_conv2d_float_large_relaxed)                     \
+    FN(depthwise_conv2d_float_large_weights_as_inputs)           \
+    FN(depthwise_conv2d_float_large_weights_as_inputs_relaxed)   \
+    FN(depthwise_conv2d_float_relaxed)                           \
+    FN(depthwise_conv2d_float_weights_as_inputs)                 \
+    FN(depthwise_conv2d_float_weights_as_inputs_relaxed)         \
+    FN(depthwise_conv2d_quant8)                                  \
+    FN(depthwise_conv2d_quant8_2)                                \
+    FN(depthwise_conv2d_quant8_large)                            \
+    FN(depthwise_conv2d_quant8_large_weights_as_inputs)          \
+    FN(depthwise_conv2d_quant8_weights_as_inputs)                \
+    FN(depthwise_conv_relaxed)                                   \
+    FN(dequantize)                                               \
+    FN(dequantize_relaxed)                                       \
+    FN(div)                                                      \
+    FN(div_broadcast_float)                                      \
+    FN(div_broadcast_float_relaxed)                              \
+    FN(div_relaxed)                                              \
+    FN(embedding_lookup)                                         \
+    FN(embedding_lookup_relaxed)                                 \
+    FN(floor)                                                    \
+    FN(floor_relaxed)                                            \
+    FN(fully_connected_float)                                    \
+    FN(fully_connected_float_2)                                  \
+    FN(fully_connected_float_2_relaxed)                          \
+    FN(fully_connected_float_4d_simple)                          \
+    FN(fully_connected_float_4d_simple_relaxed)                  \
+    FN(fully_connected_float_large)                              \
+    FN(fully_connected_float_large_relaxed)                      \
+    FN(fully_connected_float_large_weights_as_inputs)            \
+    FN(fully_connected_float_large_weights_as_inputs_relaxed)    \
+    FN(fully_connected_float_relaxed)                            \
+    FN(fully_connected_float_weights_as_inputs)                  \
+    FN(fully_connected_float_weights_as_inputs_relaxed)          \
+    FN(fully_connected_quant8)                                   \
+    FN(fully_connected_quant8_2)                                 \
+    FN(fully_connected_quant8_large)                             \
+    FN(fully_connected_quant8_large_weights_as_inputs)           \
+    FN(fully_connected_quant8_weights_as_inputs)                 \
+    FN(hashtable_lookup_float)                                   \
+    FN(hashtable_lookup_float_relaxed)                           \
+    FN(hashtable_lookup_quant8)                                  \
+    FN(l2_normalization)                                         \
+    FN(l2_normalization_2)                                       \
+    FN(l2_normalization_2_relaxed)                               \
+    FN(l2_normalization_large)                                   \
+    FN(l2_normalization_large_relaxed)                           \
+    FN(l2_normalization_relaxed)                                 \
+    FN(l2_pool_float)                                            \
+    FN(l2_pool_float_2)                                          \
+    FN(l2_pool_float_2_relaxed)                                  \
+    FN(l2_pool_float_large)                                      \
+    FN(l2_pool_float_large_relaxed)                              \
+    FN(l2_pool_float_relaxed)                                    \
+    FN(local_response_norm_float_1)                              \
+    FN(local_response_norm_float_1_relaxed)                      \
+    FN(local_response_norm_float_2)                              \
+    FN(local_response_norm_float_2_relaxed)                      \
+    FN(local_response_norm_float_3)                              \
+    FN(local_response_norm_float_3_relaxed)                      \
+    FN(local_response_norm_float_4)                              \
+    FN(local_response_norm_float_4_relaxed)                      \
+    FN(logistic_float_1)                                         \
+    FN(logistic_float_1_relaxed)                                 \
+    FN(logistic_float_2)                                         \
+    FN(logistic_float_2_relaxed)                                 \
+    FN(logistic_quant8_1)                                        \
+    FN(logistic_quant8_2)                                        \
+    FN(lsh_projection)                                           \
+    FN(lsh_projection_2)                                         \
+    FN(lsh_projection_2_relaxed)                                 \
+    FN(lsh_projection_relaxed)                                   \
+    FN(lsh_projection_weights_as_inputs)                         \
+    FN(lsh_projection_weights_as_inputs_relaxed)                 \
+    FN(lstm)                                                     \
+    FN(lstm2)                                                    \
+    FN(lstm2_relaxed)                                            \
+    FN(lstm2_state)                                              \
+    FN(lstm2_state2)                                             \
+    FN(lstm2_state2_relaxed)                                     \
+    FN(lstm2_state_relaxed)                                      \
+    FN(lstm3)                                                    \
+    FN(lstm3_relaxed)                                            \
+    FN(lstm3_state)                                              \
+    FN(lstm3_state2)                                             \
+    FN(lstm3_state2_relaxed)                                     \
+    FN(lstm3_state3)                                             \
+    FN(lstm3_state3_relaxed)                                     \
+    FN(lstm3_state_relaxed)                                      \
+    FN(lstm_relaxed)                                             \
+    FN(lstm_state)                                               \
+    FN(lstm_state2)                                              \
+    FN(lstm_state2_relaxed)                                      \
+    FN(lstm_state_relaxed)                                       \
+    FN(max_pool_float_1)                                         \
+    FN(max_pool_float_1_relaxed)                                 \
+    FN(max_pool_float_2)                                         \
+    FN(max_pool_float_2_relaxed)                                 \
+    FN(max_pool_float_3)                                         \
+    FN(max_pool_float_3_relaxed)                                 \
+    FN(max_pool_float_4)                                         \
+    FN(max_pool_float_4_relaxed)                                 \
+    FN(max_pool_quant8_1)                                        \
+    FN(max_pool_quant8_2)                                        \
+    FN(max_pool_quant8_3)                                        \
+    FN(max_pool_quant8_4)                                        \
+    FN(mean)                                                     \
+    FN(mean_float_1)                                             \
+    FN(mean_float_1_relaxed)                                     \
+    FN(mean_float_2)                                             \
+    FN(mean_float_2_relaxed)                                     \
+    FN(mean_quant8_1)                                            \
+    FN(mean_quant8_2)                                            \
+    FN(mean_relaxed)                                             \
+    FN(mobilenet_224_gender_basic_fixed)                         \
+    FN(mobilenet_224_gender_basic_fixed_relaxed)                 \
+    FN(mobilenet_quantized)                                      \
+    FN(mul)                                                      \
+    FN(mul_broadcast_quant8)                                     \
+    FN(mul_quant8)                                               \
+    FN(mul_relaxed)                                              \
+    FN(mul_relu)                                                 \
+    FN(mul_relu_relaxed)                                         \
+    FN(pad)                                                      \
+    FN(pad_float_1)                                              \
+    FN(pad_float_1_relaxed)                                      \
+    FN(pad_relaxed)                                              \
+    FN(relu1_float_1)                                            \
+    FN(relu1_float_1_relaxed)                                    \
+    FN(relu1_float_2)                                            \
+    FN(relu1_float_2_relaxed)                                    \
+    FN(relu1_quant8_1)                                           \
+    FN(relu1_quant8_2)                                           \
+    FN(relu6_float_1)                                            \
+    FN(relu6_float_1_relaxed)                                    \
+    FN(relu6_float_2)                                            \
+    FN(relu6_float_2_relaxed)                                    \
+    FN(relu6_quant8_1)                                           \
+    FN(relu6_quant8_2)                                           \
+    FN(relu_float_1)                                             \
+    FN(relu_float_1_relaxed)                                     \
+    FN(relu_float_2)                                             \
+    FN(relu_float_2_relaxed)                                     \
+    FN(relu_quant8_1)                                            \
+    FN(relu_quant8_2)                                            \
+    FN(reshape)                                                  \
+    FN(reshape_quant8)                                           \
+    FN(reshape_quant8_weights_as_inputs)                         \
+    FN(reshape_relaxed)                                          \
+    FN(reshape_weights_as_inputs)                                \
+    FN(reshape_weights_as_inputs_relaxed)                        \
+    FN(resize_bilinear)                                          \
+    FN(resize_bilinear_2)                                        \
+    FN(resize_bilinear_2_relaxed)                                \
+    FN(resize_bilinear_relaxed)                                  \
+    FN(rnn)                                                      \
+    FN(rnn_relaxed)                                              \
+    FN(rnn_state)                                                \
+    FN(rnn_state_relaxed)                                        \
+    FN(softmax_float_1)                                          \
+    FN(softmax_float_1_relaxed)                                  \
+    FN(softmax_float_2)                                          \
+    FN(softmax_float_2_relaxed)                                  \
+    FN(softmax_quant8_1)                                         \
+    FN(softmax_quant8_2)                                         \
+    FN(space_to_batch)                                           \
+    FN(space_to_batch_float_1)                                   \
+    FN(space_to_batch_float_1_relaxed)                           \
+    FN(space_to_batch_float_2)                                   \
+    FN(space_to_batch_float_2_relaxed)                           \
+    FN(space_to_batch_float_3)                                   \
+    FN(space_to_batch_float_3_relaxed)                           \
+    FN(space_to_batch_quant8_1)                                  \
+    FN(space_to_batch_quant8_2)                                  \
+    FN(space_to_batch_quant8_3)                                  \
+    FN(space_to_batch_relaxed)                                   \
+    FN(space_to_depth_float_1)                                   \
+    FN(space_to_depth_float_1_relaxed)                           \
+    FN(space_to_depth_float_2)                                   \
+    FN(space_to_depth_float_2_relaxed)                           \
+    FN(space_to_depth_float_3)                                   \
+    FN(space_to_depth_float_3_relaxed)                           \
+    FN(space_to_depth_quant8_1)                                  \
+    FN(space_to_depth_quant8_2)                                  \
+    FN(squeeze)                                                  \
+    FN(squeeze_float_1)                                          \
+    FN(squeeze_float_1_relaxed)                                  \
+    FN(squeeze_quant8_1)                                         \
+    FN(squeeze_relaxed)                                          \
+    FN(strided_slice)                                            \
+    FN(strided_slice_float_1)                                    \
+    FN(strided_slice_float_10)                                   \
+    FN(strided_slice_float_10_relaxed)                           \
+    FN(strided_slice_float_11)                                   \
+    FN(strided_slice_float_11_relaxed)                           \
+    FN(strided_slice_float_1_relaxed)                            \
+    FN(strided_slice_float_2)                                    \
+    FN(strided_slice_float_2_relaxed)                            \
+    FN(strided_slice_float_3)                                    \
+    FN(strided_slice_float_3_relaxed)                            \
+    FN(strided_slice_float_4)                                    \
+    FN(strided_slice_float_4_relaxed)                            \
+    FN(strided_slice_float_5)                                    \
+    FN(strided_slice_float_5_relaxed)                            \
+    FN(strided_slice_float_6)                                    \
+    FN(strided_slice_float_6_relaxed)                            \
+    FN(strided_slice_float_7)                                    \
+    FN(strided_slice_float_7_relaxed)                            \
+    FN(strided_slice_float_8)                                    \
+    FN(strided_slice_float_8_relaxed)                            \
+    FN(strided_slice_float_9)                                    \
+    FN(strided_slice_float_9_relaxed)                            \
+    FN(strided_slice_qaunt8_10)                                  \
+    FN(strided_slice_qaunt8_11)                                  \
+    FN(strided_slice_quant8_1)                                   \
+    FN(strided_slice_quant8_2)                                   \
+    FN(strided_slice_quant8_3)                                   \
+    FN(strided_slice_quant8_4)                                   \
+    FN(strided_slice_quant8_5)                                   \
+    FN(strided_slice_quant8_6)                                   \
+    FN(strided_slice_quant8_7)                                   \
+    FN(strided_slice_quant8_8)                                   \
+    FN(strided_slice_quant8_9)                                   \
+    FN(strided_slice_relaxed)                                    \
+    FN(sub)                                                      \
+    FN(sub_broadcast_float)                                      \
+    FN(sub_broadcast_float_relaxed)                              \
+    FN(sub_relaxed)                                              \
+    FN(svdf)                                                     \
+    FN(svdf2)                                                    \
+    FN(svdf2_relaxed)                                            \
+    FN(svdf_relaxed)                                             \
+    FN(svdf_state)                                               \
+    FN(svdf_state_relaxed)                                       \
+    FN(tanh)                                                     \
+    FN(tanh_relaxed)                                             \
+    FN(transpose)                                                \
+    FN(transpose_float_1)                                        \
+    FN(transpose_float_1_relaxed)                                \
+    FN(transpose_quant8_1)                                       \
+    FN(transpose_relaxed)
+
+#define FORWARD_DECLARE_GENERATED_OBJECTS(function) \
+    namespace function {                            \
+    extern std::vector<MixedTypedExample> examples; \
+    Model createTestModel();                        \
+    }
+
+FOR_EACH_TEST_MODEL(FORWARD_DECLARE_GENERATED_OBJECTS)
+
+#undef FORWARD_DECLARE_GENERATED_OBJECTS
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
+
+#endif  // VTS_HAL_NEURALNETWORKS_V1_2_VTS_FUNCTIONAL_MODELS_H
diff --git a/neuralnetworks/1.2/vts/functional/ValidateModel.cpp b/neuralnetworks/1.2/vts/functional/ValidateModel.cpp
new file mode 100644
index 0000000..7ec6ff1
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/ValidateModel.cpp
@@ -0,0 +1,538 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+
+using V1_0::IPreparedModel;
+using V1_0::Operand;
+using V1_0::OperandLifeTime;
+using V1_0::OperandType;
+using V1_1::ExecutionPreference;
+
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
+                                           const Model& model) {
+    SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
+
+    Return<void> ret =
+        device->getSupportedOperations_1_2(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
+            EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
+        });
+    EXPECT_TRUE(ret.isOk());
+}
+
+static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
+                                 const Model& model, ExecutionPreference preference) {
+    SCOPED_TRACE(message + " [prepareModel_1_2]");
+
+    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+    ASSERT_NE(nullptr, preparedModelCallback.get());
+    Return<ErrorStatus> prepareLaunchStatus =
+        device->prepareModel_1_2(model, preference, preparedModelCallback);
+    ASSERT_TRUE(prepareLaunchStatus.isOk());
+    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+    preparedModelCallback->wait();
+    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
+    sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
+    ASSERT_EQ(nullptr, preparedModel.get());
+}
+
+static bool validExecutionPreference(ExecutionPreference preference) {
+    return preference == ExecutionPreference::LOW_POWER ||
+           preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
+           preference == ExecutionPreference::SUSTAINED_SPEED;
+}
+
+// Primary validation function. This function will take a valid model, apply a
+// mutation to it to invalidate the model, then pass it to interface calls that
+// use the model. Note that the model here is passed by value, and any mutation
+// to the model does not leave this function.
+static void validate(const sp<IDevice>& device, const std::string& message, Model model,
+                     const std::function<void(Model*)>& mutation,
+                     ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
+    mutation(&model);
+    if (validExecutionPreference(preference)) {
+        validateGetSupportedOperations(device, message, model);
+    }
+    validatePrepareModel(device, message, model, preference);
+}
+
+// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
+// so this is efficiently accomplished by moving the element to the end and
+// resizing the hidl_vec to one less.
+template <typename Type>
+static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
+    if (vec) {
+        std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
+        vec->resize(vec->size() - 1);
+    }
+}
+
+template <typename Type>
+static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
+    // assume vec is valid
+    const uint32_t index = vec->size();
+    vec->resize(index + 1);
+    (*vec)[index] = value;
+    return index;
+}
+
+static uint32_t addOperand(Model* model) {
+    return hidl_vec_push_back(&model->operands,
+                              {
+                                  .type = OperandType::INT32,
+                                  .dimensions = {},
+                                  .numberOfConsumers = 0,
+                                  .scale = 0.0f,
+                                  .zeroPoint = 0,
+                                  .lifetime = OperandLifeTime::MODEL_INPUT,
+                                  .location = {.poolIndex = 0, .offset = 0, .length = 0},
+                              });
+}
+
+static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
+    uint32_t index = addOperand(model);
+    model->operands[index].numberOfConsumers = 1;
+    model->operands[index].lifetime = lifetime;
+    return index;
+}
+
+///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
+
+static const int32_t invalidOperandTypes[] = {
+    static_cast<int32_t>(OperandType::FLOAT32) - 1,              // lower bound fundamental
+    static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1,  // upper bound fundamental
+    static_cast<int32_t>(OperandType::OEM) - 1,                  // lower bound OEM
+    static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1,      // upper bound OEM
+};
+
+static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        for (int32_t invalidOperandType : invalidOperandTypes) {
+            const std::string message = "mutateOperandTypeTest: operand " +
+                                        std::to_string(operand) + " set to value " +
+                                        std::to_string(invalidOperandType);
+            validate(device, message, model, [operand, invalidOperandType](Model* model) {
+                model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE OPERAND RANK /////////////////////////
+
+static uint32_t getInvalidRank(OperandType type) {
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+            return 1;
+        case OperandType::TENSOR_FLOAT32:
+        case OperandType::TENSOR_INT32:
+        case OperandType::TENSOR_QUANT8_ASYMM:
+            return 0;
+        default:
+            return 0;
+    }
+}
+
+static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
+        const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
+                                    " has rank of " + std::to_string(invalidRank);
+        validate(device, message, model, [operand, invalidRank](Model* model) {
+            model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
+        });
+    }
+}
+
+///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
+
+static float getInvalidScale(OperandType type) {
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+        case OperandType::TENSOR_FLOAT32:
+            return 1.0f;
+        case OperandType::TENSOR_INT32:
+            return -1.0f;
+        case OperandType::TENSOR_QUANT8_ASYMM:
+            return 0.0f;
+        default:
+            return 0.0f;
+    }
+}
+
+static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        const float invalidScale = getInvalidScale(model.operands[operand].type);
+        const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
+                                    " has scale of " + std::to_string(invalidScale);
+        validate(device, message, model, [operand, invalidScale](Model* model) {
+            model->operands[operand].scale = invalidScale;
+        });
+    }
+}
+
+///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
+
+static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+        case OperandType::TENSOR_FLOAT32:
+        case OperandType::TENSOR_INT32:
+            return {1};
+        case OperandType::TENSOR_QUANT8_ASYMM:
+            return {-1, 256};
+        default:
+            return {};
+    }
+}
+
+static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        const std::vector<int32_t> invalidZeroPoints =
+            getInvalidZeroPoints(model.operands[operand].type);
+        for (int32_t invalidZeroPoint : invalidZeroPoints) {
+            const std::string message = "mutateOperandZeroPointTest: operand " +
+                                        std::to_string(operand) + " has zero point of " +
+                                        std::to_string(invalidZeroPoint);
+            validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
+                model->operands[operand].zeroPoint = invalidZeroPoint;
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE EXTRA ??? /////////////////////////
+
+// TODO: Operand::lifetime
+// TODO: Operand::location
+
+///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
+
+static void mutateOperand(Operand* operand, OperandType type) {
+    Operand newOperand = *operand;
+    newOperand.type = type;
+    switch (type) {
+        case OperandType::FLOAT32:
+        case OperandType::INT32:
+        case OperandType::UINT32:
+            newOperand.dimensions = hidl_vec<uint32_t>();
+            newOperand.scale = 0.0f;
+            newOperand.zeroPoint = 0;
+            break;
+        case OperandType::TENSOR_FLOAT32:
+            newOperand.dimensions =
+                operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+            newOperand.scale = 0.0f;
+            newOperand.zeroPoint = 0;
+            break;
+        case OperandType::TENSOR_INT32:
+            newOperand.dimensions =
+                operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+            newOperand.zeroPoint = 0;
+            break;
+        case OperandType::TENSOR_QUANT8_ASYMM:
+            newOperand.dimensions =
+                operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
+            newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
+            break;
+        case OperandType::OEM:
+        case OperandType::TENSOR_OEM_BYTE:
+        default:
+            break;
+    }
+    *operand = newOperand;
+}
+
+static bool mutateOperationOperandTypeSkip(size_t operand, const Model& model) {
+    // LSH_PROJECTION's second argument is allowed to have any type. This is the
+    // only operation that currently has a type that can be anything independent
+    // from any other type. Changing the operand type to any other type will
+    // result in a valid model for LSH_PROJECTION. If this is the case, skip the
+    // test.
+    for (const Operation& operation : model.operations) {
+        if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
+            return true;
+        }
+    }
+    return false;
+}
+
+static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        if (mutateOperationOperandTypeSkip(operand, model)) {
+            continue;
+        }
+        for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
+            // Do not test OEM types
+            if (invalidOperandType == model.operands[operand].type ||
+                invalidOperandType == OperandType::OEM ||
+                invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
+                continue;
+            }
+            const std::string message = "mutateOperationOperandTypeTest: operand " +
+                                        std::to_string(operand) + " set to type " +
+                                        toString(invalidOperandType);
+            validate(device, message, model, [operand, invalidOperandType](Model* model) {
+                mutateOperand(&model->operands[operand], invalidOperandType);
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
+
+static const int32_t invalidOperationTypes[] = {
+    static_cast<int32_t>(OperationType::ADD) - 1,            // lower bound fundamental
+    static_cast<int32_t>(OperationType::TRANSPOSE) + 1,      // upper bound fundamental
+    static_cast<int32_t>(OperationType::OEM_OPERATION) - 1,  // lower bound OEM
+    static_cast<int32_t>(OperationType::OEM_OPERATION) + 1,  // upper bound OEM
+};
+
+static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        for (int32_t invalidOperationType : invalidOperationTypes) {
+            const std::string message = "mutateOperationTypeTest: operation " +
+                                        std::to_string(operation) + " set to value " +
+                                        std::to_string(invalidOperationType);
+            validate(device, message, model, [operation, invalidOperationType](Model* model) {
+                model->operations[operation].type =
+                    static_cast<OperationType>(invalidOperationType);
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const uint32_t invalidOperand = model.operands.size();
+        for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+            const std::string message = "mutateOperationInputOperandIndexTest: operation " +
+                                        std::to_string(operation) + " input " +
+                                        std::to_string(input);
+            validate(device, message, model, [operation, input, invalidOperand](Model* model) {
+                model->operations[operation].inputs[input] = invalidOperand;
+            });
+        }
+    }
+}
+
+///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
+
+static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const uint32_t invalidOperand = model.operands.size();
+        for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+            const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
+                                        std::to_string(operation) + " output " +
+                                        std::to_string(output);
+            validate(device, message, model, [operation, output, invalidOperand](Model* model) {
+                model->operations[operation].outputs[output] = invalidOperand;
+            });
+        }
+    }
+}
+
+///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
+
+static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
+    if (vec) {
+        // remove elements matching "value"
+        auto last = std::remove(vec->begin(), vec->end(), value);
+        vec->resize(std::distance(vec->begin(), last));
+
+        // decrement elements exceeding "value"
+        std::transform(vec->begin(), vec->end(), vec->begin(),
+                       [value](uint32_t v) { return v > value ? v-- : v; });
+    }
+}
+
+static void removeOperand(Model* model, uint32_t index) {
+    hidl_vec_removeAt(&model->operands, index);
+    for (Operation& operation : model->operations) {
+        removeValueAndDecrementGreaterValues(&operation.inputs, index);
+        removeValueAndDecrementGreaterValues(&operation.outputs, index);
+    }
+    removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
+    removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
+}
+
+static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operand = 0; operand < model.operands.size(); ++operand) {
+        const std::string message = "removeOperandTest: operand " + std::to_string(operand);
+        validate(device, message, model,
+                 [operand](Model* model) { removeOperand(model, operand); });
+    }
+}
+
+///////////////////////// REMOVE OPERATION /////////////////////////
+
+static void removeOperation(Model* model, uint32_t index) {
+    for (uint32_t operand : model->operations[index].inputs) {
+        model->operands[operand].numberOfConsumers--;
+    }
+    hidl_vec_removeAt(&model->operations, index);
+}
+
+static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const std::string message = "removeOperationTest: operation " + std::to_string(operation);
+        validate(device, message, model,
+                 [operation](Model* model) { removeOperation(model, operation); });
+    }
+}
+
+///////////////////////// REMOVE OPERATION INPUT /////////////////////////
+
+static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
+            const Operation& op = model.operations[operation];
+            // CONCATENATION has at least 2 inputs, with the last element being
+            // INT32. Skip this test if removing one of CONCATENATION's
+            // inputs still produces a valid model.
+            if (op.type == OperationType::CONCATENATION && op.inputs.size() > 2 &&
+                input != op.inputs.size() - 1) {
+                continue;
+            }
+            const std::string message = "removeOperationInputTest: operation " +
+                                        std::to_string(operation) + ", input " +
+                                        std::to_string(input);
+            validate(device, message, model, [operation, input](Model* model) {
+                uint32_t operand = model->operations[operation].inputs[input];
+                model->operands[operand].numberOfConsumers--;
+                hidl_vec_removeAt(&model->operations[operation].inputs, input);
+            });
+        }
+    }
+}
+
+///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
+
+static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
+            const std::string message = "removeOperationOutputTest: operation " +
+                                        std::to_string(operation) + ", output " +
+                                        std::to_string(output);
+            validate(device, message, model, [operation, output](Model* model) {
+                hidl_vec_removeAt(&model->operations[operation].outputs, output);
+            });
+        }
+    }
+}
+
+///////////////////////// MODEL VALIDATION /////////////////////////
+
+// TODO: remove model input
+// TODO: remove model output
+// TODO: add unused operation
+
+///////////////////////// ADD OPERATION INPUT /////////////////////////
+
+static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
+        validate(device, message, model, [operation](Model* model) {
+            uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
+            hidl_vec_push_back(&model->operations[operation].inputs, index);
+            hidl_vec_push_back(&model->inputIndexes, index);
+        });
+    }
+}
+
+///////////////////////// ADD OPERATION OUTPUT /////////////////////////
+
+static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
+    for (size_t operation = 0; operation < model.operations.size(); ++operation) {
+        const std::string message =
+            "addOperationOutputTest: operation " + std::to_string(operation);
+        validate(device, message, model, [operation](Model* model) {
+            uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
+            hidl_vec_push_back(&model->operations[operation].outputs, index);
+            hidl_vec_push_back(&model->outputIndexes, index);
+        });
+    }
+}
+
+///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
+
+static const int32_t invalidExecutionPreferences[] = {
+    static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1,        // lower bound
+    static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1,  // upper bound
+};
+
+static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
+    for (int32_t preference : invalidExecutionPreferences) {
+        const std::string message =
+            "mutateExecutionPreferenceTest: preference " + std::to_string(preference);
+        validate(device, message, model, [](Model*) {},
+                 static_cast<ExecutionPreference>(preference));
+    }
+}
+
+////////////////////////// ENTRY POINT //////////////////////////////
+
+void ValidationTest::validateModel(const Model& model) {
+    mutateOperandTypeTest(device, model);
+    mutateOperandRankTest(device, model);
+    mutateOperandScaleTest(device, model);
+    mutateOperandZeroPointTest(device, model);
+    mutateOperationOperandTypeTest(device, model);
+    mutateOperationTypeTest(device, model);
+    mutateOperationInputOperandIndexTest(device, model);
+    mutateOperationOutputOperandIndexTest(device, model);
+    removeOperandTest(device, model);
+    removeOperationTest(device, model);
+    removeOperationInputTest(device, model);
+    removeOperationOutputTest(device, model);
+    addOperationInputTest(device, model);
+    addOperationOutputTest(device, model);
+    mutateExecutionPreferenceTest(device, model);
+}
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp b/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp
new file mode 100644
index 0000000..f4476fa
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp
@@ -0,0 +1,261 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+#include "Callbacks.h"
+#include "TestHarness.h"
+#include "Utils.h"
+
+#include <android-base/logging.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+#include <hidlmemory/mapping.h>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
+using ::android::hidl::memory::V1_0::IMemory;
+using test_helper::for_all;
+using test_helper::MixedTyped;
+using test_helper::MixedTypedExampleType;
+
+///////////////////////// UTILITY FUNCTIONS /////////////////////////
+
+static void createPreparedModel(const sp<IDevice>& device, const Model& model,
+                                sp<IPreparedModel>* preparedModel) {
+    ASSERT_NE(nullptr, preparedModel);
+
+    // see if service can handle model
+    bool fullySupportsModel = false;
+    Return<void> supportedOpsLaunchStatus = device->getSupportedOperations_1_2(
+        model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
+            ASSERT_EQ(ErrorStatus::NONE, status);
+            ASSERT_NE(0ul, supported.size());
+            fullySupportsModel =
+                std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
+        });
+    ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
+
+    // launch prepare model
+    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+    ASSERT_NE(nullptr, preparedModelCallback.get());
+    Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
+        model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
+    ASSERT_TRUE(prepareLaunchStatus.isOk());
+    ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+    // retrieve prepared model
+    preparedModelCallback->wait();
+    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+    *preparedModel = preparedModelCallback->getPreparedModel();
+
+    // The getSupportedOperations_1_2 call returns a list of operations that are
+    // guaranteed not to fail if prepareModel_1_2 is called, and
+    // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
+    // If a driver has any doubt that it can prepare an operation, it must
+    // return false. So here, if a driver isn't sure if it can support an
+    // operation, but reports that it successfully prepared the model, the test
+    // can continue.
+    if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
+        ASSERT_EQ(nullptr, preparedModel->get());
+        LOG(INFO) << "NN VTS: Unable to test Request validation because vendor service cannot "
+                     "prepare model that it does not support.";
+        std::cout << "[          ]   Unable to test Request validation because vendor service "
+                     "cannot prepare model that it does not support."
+                  << std::endl;
+        return;
+    }
+    ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
+    ASSERT_NE(nullptr, preparedModel->get());
+}
+
+// Primary validation function. This function will take a valid request, apply a
+// mutation to it to invalidate the request, then pass it to interface calls
+// that use the request. Note that the request here is passed by value, and any
+// mutation to the request does not leave this function.
+static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
+                     Request request, const std::function<void(Request*)>& mutation) {
+    mutation(&request);
+    SCOPED_TRACE(message + " [execute]");
+
+    sp<ExecutionCallback> executionCallback = new ExecutionCallback();
+    ASSERT_NE(nullptr, executionCallback.get());
+    Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
+    ASSERT_TRUE(executeLaunchStatus.isOk());
+    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
+
+    executionCallback->wait();
+    ErrorStatus executionReturnStatus = executionCallback->getStatus();
+    ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
+}
+
+// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
+// so this is efficiently accomplished by moving the element to the end and
+// resizing the hidl_vec to one less.
+template <typename Type>
+static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
+    if (vec) {
+        std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
+        vec->resize(vec->size() - 1);
+    }
+}
+
+template <typename Type>
+static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
+    // assume vec is valid
+    const uint32_t index = vec->size();
+    vec->resize(index + 1);
+    (*vec)[index] = value;
+    return index;
+}
+
+///////////////////////// REMOVE INPUT ////////////////////////////////////
+
+static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+    for (size_t input = 0; input < request.inputs.size(); ++input) {
+        const std::string message = "removeInput: removed input " + std::to_string(input);
+        validate(preparedModel, message, request,
+                 [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
+    }
+}
+
+///////////////////////// REMOVE OUTPUT ////////////////////////////////////
+
+static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
+    for (size_t output = 0; output < request.outputs.size(); ++output) {
+        const std::string message = "removeOutput: removed Output " + std::to_string(output);
+        validate(preparedModel, message, request,
+                 [output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
+    }
+}
+
+///////////////////////////// ENTRY POINT //////////////////////////////////
+
+std::vector<Request> createRequests(const std::vector<MixedTypedExampleType>& examples) {
+    const uint32_t INPUT = 0;
+    const uint32_t OUTPUT = 1;
+
+    std::vector<Request> requests;
+
+    for (auto& example : examples) {
+        const MixedTyped& inputs = example.first;
+        const MixedTyped& outputs = example.second;
+
+        std::vector<RequestArgument> inputs_info, outputs_info;
+        uint32_t inputSize = 0, outputSize = 0;
+
+        // This function only partially specifies the metadata (vector of RequestArguments).
+        // The contents are copied over below.
+        for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
+            if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
+            RequestArgument arg = {
+                .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
+                .dimensions = {},
+            };
+            RequestArgument arg_empty = {
+                .hasNoValue = true,
+            };
+            inputs_info[index] = s ? arg : arg_empty;
+            inputSize += s;
+        });
+        // Compute offset for inputs 1 and so on
+        {
+            size_t offset = 0;
+            for (auto& i : inputs_info) {
+                if (!i.hasNoValue) i.location.offset = offset;
+                offset += i.location.length;
+            }
+        }
+
+        // Go through all outputs, initialize RequestArgument descriptors
+        for_all(outputs, [&outputs_info, &outputSize](int index, auto, auto s) {
+            if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
+            RequestArgument arg = {
+                .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
+                .dimensions = {},
+            };
+            outputs_info[index] = arg;
+            outputSize += s;
+        });
+        // Compute offset for outputs 1 and so on
+        {
+            size_t offset = 0;
+            for (auto& i : outputs_info) {
+                i.location.offset = offset;
+                offset += i.location.length;
+            }
+        }
+        std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
+                                          nn::allocateSharedMemory(outputSize)};
+        if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
+            return {};
+        }
+
+        // map pool
+        sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
+        if (inputMemory == nullptr) {
+            return {};
+        }
+        char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
+        if (inputPtr == nullptr) {
+            return {};
+        }
+
+        // initialize pool
+        inputMemory->update();
+        for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
+            char* begin = (char*)p;
+            char* end = begin + s;
+            // TODO: handle more than one input
+            std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
+        });
+        inputMemory->commit();
+
+        requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
+    }
+
+    return requests;
+}
+
+void ValidationTest::validateRequests(const Model& model, const std::vector<Request>& requests) {
+    // create IPreparedModel
+    sp<IPreparedModel> preparedModel;
+    ASSERT_NO_FATAL_FAILURE(createPreparedModel(device, model, &preparedModel));
+    if (preparedModel == nullptr) {
+        return;
+    }
+
+    // validate each request
+    for (const Request& request : requests) {
+        removeInputTest(preparedModel, request);
+        removeOutputTest(preparedModel, request);
+    }
+}
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/ValidationTests.cpp b/neuralnetworks/1.2/vts/functional/ValidationTests.cpp
new file mode 100644
index 0000000..3bdc5cd
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/ValidationTests.cpp
@@ -0,0 +1,50 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "Models.h"
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+// forward declarations
+std::vector<Request> createRequests(const std::vector<MixedTypedExample>& examples);
+
+// generate validation tests
+#define VTS_CURRENT_TEST_CASE(TestName)                                           \
+    TEST_F(ValidationTest, TestName) {                                            \
+        const Model model = TestName::createTestModel();                          \
+        const std::vector<Request> requests = createRequests(TestName::examples); \
+        validateModel(model);                                                     \
+        validateRequests(model, requests);                                        \
+    }
+
+FOR_EACH_TEST_MODEL(VTS_CURRENT_TEST_CASE)
+
+#undef VTS_CURRENT_TEST_CASE
+
+}  // namespace functional
+}  // namespace vts
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
diff --git a/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.cpp b/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.cpp
new file mode 100644
index 0000000..90a910c
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.cpp
@@ -0,0 +1,86 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "neuralnetworks_hidl_hal_test"
+
+#include "VtsHalNeuralnetworks.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+namespace vts {
+namespace functional {
+
+// A class for test environment setup
+NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
+
+NeuralnetworksHidlEnvironment::~NeuralnetworksHidlEnvironment() {}
+
+NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
+    // This has to return a "new" object because it is freed inside
+    // ::testing::AddGlobalTestEnvironment when the gtest is being torn down
+    static NeuralnetworksHidlEnvironment* instance = new NeuralnetworksHidlEnvironment();
+    return instance;
+}
+
+void NeuralnetworksHidlEnvironment::registerTestServices() {
+    registerTestService<IDevice>();
+}
+
+// The main test class for NEURALNETWORK HIDL HAL.
+NeuralnetworksHidlTest::NeuralnetworksHidlTest() {}
+
+NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
+
+void NeuralnetworksHidlTest::SetUp() {
+    ::testing::VtsHalHidlTargetTestBase::SetUp();
+    device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
+        NeuralnetworksHidlEnvironment::getInstance());
+    ASSERT_NE(nullptr, device.get());
+}
+
+void NeuralnetworksHidlTest::TearDown() {
+    device = nullptr;
+    ::testing::VtsHalHidlTargetTestBase::TearDown();
+}
+
+}  // namespace functional
+}  // namespace vts
+
+::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
+    return os << toString(errorStatus);
+}
+
+::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
+    return os << toString(deviceStatus);
+}
+
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
+
+using android::hardware::neuralnetworks::V1_2::vts::functional::NeuralnetworksHidlEnvironment;
+
+int main(int argc, char** argv) {
+    ::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
+    ::testing::InitGoogleTest(&argc, argv);
+    NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
+
+    int status = RUN_ALL_TESTS();
+    return status;
+}
diff --git a/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.h b/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.h
new file mode 100644
index 0000000..a87d788
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/VtsHalNeuralnetworks.h
@@ -0,0 +1,92 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef VTS_HAL_NEURALNETWORKS_V1_2_H
+#define VTS_HAL_NEURALNETWORKS_V1_2_H
+
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <android/hardware/neuralnetworks/1.1/types.h>
+#include <android/hardware/neuralnetworks/1.2/IDevice.h>
+#include <android/hardware/neuralnetworks/1.2/types.h>
+
+#include <VtsHalHidlTargetTestBase.h>
+#include <VtsHalHidlTargetTestEnvBase.h>
+
+#include <android-base/macros.h>
+#include <gtest/gtest.h>
+#include <iostream>
+#include <vector>
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace V1_2 {
+
+using V1_0::DeviceStatus;
+using V1_0::ErrorStatus;
+using V1_0::Request;
+
+namespace vts {
+namespace functional {
+
+// A class for test environment setup
+class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
+    DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlEnvironment);
+    NeuralnetworksHidlEnvironment();
+    ~NeuralnetworksHidlEnvironment() override;
+
+   public:
+    static NeuralnetworksHidlEnvironment* getInstance();
+    void registerTestServices() override;
+};
+
+// The main test class for NEURALNETWORKS HIDL HAL.
+class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
+    DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlTest);
+
+   public:
+    NeuralnetworksHidlTest();
+    ~NeuralnetworksHidlTest() override;
+    void SetUp() override;
+    void TearDown() override;
+
+   protected:
+    sp<IDevice> device;
+};
+
+// Tag for the validation tests
+class ValidationTest : public NeuralnetworksHidlTest {
+   protected:
+    void validateModel(const Model& model);
+    void validateRequests(const Model& model, const std::vector<Request>& request);
+};
+
+// Tag for the generated tests
+class GeneratedTest : public NeuralnetworksHidlTest {};
+
+}  // namespace functional
+}  // namespace vts
+
+// pretty-print values for error messages
+::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
+::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus);
+
+}  // namespace V1_2
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android
+
+#endif  // VTS_HAL_NEURALNETWORKS_V1_2_H