Nick Deakin | f6bca5a | 2022-11-04 10:43:43 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2022 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include <cmath> |
| 18 | |
| 19 | #include <jpegrecoverymap/recoverymapmath.h> |
| 20 | |
| 21 | namespace android::recoverymap { |
| 22 | |
| 23 | static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f; |
| 24 | static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f; |
| 25 | |
| 26 | Color bt2100RgbToYuv(Color e) { |
| 27 | float yp = kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b; |
| 28 | return {{{yp, (e.b - yp) / kBt2100Cb, (e.r - yp) / kBt2100Cr }}}; |
| 29 | } |
| 30 | |
| 31 | static const float kSrgbRCr = 1.402f, kSrgbGCb = 0.34414f, kSrgbGCr = 0.71414f, kSrgbBCb = 1.772f; |
| 32 | |
| 33 | Color srgbYuvToRgb(Color e) { |
| 34 | return {{{ e.y + kSrgbRCr * e.v, e.y - kSrgbGCb * e.u - kSrgbGCr * e.v, e.y + kSrgbBCb * e.u }}}; |
| 35 | } |
| 36 | |
| 37 | float srgbInvOetf(float e) { |
| 38 | if (e <= 0.04045f) { |
| 39 | return e / 12.92f; |
| 40 | } else { |
| 41 | return pow((e + 0.055f) / 1.055f, 2.4); |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | Color srgbInvOetf(Color e) { |
| 46 | return {{{ srgbInvOetf(e.r), srgbInvOetf(e.g), srgbInvOetf(e.b) }}}; |
| 47 | } |
| 48 | |
| 49 | static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073; |
| 50 | |
| 51 | float hlgInvOetf(float e) { |
| 52 | if (e <= 0.5f) { |
| 53 | return pow(e, 2.0f) / 3.0f; |
| 54 | } else { |
| 55 | return (exp((e - kHlgC) / kHlgA) + kHlgB) / 12.0f; |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | float hlgOetf(float e) { |
| 60 | if (e <= 1.0f/12.0f) { |
| 61 | return sqrt(3.0f * e); |
| 62 | } else { |
| 63 | return kHlgA * log(12.0f * e - kHlgB) + kHlgC; |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | Color hlgOetf(Color e) { |
| 68 | return {{{ hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b) }}}; |
| 69 | } |
| 70 | |
| 71 | uint8_t EncodeRecovery(float y_sdr, float y_hdr, float hdr_ratio) { |
| 72 | float gain = 1.0f; |
| 73 | if (y_sdr > 0.0f) { |
| 74 | gain = y_hdr / y_sdr; |
| 75 | } |
| 76 | |
| 77 | if (gain < -hdr_ratio) gain = -hdr_ratio; |
| 78 | if (gain > hdr_ratio) gain = hdr_ratio; |
| 79 | |
| 80 | return static_cast<uint8_t>(log2(gain) / log2(hdr_ratio) * 127.5f + 127.5f); |
| 81 | } |
| 82 | |
| 83 | float applyRecovery(float y_sdr, float recovery, float hdr_ratio) { |
| 84 | return exp2(log2(y_sdr) + recovery * log2(hdr_ratio)); |
| 85 | } |
| 86 | |
| 87 | // TODO: do we need something more clever for filtering either the map or images |
| 88 | // to generate the map? |
| 89 | |
| 90 | static float mapUintToFloat(uint8_t map_uint) { |
| 91 | return (static_cast<float>(map_uint) - 127.5f) / 127.5f; |
| 92 | } |
| 93 | |
| 94 | float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y) { |
| 95 | float x_map = static_cast<float>(x) / static_cast<float>(map_scale_factor); |
| 96 | float y_map = static_cast<float>(y) / static_cast<float>(map_scale_factor); |
| 97 | |
| 98 | size_t x_lower = static_cast<size_t>(floor(x_map)); |
| 99 | size_t x_upper = x_lower + 1; |
| 100 | size_t y_lower = static_cast<size_t>(floor(y_map)); |
| 101 | size_t y_upper = y_lower + 1; |
| 102 | |
| 103 | float x_influence = x_map - static_cast<float>(x_lower); |
| 104 | float y_influence = y_map - static_cast<float>(y_lower); |
| 105 | |
| 106 | float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]); |
| 107 | float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]); |
| 108 | float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]); |
| 109 | float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]); |
| 110 | |
| 111 | return e1 * (x_influence + y_influence) / 2.0f |
| 112 | + e2 * (x_influence + 1.0f - y_influence) / 2.0f |
| 113 | + e3 * (1.0f - x_influence + y_influence) / 2.0f |
| 114 | + e4 * (1.0f - x_influence + 1.0f - y_influence) / 2.0f; |
| 115 | } |
| 116 | |
| 117 | Color getYuv420Pixel(jr_uncompressed_ptr image, size_t x, size_t y) { |
| 118 | size_t pixel_count = image->width * image->height; |
| 119 | |
| 120 | size_t pixel_y_idx = x + y * image->width; |
| 121 | size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2); |
| 122 | |
| 123 | uint8_t y_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y_idx]; |
| 124 | uint8_t u_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count + pixel_uv_idx]; |
| 125 | uint8_t v_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count * 5 / 4 + pixel_uv_idx]; |
| 126 | |
| 127 | // 128 bias for UV given we are using jpeglib; see: |
| 128 | // https://github.com/kornelski/libjpeg/blob/master/structure.doc |
| 129 | return {{{ static_cast<float>(y_uint) / 255.0f, |
| 130 | (static_cast<float>(u_uint) - 128.0f) / 255.0f, |
| 131 | (static_cast<float>(v_uint) - 128.0f) / 255.0f }}}; |
| 132 | } |
| 133 | |
| 134 | typedef float (*sampleComponentFn)(jr_uncompressed_ptr, size_t, size_t); |
| 135 | |
| 136 | static float sampleComponent(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y, |
| 137 | sampleComponentFn sample_fn) { |
| 138 | float e = 0.0f; |
| 139 | for (size_t dy = 0; dy < map_scale_factor; ++dy) { |
| 140 | for (size_t dx = 0; dx < map_scale_factor; ++dx) { |
| 141 | e += sample_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | return e / static_cast<float>(map_scale_factor * map_scale_factor); |
| 146 | } |
| 147 | |
| 148 | static float getYuv420Y(jr_uncompressed_ptr image, size_t x, size_t y) { |
| 149 | size_t pixel_idx = x + y * image->width; |
| 150 | uint8_t y_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_idx]; |
| 151 | return static_cast<float>(y_uint) / 255.0f; |
| 152 | } |
| 153 | |
| 154 | |
| 155 | float sampleYuv420Y(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { |
| 156 | return sampleComponent(image, map_scale_factor, x, y, getYuv420Y); |
| 157 | } |
| 158 | |
| 159 | static float getP010Y(jr_uncompressed_ptr image, size_t x, size_t y) { |
| 160 | size_t pixel_idx = x + y * image->width; |
| 161 | uint8_t y_uint = reinterpret_cast<uint16_t*>(image->data)[pixel_idx]; |
| 162 | // Expecting narrow range input |
| 163 | return (static_cast<float>(y_uint) - 64.0f) / 960.0f; |
| 164 | } |
| 165 | |
| 166 | float sampleP010Y(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { |
| 167 | return sampleComponent(image, map_scale_factor, x, y, getP010Y); |
| 168 | } |
| 169 | } // namespace android::recoverymap |